Source code for "Transfer Learning of Graph Neural Networks with Ego-graph Information Maximization", published in NeurIPS 2021.
If you find our paper useful, please consider cite the following paper.
@article{zhu2020transfer,
title={Transfer learning of graph neural networks with ego-graph information maximization},
author={Zhu, Qi and Yang, Carl and Xu, Yidan and Wang, Haonan and Zhang, Chao and Han, Jiawei},
journal={arXiv preprint arXiv:2009.05204},
year={2020}
}
Please use old version of DGL library (0.4.3) to run the original code.
pip install dgl==0.4.3
Change your cuda version accordingly.
pip install dgl-cu101==0.4.3
EGI model can be found under models/subgi.py, we call EGI as SubGI when code is developed. The default encoder arch is GIN as you will see in the code. To run the airport data, see example below
python run_airport.py --file-path=data/usa-airports.edgelist --label-path=data/labels-usa-airports.txt --n-dgi-epochs=100 --n-hidden=32 --self-loop --gpu=0 --n-layers=1 --dgi-lr=0.01 --model-id=2 --model-type=2
We also provide the code to run DGI on the dataset as below:
python run_airport.py --file-path=data/usa-airports.edgelist --label-path=data/labels-usa-airports.txt --n-dgi-epochs=100 --n-hidden=32 --self-loop --gpu=0 --n-layers=1 --dgi-lr=0.001 --model-id=2 --model-type=0
python compute_bound_filepath.py --args.file-path=data/europe-aiports.edgelist --args.label-path=data/usa-aiports.edgelist
python compute_bound_pickle.py --args.file-path=data/barabasi_small_graphs_full.pkl --args.label-path=data/forest_fire_graphs_full.pkl