- W-NETR is based on MONAI 0.7.0 : PyTorch-based, open-source frameworks for deep learning in healthcare signals. (https://github.com/Project-MONAI/MONAI) https://arxiv.org/abs/2103.10504
Follow the steps in "installation_commands.txt". Installation via Anaconda and creation of a virtual env to download the python libraries and pytorch/cuda.
-
fetal-ecg-synthetic-database-1.0.0/generate_dataset.py: Organize the data in the folder structure (fecg_ground,mixture,mecg_ground) for the network.
-
init.py: List of options used to train the network.
-
networks.py: The W-NETR architecture for FECG extraction testing on simulation dataset.
-
networks_real.py: The W-NETR architecture for FECG extraction testing on real dataset.
-
test_simulation.py: Runs the testing on simulation dataset.
-
test_real.py: Runs the testing on real dataset.
First download the "fetal-ecg-synthetic-database-1.0.0" dataset and place its "sub01", "sub02", ...., "sub10" folders in the "fetal-ecg-synthetic-database-1.0.0/" directory.
Second run the "fetal-ecg-synthetic-database-1.0.0/generate_dataset.py" and "ADFECGDB/generate_dataset_real.py" to create organize the simulation and real data, respectively.
Then run the "fetal-ecg-synthetic-database-1.0.0/Dataset_gen2.py" and "ADFECGDB/Dataset_gen_real.py" to create the dataloader files for the simulation and real data, respectively.
Finally, download the trained simulation and real corresponding models from the following links: -https://drive.google.com/file/d/1NljEmZJaBb4hT3sLJ_HFAJDJhEt4HoJv/view?usp=sharing -https://drive.google.com/file/d/1wUzuZcAJmcaXPsYv-rgApjhke8mCuVZh/view?usp=sharing
The following plot show results on simulation dataset:
The following plot show results on real dataset:
W-NETR paper with more descriptions is now publicly available. Please check for more details: Almadani, Murad, Leontios Hadjileontiadis, and Ahsan Khandoker. "One-Dimensional W-NETR for Non-invasive Single Channel Fetal ECG Extraction." IEEE Journal of Biomedical and Health Informatics (2023).