Skip to content

Almadani92/W-NETR-for-FECG-extraction

Repository files navigation

W-NETR-pipeline


Requirements

Follow the steps in "installation_commands.txt". Installation via Anaconda and creation of a virtual env to download the python libraries and pytorch/cuda.


Python scripts and their function

  • fetal-ecg-synthetic-database-1.0.0/generate_dataset.py: Organize the data in the folder structure (fecg_ground,mixture,mecg_ground) for the network.

  • init.py: List of options used to train the network.

  • networks.py: The W-NETR architecture for FECG extraction testing on simulation dataset.

  • networks_real.py: The W-NETR architecture for FECG extraction testing on real dataset.

  • test_simulation.py: Runs the testing on simulation dataset.

  • test_real.py: Runs the testing on real dataset.


Usage

Folders structure:

First download the "fetal-ecg-synthetic-database-1.0.0" dataset and place its "sub01", "sub02", ...., "sub10" folders in the "fetal-ecg-synthetic-database-1.0.0/" directory.

Second run the "fetal-ecg-synthetic-database-1.0.0/generate_dataset.py" and "ADFECGDB/generate_dataset_real.py" to create organize the simulation and real data, respectively.

Then run the "fetal-ecg-synthetic-database-1.0.0/Dataset_gen2.py" and "ADFECGDB/Dataset_gen_real.py" to create the dataloader files for the simulation and real data, respectively.

Finally, download the trained simulation and real corresponding models from the following links: -https://drive.google.com/file/d/1NljEmZJaBb4hT3sLJ_HFAJDJhEt4HoJv/view?usp=sharing -https://drive.google.com/file/d/1wUzuZcAJmcaXPsYv-rgApjhke8mCuVZh/view?usp=sharing


Results:

The following plot show results on simulation dataset:

simulation

The following plot show results on real dataset:

real

W-NETR Notes from the authors:

W-NETR paper with more descriptions is now publicly available. Please check for more details: Almadani, Murad, Leontios Hadjileontiadis, and Ahsan Khandoker. "One-Dimensional W-NETR for Non-invasive Single Channel Fetal ECG Extraction." IEEE Journal of Biomedical and Health Informatics (2023).

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published