Skip to content

Commit

Permalink
add demo for fast inference
Browse files Browse the repository at this point in the history
  • Loading branch information
wjf5203 authored Oct 21, 2024
1 parent 6f5a19d commit f36a49e
Showing 1 changed file with 272 additions and 0 deletions.
272 changes: 272 additions & 0 deletions projects/demo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,272 @@
import detectron2
import numpy as np
import cv2
import torch
from os import path
from detectron2.config import get_cfg
from GLEE.glee.models.glee_model import GLEE_Model
from GLEE.glee.config_deeplab import add_deeplab_config
from GLEE.glee.config import add_glee_config
import torch.nn.functional as F
import torchvision
import math
from scipy.optimize import linear_sum_assignment
import argparse
from PIL import Image
import os

def get_args_parser():
parser = argparse.ArgumentParser('Set transformer detector', add_help=False)
parser.add_argument('--version', type=str, default='Lite', help='select model version from [Lite,Plus,Pro]')
parser.add_argument('--input_image', type=str, default='./Examples/000000001000.jpg', help='path to image')
parser.add_argument('--output', type=str, default='./outputs', help='path to save detection results')
parser.add_argument('--task', type=str, default='detection', help='mode: detection/grounding')
parser.add_argument('--text', type=str, default='person,bicycle,car,motorcycle,airplane', help='category list split by ,\ or a sentence')
parser.add_argument('--topk', type=int, default=10)
parser.add_argument('--sim_thres', type=float, default=0.1, help='Similarity Threshold')
return parser


def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(-1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
(x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=-1)


def LSJ_box_postprocess( out_bbox, padding_size, crop_size, img_h, img_w):
# postprocess box height and width
boxes = box_cxcywh_to_xyxy(out_bbox)
lsj_sclae = torch.tensor([padding_size[1], padding_size[0], padding_size[1], padding_size[0]]).to(out_bbox)
crop_scale = torch.tensor([crop_size[1], crop_size[0], crop_size[1], crop_size[0]]).to(out_bbox)
boxes = boxes * lsj_sclae
boxes = boxes / crop_scale
boxes = torch.clamp(boxes,0,1)

scale_fct = torch.tensor([img_w, img_h, img_w, img_h])
scale_fct = scale_fct.to(out_bbox)
boxes = boxes * scale_fct
return boxes

COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933],
[0.494, 0.000, 0.556], [0.494, 0.000, 0.000], [0.000, 0.745, 0.000],
[0.700, 0.300, 0.600],[0.000, 0.447, 0.741], [0.850, 0.325, 0.098]]


def main(args):


print(f"Is CUDA available: {torch.cuda.is_available()}")
# True
if torch.cuda.is_available():
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
# Tesla T4

coco_class_name = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']
YTBVISOVIS_class_name = ['lizard', 'cat', 'horse', 'eagle', 'frog', 'Horse', 'monkey', 'bear', 'parrot', 'giant_panda', 'truck', 'zebra', 'rabbit', 'skateboard', 'tiger', 'shark', 'Person', 'Poultry', 'Zebra', 'Airplane', 'elephant', 'Elephant', 'Turtle', 'snake', 'train', 'Dog', 'snowboard', 'airplane', 'Lizard', 'dog', 'Cat', 'earless_seal', 'boat', 'Tiger', 'motorbike', 'duck', 'fox', 'Monkey', 'Bird', 'Bear', 'tennis_racket', 'Rabbit', 'Giraffe', 'Motorcycle', 'fish', 'Boat', 'deer', 'ape', 'Bicycle', 'Parrot', 'Cow', 'turtle', 'mouse', 'owl', 'Fish', 'surfboard', 'Giant_panda', 'Sheep', 'hand', 'Vehical', 'sedan', 'leopard', 'person', 'giraffe', 'cow']
class_agnostic_name = ['object']

if torch.cuda.is_available():
print('use cuda')
device = 'cuda'
else:
print('use cpu')
device='cpu'

if 'Lite' in args.version:
cfg_r50 = get_cfg()
add_deeplab_config(cfg_r50)
add_glee_config(cfg_r50)
conf_files_r50 = 'GLEE/configs/R50.yaml'
checkpoints_r50 = torch.load('GLEE_DEMO_MODEL_ZOO/GLEE_R50_Scaleup10m.pth')
cfg_r50.merge_from_file(conf_files_r50)
GLEEmodel = GLEE_Model(cfg_r50, None, device, None, True).to(device)
GLEEmodel.load_state_dict(checkpoints_r50, strict=False)
GLEEmodel.eval()
inference_type = 'resize_shot' # or LSJ
elif 'Plus' in args.version:
cfg_swin = get_cfg()
add_deeplab_config(cfg_swin)
add_glee_config(cfg_swin)
conf_files_swin = 'GLEE/configs/SwinL.yaml'
checkpoints_swin = torch.load('GLEE_DEMO_MODEL_ZOO/GLEE_SwinL_Scaleup10m.pth')
cfg_swin.merge_from_file(conf_files_swin)
GLEEmodel = GLEE_Model(cfg_swin, None, device, None, True).to(device)
GLEEmodel.load_state_dict(checkpoints_swin, strict=False)
GLEEmodel.eval()
inference_type = 'resize_shot' # or LSJ
elif 'Pro' in args.version:
cfg_eva02 = get_cfg()
add_deeplab_config(cfg_eva02)
add_glee_config(cfg_eva02)
conf_files_eva02 = 'GLEE/configs/EVA02.yaml'
checkpoints_eva = torch.load('GLEE_DEMO_MODEL_ZOO/GLEE_EVA02_Scaleup10m.pth')
cfg_eva02.merge_from_file(conf_files_eva02)
GLEEmodel = GLEE_Model(cfg_eva02, None, device, None, True).to(device)
GLEEmodel.load_state_dict(checkpoints_eva, strict=False)
GLEEmodel.eval()
inference_type = 'LSJ'
else:
assert False, 'model version not defined!'




pixel_mean = torch.Tensor( [123.675, 116.28, 103.53]).to(device).view(3, 1, 1)
pixel_std = torch.Tensor([58.395, 57.12, 57.375]).to(device).view(3, 1, 1)
normalizer = lambda x: (x - pixel_mean) / pixel_std
inference_size = 800

size_divisibility = 32

FONT_SCALE = 1.5e-3
THICKNESS_SCALE = 1e-3
TEXT_Y_OFFSET_SCALE = 1e-2


if inference_type != 'LSJ':
resizer = torchvision.transforms.Resize(inference_size,antialias=True)
else:
resizer = torchvision.transforms.Resize(size = 1535, max_size=1536, antialias=True)


inputimage = np.array(Image.open(args.input_image))



ori_image = torch.as_tensor(np.ascontiguousarray( inputimage.transpose(2, 0, 1)))
ori_image = normalizer(ori_image.to(device))[None,]
_,_, ori_height, ori_width = ori_image.shape

if inference_type == 'LSJ':
resize_image = resizer(ori_image)
image_size = torch.as_tensor((resize_image.shape[-2],resize_image.shape[-1]))
re_size = resize_image.shape[-2:]
infer_image = torch.zeros(1,3,1536,1536).to(ori_image)
infer_image[:,:,:image_size[0],:image_size[1]] = resize_image
padding_size = (1536,1536)
else:
resize_image = resizer(ori_image)
image_size = torch.as_tensor((resize_image.shape[-2],resize_image.shape[-1]))
re_size = resize_image.shape[-2:]
if size_divisibility > 1:
stride = size_divisibility
# the last two dims are H,W, both subject to divisibility requirement
padding_size = ((image_size + (stride - 1)).div(stride, rounding_mode="floor") * stride).tolist()
infer_image = torch.zeros(1,3,padding_size[0],padding_size[1]).to(resize_image)
infer_image[0,:,:image_size[0],:image_size[1]] = resize_image
# reversed_image = infer_image*pixel_std + pixel_mean
# reversed_image = torch.clip(reversed_image,min=0,max=255)
# reversed_image = reversed_image[0].permute(1,2,0)
# reversed_image = reversed_image.int().cpu().numpy().copy()
# cv2.imwrite('test.png',reversed_image[:,:,::-1])

results_select=['box','name','score'] # or ['box','mask'] #选择要可视化的部分
topK_instance = args.topk
threshold_select = args.sim_thres

if args.task == 'detection':
batch_category_name = args.text.split(',')
prompt_list = []
task="coco"
elif args.task == 'grounding':
batch_category_name = []
prompt_list = {'grounding':[args.text]}
task="grounding"
else:
assert False, 'task not defined!'

with torch.no_grad():
(outputs,_) = GLEEmodel(infer_image, prompt_list, task=task, batch_name_list=batch_category_name, is_train=False)

mask_pred = outputs['pred_masks'][0]
mask_cls = outputs['pred_logits'][0]
boxes_pred = outputs['pred_boxes'][0]

scores = mask_cls.sigmoid().max(-1)[0]
scores_per_image, topk_indices = scores.topk(topK_instance, sorted=True)

valid = scores_per_image>threshold_select
topk_indices = topk_indices[valid]
scores_per_image = scores_per_image[valid]

pred_class = mask_cls[topk_indices].max(-1)[1].tolist()
pred_boxes = boxes_pred[topk_indices]


boxes = LSJ_box_postprocess(pred_boxes,padding_size,re_size, ori_height,ori_width)
mask_pred = mask_pred[topk_indices]
assert len(mask_pred)>0 ,'not enough object to visualize, turn thres bigger'
pred_masks = F.interpolate( mask_pred[None,], size=(padding_size[0], padding_size[1]), mode="bilinear", align_corners=False )
pred_masks = pred_masks[:,:,:re_size[0],:re_size[1]]
pred_masks = F.interpolate( pred_masks, size=(ori_height,ori_width), mode="bilinear", align_corners=False )
pred_masks = (pred_masks>0).detach().cpu().numpy()[0]

if 'mask' in results_select:
mask_image_mix_ration=0.5
zero_mask = np.zeros_like(inputimage)
for nn, mask in enumerate(pred_masks):
# mask = mask.numpy()
mask = mask.reshape(mask.shape[0], mask.shape[1], 1)

lar = np.concatenate((mask*COLORS[nn%12][2], mask*COLORS[nn%12][1], mask*COLORS[nn%12][0]), axis = 2)
zero_mask = zero_mask+ lar


lar_valid = zero_mask>0
masked_image = lar_valid*inputimage
img_n = masked_image*mask_image_mix_ration + np.clip(zero_mask,0,1)*255*(1-mask_image_mix_ration)
max_p = img_n.max()
img_n = 255*img_n/max_p
ret = (~lar_valid*inputimage)*mask_image_mix_ration + img_n
ret = ret.astype('uint8')
else:
ret = inputimage

if 'box' in results_select:

line_width = max(ret.shape) /200

for nn,(classid, box) in enumerate(zip(pred_class,boxes)):
x1,y1,x2,y2 = box.long().tolist()
RGB = (COLORS[nn%12][2]*255,COLORS[nn%12][1]*255,COLORS[nn%12][0]*255)
cv2.rectangle(ret, (x1,y1), (x2,y2), RGB, math.ceil(line_width) )
if args.task == 'detection' :
label = ''
if 'name' in results_select:
label += batch_category_name[classid]
if 'score' in results_select:
label += str(scores_per_image[nn].item())[:3]

if len(label)==0:
continue
height, width, _ = ret.shape
FONT = cv2.FONT_HERSHEY_COMPLEX
label_width, label_height = cv2.getTextSize(label, FONT, min(width, height) * FONT_SCALE, math.ceil(min(width, height) * THICKNESS_SCALE))[0]

cv2.rectangle(ret, (x1,y1), (x1+label_width,(y1 -label_height) - int(height * TEXT_Y_OFFSET_SCALE)), RGB, -1)

cv2.putText(
ret,
label,
(x1, y1 - int(height * TEXT_Y_OFFSET_SCALE)),
fontFace=FONT,
fontScale=min(width, height) * FONT_SCALE,
thickness=math.ceil(min(width, height) * THICKNESS_SCALE),
color=(255,255,255),
)

ret = ret.astype('uint8')
if not os.path.exists(args.output):
os.makedirs(args.output)
Image.fromarray(ret).save(os.path.join(args.output, args.input_image.split('/')[-1]))
# cv2.imwrite( os.path.join(args.output, args.input_image.split('/')[-1]),ret )




if __name__ == '__main__':
parser = argparse.ArgumentParser('image path check script', parents=[get_args_parser()])
args = parser.parse_args()
main(args)

0 comments on commit f36a49e

Please sign in to comment.