Skip to content
/ EGI Public

Transfer Learning of Graph Neural Networks with Ego-graph Information Maximization (NeurIPS 21')

Notifications You must be signed in to change notification settings

GentleZhu/EGI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EGI

Source code for "Transfer Learning of Graph Neural Networks with Ego-graph Information Maximization", published in NeurIPS 2021.

If you find our paper useful, please consider cite the following paper.

@article{zhu2020transfer,
  title={Transfer learning of graph neural networks with ego-graph information maximization},
  author={Zhu, Qi and Yang, Carl and Xu, Yidan and Wang, Haonan and Zhang, Chao and Han, Jiawei},
  journal={arXiv preprint arXiv:2009.05204},
  year={2020}
}

Requirements

Please use old version of DGL library (0.4.3) to run the original code.

CPU version

pip install dgl==0.4.3

DGL GPU version (recommened)

Change your cuda version accordingly.

pip install dgl-cu101==0.4.3

Model specifications

EGI model can be found under models/subgi.py, we call EGI as SubGI when code is developed. The default encoder arch is GIN as you will see in the code. To run the airport data, see example below

python run_airport.py --file-path=data/usa-airports.edgelist --label-path=data/labels-usa-airports.txt --n-dgi-epochs=100  --n-hidden=32 --self-loop --gpu=0 --n-layers=1 --dgi-lr=0.01 --model-id=2 --model-type=2

We also provide the code to run DGI on the dataset as below:

python run_airport.py --file-path=data/usa-airports.edgelist --label-path=data/labels-usa-airports.txt --n-dgi-epochs=100  --n-hidden=32 --self-loop --gpu=0 --n-layers=1 --dgi-lr=0.001 --model-id=2 --model-type=0

Computer the EGI gap term

from edgelist

python compute_bound_filepath.py --args.file-path=data/europe-aiports.edgelist --args.label-path=data/usa-aiports.edgelist

from pickle file for synthetic experiment

python compute_bound_pickle.py --args.file-path=data/barabasi_small_graphs_full.pkl --args.label-path=data/forest_fire_graphs_full.pkl

About

Transfer Learning of Graph Neural Networks with Ego-graph Information Maximization (NeurIPS 21')

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages