Skip to content

ChenYingpeng/darknet-mobilenet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Install

1 add depthwise convolutional layer into darknet First, open this file /src/parser.c.

  1. add below into it
#include "utils.h"
++ #include "depthwise_convolutional_layer.h" //added by chen
  1. find function 'string_to_layer_type' added below into it
if (strcmp(type, "[upsample]")==0) return UPSAMPLE; 
++ if (strcmp(type, "[depthwise_convolutional]") == 0) return DEPTHWISE_CONVOLUTIONAL; //added by chen 
     return BLANK;
  1. find function 'parse_network_cfg' added below into it
if(lt == CONVOLUTIONAL){ 
    l = parse_convolutional(options, params); 
    } 
 ++ else if (lt == DEPTHWISE_CONVOLUTIONAL) { 
     ++ l = parse_depthwise_convolutional(options, params); //added by chen 
     ++ } 
     else if(lt == DECONVOLUTIONAL){ l = parse_deconvolutional(options, params); 
 }
  1. add this function 'parse_depthwise_convolutional' into it
//added by chen 
depthwise_convolutional_layer parse_depthwise_convolutional(list *options, size_params params) 
{ 
    int size = option_find_int(options, "size", 1); 
    int stride = option_find_int(options, "stride", 1); 
    int pad = option_find_int_quiet(options, "pad", 0); 
    int padding = option_find_int_quiet(options, "padding", 0); 
    if (pad) padding = size / 2; 
    
    char *activation_s = option_find_str(options, "activation", "logistic"); 
    ACTIVATION activation = get_activation(activation_s); 
    
    int batch, h, w, c; 
    h = params.h;
    w = params.w; 
    c = params.c; 
    batch = params.batch; 
    if (!(h && w && c)) error("Layer before convolutional layer must output image."); 
    int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); 
    
    depthwise_convolutional_layer layer = make_depthwise_convolutional_layer(batch, h, w, c, size, stride, padding, activation, batch_normalize); 
    layer.flipped = option_find_int_quiet(options, "flipped", 0); 
    layer.dot = option_find_float_quiet(options, "dot", 0);
    
    return layer;
}
  1. find function 'load_weights_upto' added below into it
if (l.dontload) continue; 
++ if (l.type == DEPTHWISE_CONVOLUTIONAL) {
++ load_depthwise_convolutional_weights(l, fp);//added by chen
++ }
  1. add this function 'load_depthwise_convolutional_weights' into it

    //added by chen 
    void load_depthwise_convolutional_weights(layer l, FILE *fp)
    { 
        int num = l.n*l.size*l.size; 
        fread(l.biases, sizeof(float), l.n, fp); 
        if (l.batch_normalize && (!l.dontloadscales)) { 
            fread(l.scales, sizeof(float), l.n, fp); 
            fread(l.rolling_mean, sizeof(float), l.n, fp); 
            fread(l.rolling_variance, sizeof(float), l.n, fp); 
            if (0) { 
                int i; 
                for (i = 0; i < l.n; ++i) { 
                    printf("%g, ", l.rolling_mean[i]); 
                } 
                printf("\n"); 
                for (i = 0; i < l.n; ++i) { 
                    printf("%g, ", l.rolling_variance[i]); 
                } 
                printf("\n");
            } 
            if (0) { 
                fill_cpu(l.n, 0, l.rolling_mean, 1); 
                fill_cpu(l.n, 0, l.rolling_variance, 1);
            }
        }
        fread(l.weights, sizeof(float), num, fp); 
        if (l.flipped) { 
        //transpose_matrix(l.weights, l.c*l.size*l.size, l.n); 
        } 
    #ifdef GPU 
        if (gpu_index >= 0) { 
            push_depthwise_convolutional_layer(l);
        }
    #endif
    }
    
  2. find function 'save_weights_upto' added below into it

    if (l.dontsave) continue;
    ++ if (l.type == DEPTHWISE_CONVOLUTIONAL) {
    ++    save_depthwise_convolutional_weights(l, fp); //added by chen
    ++ }
    
  3. add this function 'save_depthwise_convolutional_weights' into it

    //added by chen
    void save_depthwise_convolutional_weights(layer l, FILE *fp)
    { 
    #ifdef GPU 
        if (gpu_index >= 0) { 
            pull_depthwise_convolutional_layer(l);
        } 
    #endif 
        int num = l.n*l.size*l.size;
        fwrite(l.biases, sizeof(float), l.n, fp);
        if (l.batch_normalize) { 
            fwrite(l.scales, sizeof(float), l.n, fp); 
            fwrite(l.rolling_mean, sizeof(float), l.n, fp); 
            fwrite(l.rolling_variance, sizeof(float), l.n, fp);
        } 
        fwrite(l.weights, sizeof(float), num, fp);
    }
    

Second, open this file /src/network.c .

  1. add below into it

    #include "data.h"
    ++ #include "depthwise_convolutional_layer.h" // added by chen
    
  2. add below into it

    if(l.type == CONVOLUTIONAL){ 
        resize_convolutional_layer(&l, w, h); 
    } 
    ++ else if(l.type == DEPTHWISE_CONVOLUTIONAL){ 
    ++     resize_depthwise_convolutional_layer(&l, w, h); //added by chen 
    ++ }
    

Third,open this file /include/darknet.h and add below into it.

  BLANK,
++ DEPTHWISE_CONVOLUTIONAL //added by chen

Final, put these files 'depthwise_convolutional_layer.h depthwise_convolutional_layer.c depthwise_convolutional_kernels.cu' into /src.

Compile

Open Makefile add below into it.

++ OBJ= depthwise_convolutional_layer.o
ifeq ($(GPU), 1)  
LDFLAGS+= -lstdc++ 
++ OBJ+=depthwise_convolutional_kernels.o 
endif

Make

$ make -j8

Test

 cd darknet
 ./darknet classifier predict cfg/imagenet1k.data cfg/mobilenet_v1.cfg mobilenet_v1_72.weights data/cat.jpg 
 layer     filters    size              input                output
0 conv     32  3 x 3 / 2   256 x 256 x   3   ->   128 x 128 x  32  0.028 BFLOPs
1 dw conv     32  3 x 3 / 1   128 x 128 x  32   ->   128 x 128 x  32  0.009 BFLOPs
2 conv     64  1 x 1 / 1   128 x 128 x  32   ->   128 x 128 x  64  0.067 BFLOPs
3 dw conv     64  3 x 3 / 2   128 x 128 x  64   ->    64 x  64 x  64  0.005 BFLOPs
4 conv    128  1 x 1 / 1    64 x  64 x  64   ->    64 x  64 x 128  0.067 BFLOPs
5 dw conv    128  3 x 3 / 1    64 x  64 x 128   ->    64 x  64 x 128  0.009 BFLOPs
6 conv    128  1 x 1 / 1    64 x  64 x 128   ->    64 x  64 x 128  0.134 BFLOPs
7 dw conv    128  3 x 3 / 2    64 x  64 x 128   ->    32 x  32 x 128  0.002 BFLOPs
8 conv    256  1 x 1 / 1    32 x  32 x 128   ->    32 x  32 x 256  0.067 BFLOPs
9 dw conv    256  3 x 3 / 1    32 x  32 x 256   ->    32 x  32 x 256  0.005 BFLOPs
10 conv    256  1 x 1 / 1    32 x  32 x 256   ->    32 x  32 x 256  0.134 BFLOPs
11 dw conv    256  3 x 3 / 2    32 x  32 x 256   ->    16 x  16 x 256  0.001 BFLOPs
12 conv    512  1 x 1 / 1    16 x  16 x 256   ->    16 x  16 x 512  0.067 BFLOPs
13 dw conv    512  3 x 3 / 1    16 x  16 x 512   ->    16 x  16 x 512  0.002 BFLOPs
14 conv    512  1 x 1 / 1    16 x  16 x 512   ->    16 x  16 x 512  0.134 BFLOPs
15 dw conv    512  3 x 3 / 1    16 x  16 x 512   ->    16 x  16 x 512  0.002 BFLOPs
16 conv    512  1 x 1 / 1    16 x  16 x 512   ->    16 x  16 x 512  0.134 BFLOPs
17 dw conv    512  3 x 3 / 1    16 x  16 x 512   ->    16 x  16 x 512  0.002 BFLOPs
18 conv    512  1 x 1 / 1    16 x  16 x 512   ->    16 x  16 x 512  0.134 BFLOPs
19 dw conv    512  3 x 3 / 1    16 x  16 x 512   ->    16 x  16 x 512  0.002 BFLOPs
20 conv    512  1 x 1 / 1    16 x  16 x 512   ->    16 x  16 x 512  0.134 BFLOPs
21 dw conv    512  3 x 3 / 1    16 x  16 x 512   ->    16 x  16 x 512  0.002 BFLOPs
22 conv    512  1 x 1 / 1    16 x  16 x 512   ->    16 x  16 x 512  0.134 BFLOPs
23 dw conv    512  3 x 3 / 2    16 x  16 x 512   ->     8 x   8 x 512  0.001 BFLOPs
24 conv   1024  1 x 1 / 1     8 x   8 x 512   ->     8 x   8 x1024  0.067 BFLOPs
25 dw conv   1024  3 x 3 / 1     8 x   8 x1024   ->     8 x   8 x1024  0.001 BFLOPs
26 conv   1024  1 x 1 / 1     8 x   8 x1024   ->     8 x   8 x1024  0.134 BFLOPs
27 avg                        8 x   8 x1024   ->  1024
28 conv   1000  1 x 1 / 1     1 x   1 x1024   ->     1 x   1 x1000  0.002 BFLOPs
29 softmax                                        1000
Loading weights from ../darknet-mod/mobilenet_v1_72.weights...Done!
data/cat.jpg: Predicted in 0.005337 seconds.
43.06%: tiger cat
17.93%: tabby
9.49%: Egyptian cat
3.43%: lynx
1.38%: bucket

Valid

./darknet classifier valid cfg/imagenet1k.data cfg/mobilenet_v1_416.cfg mobilenet_v1_72.weights 

Precision

network top1 top5
Mobilenet_v1 0.7203 0.90514

About

Recurrent mobilenet based on darknet

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published