We introduce a novel finetuning method Layer Variation Analysis (LVA) for transfer learning. Three domain adaptation experiments are demonstrated as follows:
- [Exp. 1] Time Series Regression
- [Exp. 2] Speech Enhancement (denoise)
- [Exp. 3] Super Resolution (image deblur)
- [Exp. 1] Requires no dataset
- [Exp. 2] Download DNS-Challenge (or here) and use
/Exp2/data_preprocessing/
for preprocessing. - [Exp. 3] Download CUFED (or here) and use
/Exp3/preprocessing_SR_images/
for preprocessing.
- [Exp. 1]
pretraining.py
- [Exp. 2]
SE_pretraining.py
- [Exp. 3]
SRCNN_pretraining.py
- [Exp. 1]
GD_finetune_1layer.py
&GD_vs_LVA_1layer.py
- [Exp. 2]
SE_finetuning_and_comparison.py
- [Exp. 3]
SRCNN_GD_finetuning.py
&SRCNN_LVA_comparisons.py
- Python 3.8
- PyTorch 2.0.1
- librosa 0.10.0
- pypesq 1.2.4
- pystoi 0.3.3
- Tensorboard 2.13.0
- scikit-learn 1.2.2
- tqdm 4.65.0
- scipy 1.10.1
- NVIDIA GPU with CUDA 11.0+