generate raw data for all users on device
nohup python -u ./scripts/preprocess/movielens/generate_device_data.py > ./log/generate_device_data.log 2>&1 &
generate seq data for all users on device
nohup python -u ./scripts/preprocess/movielens/generate_seq_data.py > ./log/generate_seq_data.log 2>&1 &
split train and test data for all users on device
nohup python -u ./scripts/preprocess/movielens/split.py > ./log/split_train_test_data.log 2>&1 &
generate user and mapping file
python -u scripts/preprocess/movielens/generate_mapping.py
generate all users id json file
python scripts/preprocess/movielens/generate_all_users_list.py
generate users with train json file
python scripts/preprocess/movielens/generate_users_with_train.py
generate recall item pairs
python scripts/preprocess/movielens/generate_item_pairs.py
train global model NCF
nohup python -u ./model/NCF/train_global_model.py > ./log/train_global_model_NCF.log 2>&1 &
transfer model NCF
bash ./commands/ncf_movielens_50_random.sh