Skip to content

DeepBaksuVision/You_Only_Look_Once

 
 

Repository files navigation

A PyTorch implementation of a YOLO v1 Object Detector

Implementation of YOLO v1 object detector in PyTorch. Full tutorial can be found here in korean.

Tested under Python 3.6, PyTorch 0.4.1 on Ubuntu 16.04, Windows10.

Requirements

See requirements for details.

NOTICE: different versions of PyTorch package have different memory usages.

How to use

Training on PASCAL VOC (20 classes)

main.py --mode train -data_path where/your/dataset/is --class_path ./names/VOC.names --num_class 20 --use_augmentation True --use_visdom True

Test on PASCAL VOC (20 classes)

main.py  --mode test --data_path where/your/dataset/is --class_path ./names/VOC.names --num_class 20 --checkpoint_path your_checkpoint.pth.tar

pre-built weights file

python3 utilities/download_checkpoint.py

pre-build weights donwload

Supported Datasets

Only Pascal VOC datasets are supported for now.

Configuration Options

argument type description default
--mode str train or test train
--dataset str only support voc now voc
--data_path str data path
--class_path str filenames text file path
--input_height int input height 448
--input_width int input width 448
--batch_size int batch size 16
--num_epochs int # of epochs 16000
--learning_rate float initial learning rate 1e-3
--dropout float dropout probability 0.5
--num_gpus int # of GPUs for training 1
--checkpoint_path str checkpoint path ./
--use_augmentation bool image Augmentation True
--use_visdom bool visdom False
--use_wandb bool wandb False
--use_summary bool descripte Model summary True
--use_gtcheck bool gt check flag False
--use_githash bool use githash False
--num_class int number of classes 5

Train Log

train_log

Results

image image image image

Authorship

This project is equally contributed by Chanhee Jeong, Donghyeon Hwang, and Jaewon Lee.

Copyright

See LICENSE for details.

REFERENCES

[1] Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. (https://arxiv.org/abs/1506.02640)

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 97.3%
  • Shell 2.7%