-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
9 changed files
with
1,396 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
252 changes: 252 additions & 0 deletions
252
projects/configs/petrv2/hybrid_petrv2_vovnet_gridmask_p4_800x320_lambda1_group4_t1800.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,252 @@ | ||
_base_ = [ | ||
'../../../mmdetection3d/configs/_base_/datasets/nus-3d.py', | ||
'../../../mmdetection3d/configs/_base_/default_runtime.py' | ||
] | ||
backbone_norm_cfg = dict(type='LN', requires_grad=True) | ||
plugin=True | ||
plugin_dir='projects/mmdet3d_plugin/' | ||
|
||
# If point cloud range is changed, the models should also change their point | ||
# cloud range accordingly | ||
point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0] | ||
voxel_size = [0.2, 0.2, 8] | ||
img_norm_cfg = dict( | ||
mean=[103.530, 116.280, 123.675], std=[57.375, 57.120, 58.395], to_rgb=False) | ||
# For nuScenes we usually do 10-class detection | ||
class_names = [ | ||
'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier', | ||
'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone' | ||
] | ||
input_modality = dict( | ||
use_lidar=True, | ||
use_camera=True, | ||
use_radar=False, | ||
use_map=False, | ||
use_external=False) | ||
model = dict( | ||
type='Petr3D', | ||
use_grid_mask=True, | ||
img_backbone=dict( | ||
type='VoVNetCP', ###use checkpoint to save memory | ||
spec_name='V-99-eSE', | ||
norm_eval=True, | ||
frozen_stages=-1, | ||
input_ch=3, | ||
out_features=('stage4','stage5',)), | ||
img_neck=dict( | ||
type='CPFPN', ###remove unused parameters | ||
in_channels=[768, 1024], | ||
out_channels=256, | ||
num_outs=2), | ||
pts_bbox_head=dict( | ||
type='HybridPETRv2Head', | ||
num_classes=10, | ||
in_channels=256, | ||
num_query=2700, | ||
num_queries_one2one=900, | ||
k_one2many=4, | ||
LID=True, | ||
with_position=True, | ||
with_multiview=True, | ||
with_fpe=True, | ||
with_time=True, | ||
with_multi=True, | ||
position_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0], | ||
code_weights = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], | ||
transformer=dict( | ||
type='PETRTransformer', | ||
decoder=dict( | ||
type='PETRTransformerDecoder', | ||
return_intermediate=True, | ||
num_layers=6, | ||
transformerlayers=dict( | ||
type='PETRTransformerDecoderLayer', | ||
attn_cfgs=[ | ||
dict( | ||
type='MultiheadAttention', | ||
embed_dims=256, | ||
num_heads=8, | ||
dropout=0.1), | ||
dict( | ||
type='PETRMultiheadAttention', | ||
embed_dims=256, | ||
num_heads=8, | ||
dropout=0.1), | ||
], | ||
feedforward_channels=2048, | ||
ffn_dropout=0.1, | ||
with_cp=True, ###use checkpoint to save memory | ||
operation_order=('self_attn', 'norm', 'cross_attn', 'norm', | ||
'ffn', 'norm')), | ||
)), | ||
bbox_coder=dict( | ||
type='NMSFreeCoder', | ||
post_center_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0], | ||
pc_range=point_cloud_range, | ||
max_num=300, | ||
voxel_size=voxel_size, | ||
num_classes=10), | ||
positional_encoding=dict( | ||
type='SinePositionalEncoding3D', num_feats=128, normalize=True), | ||
loss_cls=dict( | ||
type='FocalLoss', | ||
use_sigmoid=True, | ||
gamma=2.0, | ||
alpha=0.25, | ||
loss_weight=2.0), | ||
loss_bbox=dict(type='L1Loss', loss_weight=0.25), | ||
loss_iou=dict(type='GIoULoss', loss_weight=0.0)), | ||
# model training and testing settings | ||
train_cfg=dict(pts=dict( | ||
grid_size=[512, 512, 1], | ||
voxel_size=voxel_size, | ||
point_cloud_range=point_cloud_range, | ||
out_size_factor=4, | ||
assigner=dict( | ||
type='HungarianAssigner3D', | ||
cls_cost=dict(type='FocalLossCost', weight=2.0), | ||
reg_cost=dict(type='BBox3DL1Cost', weight=0.25), | ||
iou_cost=dict(type='IoUCost', weight=0.0), # Fake cost. This is just to make it compatible with DETR head. | ||
pc_range=point_cloud_range)))) | ||
|
||
dataset_type = 'CustomNuScenesDataset' | ||
data_root = 'data/nuscenes/' | ||
|
||
file_client_args = dict(backend='disk') | ||
|
||
db_sampler = dict( | ||
data_root=data_root, | ||
info_path=data_root + 'nuscenes_dbinfos_train.pkl', | ||
rate=1.0, | ||
prepare=dict( | ||
filter_by_difficulty=[-1], | ||
filter_by_min_points=dict( | ||
car=5, | ||
truck=5, | ||
bus=5, | ||
trailer=5, | ||
construction_vehicle=5, | ||
traffic_cone=5, | ||
barrier=5, | ||
motorcycle=5, | ||
bicycle=5, | ||
pedestrian=5)), | ||
classes=class_names, | ||
sample_groups=dict( | ||
car=2, | ||
truck=3, | ||
construction_vehicle=7, | ||
bus=4, | ||
trailer=6, | ||
barrier=2, | ||
motorcycle=6, | ||
bicycle=6, | ||
pedestrian=2, | ||
traffic_cone=2), | ||
points_loader=dict( | ||
type='LoadPointsFromFile', | ||
coord_type='LIDAR', | ||
load_dim=5, | ||
use_dim=[0, 1, 2, 3, 4], | ||
file_client_args=file_client_args)) | ||
ida_aug_conf = { | ||
"resize_lim": (0.47, 0.625), | ||
"final_dim": (320, 800), | ||
"bot_pct_lim": (0.0, 0.0), | ||
"rot_lim": (0.0, 0.0), | ||
"H": 900, | ||
"W": 1600, | ||
"rand_flip": True, | ||
} | ||
train_pipeline = [ | ||
dict(type='LoadMultiViewImageFromFiles', to_float32=True), | ||
dict(type='LoadMultiViewImageFromMultiSweepsFiles', sweeps_num=1, to_float32=True, pad_empty_sweeps=True, test_mode=False, sweep_range=[3,27]), | ||
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True, with_attr_label=False), | ||
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), | ||
dict(type='ObjectNameFilter', classes=class_names), | ||
dict(type='ResizeCropFlipImage', data_aug_conf = ida_aug_conf, training=True), | ||
dict(type='GlobalRotScaleTransImage', | ||
rot_range=[-0.3925, 0.3925], | ||
translation_std=[0, 0, 0], | ||
scale_ratio_range=[0.95, 1.05], | ||
reverse_angle=True, | ||
training=True | ||
), | ||
dict(type='NormalizeMultiviewImage', **img_norm_cfg), | ||
dict(type='PadMultiViewImage', size_divisor=32), | ||
dict(type='DefaultFormatBundle3D', class_names=class_names), | ||
dict(type='Collect3D', keys=['gt_bboxes_3d', 'gt_labels_3d', 'img'], | ||
meta_keys=('filename', 'ori_shape', 'img_shape', 'lidar2img', 'intrinsics', 'extrinsics', | ||
'pad_shape', 'scale_factor', 'flip', 'box_mode_3d', 'box_type_3d', | ||
'img_norm_cfg', 'sample_idx', 'timestamp')) | ||
] | ||
test_pipeline = [ | ||
dict(type='LoadMultiViewImageFromFiles', to_float32=True), | ||
dict(type='LoadMultiViewImageFromMultiSweepsFiles', sweeps_num=1, to_float32=True, pad_empty_sweeps=True, sweep_range=[3,27]), | ||
dict(type='ResizeCropFlipImage', data_aug_conf = ida_aug_conf, training=False), | ||
dict(type='NormalizeMultiviewImage', **img_norm_cfg), | ||
dict(type='PadMultiViewImage', size_divisor=32), | ||
dict( | ||
type='MultiScaleFlipAug3D', | ||
img_scale=(1333, 800), | ||
pts_scale_ratio=1, | ||
flip=False, | ||
transforms=[ | ||
dict( | ||
type='DefaultFormatBundle3D', | ||
class_names=class_names, | ||
with_label=False), | ||
dict(type='Collect3D', keys=['img'], | ||
meta_keys=('filename', 'ori_shape', 'img_shape', 'lidar2img', 'intrinsics', 'extrinsics', | ||
'pad_shape', 'scale_factor', 'flip', 'box_mode_3d', 'box_type_3d', | ||
'img_norm_cfg', 'sample_idx', 'timestamp')) | ||
]) | ||
] | ||
|
||
data = dict( | ||
samples_per_gpu=1, | ||
workers_per_gpu=4, | ||
train=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
ann_file=data_root + 'mmdet3d_nuscenes_30f_infos_train.pkl', | ||
pipeline=train_pipeline, | ||
classes=class_names, | ||
modality=input_modality, | ||
test_mode=False, | ||
use_valid_flag=True, | ||
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset | ||
# and box_type_3d='Depth' in sunrgbd and scannet dataset. | ||
box_type_3d='LiDAR'), | ||
val=dict(type=dataset_type, pipeline=test_pipeline, ann_file=data_root + 'mmdet3d_nuscenes_30f_infos_val.pkl', classes=class_names, modality=input_modality), | ||
test=dict(type=dataset_type, pipeline=test_pipeline, ann_file=data_root + 'mmdet3d_nuscenes_30f_infos_val.pkl', classes=class_names, modality=input_modality)) | ||
# test=dict(type=dataset_type, pipeline=test_pipeline, ann_file=data_root + 'mmdet3d_nuscenes_30f_infos_test.pkl', classes=class_names, modality=input_modality)) | ||
|
||
|
||
optimizer = dict( | ||
type='AdamW', | ||
lr=2e-4, | ||
paramwise_cfg=dict( | ||
custom_keys={ | ||
'img_backbone': dict(lr_mult=0.1), | ||
}), | ||
weight_decay=0.01) | ||
|
||
optimizer_config = dict(type='Fp16OptimizerHook', loss_scale=512., grad_clip=dict(max_norm=35, norm_type=2)) | ||
|
||
# learning policy | ||
lr_config = dict( | ||
policy='CosineAnnealing', | ||
warmup='linear', | ||
warmup_iters=500, | ||
warmup_ratio=1.0 / 3, | ||
min_lr_ratio=1e-3, | ||
) | ||
total_epochs = 24 | ||
evaluation = dict(interval=6, pipeline=test_pipeline) | ||
find_unused_parameters=False #### when use checkpoint, find_unused_parameters must be False | ||
checkpoint_config = dict(interval=1, max_keep_ckpts=12, create_symlink=False) | ||
runner = dict(type='EpochBasedRunner', max_epochs=total_epochs) | ||
load_from='ckpts/fcos3d_vovnet_imgbackbone-remapped.pth' | ||
resume_from=None | ||
|
Oops, something went wrong.