Skip to content
/ DMT Public

VarDial19 shared task: Discriminating between Mainland and Taiwan Variation of Mandarin Chinese (DMT)

Notifications You must be signed in to change notification settings

AlexYangLi/DMT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DMT

VarDial19 shared task: discriminating between mainland and taiwan variation of mandarin chinese -- DMT

Dataset

Download dmt data here, put it in raw_data dir.

Data augmentation

Cut long sentences into multiple shorter sub-sentences and replace the original sentence in the training data.

DL based Models

  • TextCNN, EMNLP2014
    Kim et al. Convolutional Neural Networks for Sentence Classification.

  • DCNN, ACL2014
    Kalchbrenner et al. A Convolutional Neural Network for Modelling Sentences

  • RCNN, AAAI2015
    Lai et al. Recurrent Convolutional Neural Networks for Text Classification.

  • HAN, NAACL-HLT2016
    Yang et al. Hierarchical Attention Networks for Document Classification.

  • DPCNN, ACL2017
    Johnson et al. Deep Pyramid Convolutional Neural Networks for Text Categorization.

  • VDCNN, EACL2017
    Conneau et al. Very Deep Convolutional Networks for Text Classification.

  • MultiTextCNN
    Extension of textcnn, stacking multiple cnns with the same filter size.

  • BiLSTM
    Bidirectional lstm + max pooling over time.

  • RNNCNN
    Bidirectional gru + conv + max pooling & avg pooling.

  • CNNRNN
    Conv + max pooling + Bidirectional gru + max pooling over time.

ML based model

  1. features
    binary ngram(1-3), tf ngram(1-3), tfidf ngram(1-3), skip ngram (1-3 skip bigram or trigram)in character & word level, pos ngram

  2. models
    lr, svm, navie-bayers, random-forest, gradientboost, xgboost

Dialect matching model

Learn similarities between the same dialects and dissimilarities between different dialects.

Ensemble-based model

  • mean ensemble

  • max ensemble

  • majortiy-vote ensemble

  • lda

  • xgboost

  • rf

  • lightgbm

Pre-processing

python3 preprocess.py

Train

python3 train.py

Ensemble

python3 ensemble_models.py

Performance of dl based models

  • Simplified
model val_acc val_f1 train_time(one titan x)
simplified_bilstm_word_w2v_data_tune 0.9 0.8996 00:08:26
simplified_bilstm_word_w2v_data_tune_0.48 0.9015 0.9016 -
simplified_bilstm_word_w2v_data_tune_0.46 0.902 0.9025 -
simplified_aug_bilstm_word_w2v_data_tune 0.8965 0.8965 00:10:00
simlifiedd_cnnrnn_word_w2v_data_tune 0.8935 0.8923 00:09:07
simplified_dcnn_word_w2v_data_tune 0.897 0.8971 00:02:08
simplified_dpcnn_word_w2v_data_tune 0.8925 0.8932 00:00:39
simplified_han_word_w2v_data_tune 0.8915 0.8896 00:06:50
simplified_multicnn_word_w2v_data_tune 0.5 0.0 00:01:13
simplified_rcnn_word_w2v_data_tune 0.8985 0.8965 00:08:27
simplified_rnncnn_word_w2v_data_tune 0.895 0.8960 00:06:09
simplified_cnn_word_w2v_data_tune 0.8965 0.8998 00:00:43
simplified_vdcnn_word_w2v_data_tune 0.871 0.8716 00:18:03
simplified_bilstm_word_w2v_data_fix 0.8445 0.8449 00:16:23
simplified_dcnn_word_w2v_data_fix 0.816 0.8122 00:03:46
simplified_dpcnn_word_w2v_data_fix 0.8245 0.8152 00:00:57
simplified_han_word_w2v_data_fix 0.8345 0.8346 00:15:44
simplified_multicnn_word_w2v_data_fix 0.5 0.6667 00:01:10
simplified_rcnn_word_w2v_data_fix 0.844 0.8421 00:12:03
simplified_rnncnn_word_w2v_data_fix 0.8335 0.8316 00:09:07
simplified_cnn_word_w2v_data_fix 0.825 0.8227 00:00:46
simplified_vdcnn_word_w2v_data_fix 0.7935 0.7800 00:11:59
simplified_bilstm_char_w2v_data_tune 0.849 0.8442 00:26:15
simplified_dcnn_char_w2v_data_tune 0.8525 0.8509 00:04:22
simplified_dpcnn_char_w2v_data_tune 0.8605 0.8600 00:01:06
simplified_han_char_w2v_data_tune 0.5 0.0 00:11:57
simplified_multicnn_char_w2v_data_tune 0.5 0.0 00:02:17
simplified_rcnn_char_w2v_data_tune 0.85 0.8416 00:20:21
simplified_rnncnn_char_w2v_data_tune 0.8585 0.8573 00:16:44
simplified_cnn_char_w2v_data_tune 0.874 0.8746 00:02:41
simplified_vdcnn_char_w2v_data_tune 0.5095 0.1264 00:06:58
simplified_bilstm_char_w2v_data_fix 0.809 0.8068 00:35:03
simplified_dcnn_char_w2v_data_fix 0.7565 0.7514 00:04:49
simplified_dpcnn_char_w2v_data_fix 0.7985 0.8000 00:02:36
simplified_han_char_w2v_data_fix 0.576 0.6428 00:11:57
simplified_multicnn_char_w2v_data_fix 0.5 0.6667 00:02:11
simplified_rcnn_char_w2v_data_fix 0.8145 0.8179 00:36:16
simplified_rnncnn_char_w2v_data_fix 0.7945 0.7876 00:19:18
simplified_cnn_char_w2v_data_fix 0.8155 0.8073 00:02:30
simplified_vdcnn_char_w2v_data_fix 0.529 0.1751 00:12:29
  • traditional
model val_acc val_f1 train_time(one titan x)
traditional_bilstm_word_w2v_data_tune 0.9115 0.9097 00:09:07
traditional_bilstm_word_w2v_data_tune_0.48 0.913 0.9116 -
traditional_bilstm_word_w2v_data_tune_0.46 0.912 0.9108 -
traditional_cnnrnn_word_w2v_data_tune 0.908 0.9079 00:07:07
traditional_dcnn_word_w2v_data_tune 0.908 0.9089 00:02:17
traditional_dpcnn_word_w2v_data_tune 0.907 0.9067 00:01:06
traditional_han_word_w2v_data_tune 0.902 - 00:07:18
traditional_multicnn_word_w2v_data_tune 0.5 0.6667 00:01:30
traditional_rcnn_word_w2v_data_tune 0.912 0.9110 00:07:56
traditional_rnncnn_word_w2v_data_tune 0.9095 - 00:06:38
traditional_cnn_word_w2v_data_tune 0.909 0.9084 00:01:00
traditional_vdcnn_word_w2v_data_tune 0.885 0.8864 00:13:08
traditional_bilstm_word_w2v_data_fix 0.8475 0.8508 00:15:56
traditional_dcnn_word_w2v_data_fix 0.834 0.8302 00:02:34
traditional_dpcnn_word_w2v_data_fix 0.839 0.8382 00:01:02
traditional_han_word_w2v_data_fix 0.8535 0.8539 00:11:47
traditional_multicnn_word_w2v_data_fix 0.5 0.6667 00:01:26
traditional_rcnn_word_w2v_data_fix 0.8545 0.8522 00:12:38
traditional_rnncnn_word_w2v_data_fix 0.8505 0.8510 00:10:31
traditional_cnn_word_w2v_data_fix 0.842 0.8326 00:01:13
traditional_vdcnn_word_w2v_data_fix 0.8005 0.7944 00:11:22
traditional_bilstm_char_w2v_data_tune 0.8635 0.8616 00:24:57
traditional_dcnn_char_w2v_data_tune 0.8705 0.8684 00:04:57
traditional_dpcnn_char_w2v_data_tune 0.884 0.8850 00:02:59
traditional_han_char_w2v_data_tune 0.5 0.0 00:13:05
traditional_multicnn_char_w2v_data_tune 0.5 0.0 00:02:32
traditional_rcnn_char_w2v_data_tune 0.866 0.8640 00:19:07
traditional_rnncnn_char_w2v_data_tune 0.8665 0.8607 00:19:32
traditional_cnn_char_w2v_data_tune 0.878 0.8803 00:02:41
traditional_vdcnn_char_w2v_data_tune 0.5015 0.0404 00:08:50
traditional_bilstm_char_w2v_data_fix 0.825 0.8234 00:44:19
traditional_dcnn_char_w2v_data_fix 0.781 0.768 00:06:27
traditional_dpcnn_char_w2v_data_fix 0.8055 0.8052 00:02:27
traditional_han_char_w2v_data_fix 0.5 0.0 00:12:30
traditional_multicnn_char_w2v_data_fix 0.5 0.00 00:02:28
traditional_rcnn_char_w2v_data_fix 0.8145 0.8179 00:33:37
traditional_rnncnn_char_w2v_data_fix 0.8025 0.8045 00:27:34
traditional_cnn_char_w2v_data_fix 0.823 0.8281 00:03:52
traditional_vdcnn_char_w2v_data_fix 0.5 0.0176 00:07:40
  • conclusion
  1. word level input is better than charracter level input
  2. word2vec is better than fasttext and glove
  3. fine-tuning word embeddings is better than fixing word embeddings
  4. BiLSTM performs best, but other models except vdccn and multicnn performs very close.
  5. data agumentaion doesn't help.
  6. skip ngram doesn't help

Performance of ml based model

  • Simplified
model val_acc val_f1 val_p val_r
simplified_svm_binary_char_(1, 1) 0.8115 0.8103 0.8156 0.805
simplified_svm_binary_char_(2, 2) 0.862 0.8602 0.8717 0.849
simplified_svm_binary_char_(3, 3) 0.876 0.8749 0.8829 0.867
simplified_svm_binary_char_(4, 4) 0.853 0.8498 0.8684 0.832
simplified_svm_binary_char_(5, 5) 0.816 0.8073 0.8473 0.771
simplified_svm_binary_char_(6, 6) 0.7905 0.7655 0.8691 0.684
simplified_svm_binary_char_(1, 3) 0.8775 0.8766 0.8832 0.87
simplified_svm_binary_char_(2, 3) 0.879 0.8780 0.8852 0.871
simplified_svm_binary_word_(1, 1) 0.8385 0.8341 0.8574 0.812
simplified_svm_binary_word_(2, 2) 0.7075 0.6118 0.9093 0.461
simplified_svm_binary_word_(3, 3) 0.5515 0.1882 0.9905 0.104
simplified_svm_binary_word_(4, 4) 0.515 0.0582 1.0 0.03
simplified_svm_binary_word_(5, 5) 0.5035 0.6682 0.5018 1.0
simplified_svm_binary_word_(6, 6) 0.5015 0.6673 0.5008 1.0
simplified_svm_binary_char_(2, 3)word(1, 1) 0.877 0.8760 0.8831 0.869
simplified_svm_tf_char_(3, 3) 0.8705 0.8694 0.8769 0.862
simplified_svm_tf_char_(2, 3) 0.881 0.8791 0.8928 0.866
simplified_svm_tf_word_(1, 1) 0.837 0.8337 0.8510 0.817
simplified_svm_tf_char_(2, 3)word(1, 1) 0.88 0.8787 0.8877 0.87
simplified_svm_tfidf_char_(3, 3) 0.8935 0.8926 0.8994 0.886
simplified_svm_tfidf_char_(2, 3) 0.8955 0.8946 0.9023 0.887
simplified_svm_tfidf_word_(1, 1) 0.851 0.8482 0.8641 0.833
simplified_svm_tfidf_char_(2, 3)word(1, 1) 0.8885 0.8881 0.8912 0.885
simplified_sgd_binary_char_(3, 3) 0.8725 0.8709 0.8821 0.86
simplified_sgd_binary_char_(2, 3) 0.872 0.8698 0.8851 0.855
simplified_sgd_binary_word_(1, 1) 0.8455 0.8446 0.8493 0.84
simplified_sgd_binary_char_(2, 3)word(1, 1) 0.8785 0.8759 0.8946 0.858
simplified_sgd_tf_char_(3, 3) 0.8655 0.8582 0.9075 0.814
simplified_sgd_tf_char_(2, 3) 0.865 0.8653 0.8635 0.867
simplified_sgd_tf_word_(1, 1) 0.8495 0.8477 0.8577 0.838
simplified_sgd_tf_char_(2, 3)word(1, 1) 0.864 0.8653 0.8568 0.874
simplified_sgd_tfidf_char_(3, 3) 0.876 0.8745 0.8852 0.864
simplified_sgd_tfidf_char_(2, 3) 0.88 0.8777 0.8950 0.861
simplified_sgd_tfidf_word_(1, 1) 0.853 0.8469 0.8837 0.813
simplified_sgd_tfidf_char_(2, 3)word(1, 1) 0.8875 0.8866 0.8934 0.88
simplified_lr_binary_char_(1, 1) 0.8185 0.8167 0.8246 0.809
simplified_lr_binary_char_(2, 2) 0.872 0.8701 0.8835 0.857
simplified_lr_binary_char_(3, 3) 0.879 0.8775 0.8883 0.867
simplified_lr_binary_char_(4, 4) 0.8505 0.8459 0.8725 0.821
simplified_lr_binary_char_(2, 3) 0.8865 0.8854 0.8939 0.877
simplified_lr_binary_char_(1, 3) 0.886 0.8847 0.8947 0.875
simplified_lr_binary_word_(1, 1) 0.859 0.8545 0.8827 0.828
simplified_lr_binary_word_(2, 2) 0.706 0.6111 0.9023 0.462
simplified_lr_binary_word_(3, 3) 0.552 0.1899 0.9905 0.105
simplified_lr_binary_char_(2, 3)word(1, 1) 0.8875 0.8865 0.8942 0.879
simplified_mnb_binary_char_(1, 1) 0.8225 0.8222 0.8235 0.821
simplified_mnb_binary_char_(2, 2) 0.8935 0.8942 0.8885 0.9
simplified_mnb_binary_char_(3, 3) 0.9015 0.9035 0.8859 0.922
simplified_aug_mnb_binary_char_(3, 3) 0.8985 0.9007 0.8813 0.921
simplified_mnb_binary_char_(4, 4) 0.8835 0.8855 0.8705 0.901
simplified_mnb_binary_char_(1, 3) 0.903 0.9040 0.8951 0.913
simplified_mnb_binary_char_(2, 3) 0.908 0.9094 0.8953 0.924
simplified_mnb_binary_char_(2, 3)_0.46 0.9095 0.91114 0.8949 0.928
simplified_mnb_binary_char_(2, 3)_0.48 0.9095 0.91105 0.89565 0.927
simplified_aug_mnb_binary_char_(2, 3) 0.91 0.9111 0.8996 0.923
simplified_mnb_binary_word_(1, 1) 0.878 0.8790 0.8720 0.886
simplified_mnb_binary_word_(2, 2) 0.709 0.6141 0.9114 0.463
simplified_mnb_binary_word_(3, 3) 0.552 0.1898 0.9905 0.105
simplified_aug_mnb_binary_word_(1, 1) 0.872 0.8756 0.8516 0.901
simplified_mnb_binary_char_(2, 3)word(1, 1) 0.9055 0.9070 0.8925 0.922
simplified_aug_mnb_binary_char_(2, 3)word(1, 1) 0.906 0.9076 0.8926 0.923
simplified_mnb_tf_char_(3, 3) 0.901 0.9030 0.8848 0.922
simplified_mnb_tf_char_(2, 3) 0.906 0.9077 0.8919 0.924
simplified_mnb_tf_word_(1, 1) 0.8795 0.8800 0.8761 0.884
simplified_mnb_tf_char_(2, 3)word(1, 1) 0.9035 0.9052 0.8898 0.921
simplified_mnb_tfidf_char_(3, 3) 0.8945 0.8969 0.8768 0.918
simplified_mnb_tfidf_char_(2, 3) 0.8995 0.9011 0.8867 0.916
simplified_mnb_tfidf_word_(1, 1) 0.873 0.8745 0.8643 0.885
simplified_mnb_tfidf_char_(2, 3)word(1, 1) 0.895 0.8970 0.8805 0.914
  • traditional
model val_acc val_f1 val_p val_r
traditional_svm_binary_char_(1, 1) 0.8325 0.8321 0.8342 0.83
traditional_svm_binary_char_(2, 2) 0.8765 0.8747 0.8877 0.862
traditional_svm_binary_char_(3, 3) 0.883 0.8821 0.8892 0.875
traditional_svm_binary_char_(4, 4) 0.86 0.8574 0.8734 0.842
traditional_svm_binary_char_(1, 3) 0.894 0.8930 0.9012 0.885
traditional_svm_binary_char_(1, 3) 0.8895 0.8891 0.8922 0.886
traditional_svm_binary_word_(1, 1) 0.8435 0.8412 0.8538 0.829
traditional_svm_binary_word_(2, 2) 0.657 0.7380 0.5970 0.966
traditional_svm_binary_word_(3, 3) 0.54 0.6850 0.5208 1.0
traditional_svm_binary_char_(2, 3)word(1, 1) 0.897 0.8963 0.9026 0.89
traditional_lr_binary_char_(1, 1) 0.8455 0.8443 0.8508 0.838
traditional_lr_binary_char_(2, 2) 0.889 0.8874 0.9002 0.875
traditional_lr_binary_char_(3, 3 0.884 0.8825 0.8943 0.871
traditional_lr_binary_char_(4, 4) 0.857 0.8529 0.8782 0.829
traditional_lr_binary_char_(2, 3) 0.896 0.8947 0.9057 0.884
traditional_lr_binary_char_(1, 3) 0.899 0.8979 0.9080 0.888
traditional_lr_binary_word_(1, 1) 0.8635 0.8591 0.8879 0.832
traditional_lr_binary_word_(2, 2) 0.707 0.6124 0.9043 0.463
traditional_lr_binary_word_(3, 3) 0.552 0.1899 0.9906 0.105
traditional_lr_binary_char_(2, 3)word(1, 1) 0.899 0.8979 0.9071 0.889
traditional_mnb_binary_char_(1, 1) 0.848 0.8486 0.8452 0.852
traditional_mnb_binary_char_(2, 2) 0.91 0.9104 0.9059 0.915
traditional_mnb_binary_char_(3, 3) 0.915 0.9166 0.8998 0.934
traditional_mnb_binary_char_(4, 4) 0.891 0.8930 0.8767 0.91
traditional_aug_mnb_binary_char_(3, 3) 0.9105 0.9122 0.8951 0.93
traditional_mnb_binary_char_(2, 3) 0.9225 0.9234 0.9130 0.934
traditional_mnb_binary_char_(2, 3)_0.46 0.9225 0.9235 0.9122 0.935
traditional_mnb_binary_char_(2, 3)_0.48 0.9225 0.9234 0.9130 0.934
traditional_mnb_binary_char_(1, 3) 0.917 0.9176 0.9112 0.924
traditional_aug_mnb_binary_char_(2, 3) 0.923 0.9237 0.9155 0.932
traditional_mnb_binary_word_(1, 1) 0.8855 0.8864 0.8791 0.894
traditional_aug_mnb_binary_word_(1, 1) 0.8795 0.8829 0.8584 0.909
traditional_mnb_binary_word_(2, 2) 0.71 0.6154 0.9134 0.464
traditional_mnb_binary_word_(3, 3) 0.552 0.1899 0.9905 0.105
traditional_mnb_binary_char_(2, 3)word(1, 1) 0.92 0.9211 0.9085 0.934
traditional_aug_mnb_binary_char_(2, 3)word(1, 1) 0.918 0.9192 0.9058 0.933
  • conclusion
  1. char trigram is better than char unigram and char bigram, word unigram is better than word bigram and word trigram
  2. combine bigram and trigram helps, but further combine word unigram doesn't make a difference
  3. binary vectors, tf weighted vectors and tf-idf weighted vectors have very close performace
  4. navie bayers is a very strong classifier on this task
  5. data agumentation doesn't make a difference
  6. skip ngram doeen't help, so does pos ngram

Performance of dialect matching model

Not helping.

Performance of Ensemble-based model

  • simplified
ensemble_model ensemble_type val_acc val_f1 val_p val_r
bilstm_word mnb_binary_char_(2, 3) mean 0.913 0.9137 0.9065 0.921
bilstm_word mnb_binary_char_(2, 3)_0.46 mean 0.9135 0.9148 0.9011 0.929
bilstm_word mnb_binary_char_(2, 3)_0.48 mean 0.9135 0.9144 0.9050 0.924
bilstm_word mnb_bianry_char_(2, 3) max 0.913 0.9137 0.9065 0.921
bilstm_word mnb_binary_char_(2, 3)_0.46 max 0.913 0.9137 0.9065 0.921
bilstm_word mnb_binary_char_(2, 3)_0.48 max 0.913 0.9137 0.9065 0.921
bilstm_word mnb_bianry_char_(2, 3) vote 0.908 0.9094 0.8953 0.924
bilstm_word mnb_binary_char_(2, 3)_0.4 xgboost 0.9105 0.9114 0.9020 0.921
bilstm_word mnb_binary_char_(2, 3)_0.4 svm 0.9065 0.9067 0.9044 0.909
bilstm_word mnb_binary_char_(2, 3)_0.4 lda 0.906 0.9061 0.9044 0.908
bilstm_word mnb_binary_char_(2, 3) xgboost 0.9075 0.9076 0.9062 0.909
bilstm_word mnb_binary_char_(2, 3) svm 0.9065 0.9067 0.9044 0.909
bilstm_word mnb_binary_char_(2, 3) lda 0.9055 0.9056 0.9043 0.907
svm_lr_mnb_binary_char_(2, 3) gnb 0.8915 0.8910 0.8951 0.887
svm_lr_mnb_binary_char_(2, 3) mnb 0.903 0.9063 0.8759 0.939
svm_lr_mnb_binary_char_(2, 3)_0.52 mnb 0.905 0.9079 0.8842 0.932
svm_lr_mnb_binary_char_(2, 3)_0.56 mnb 0.907 0.907 0.907 0.907
svm_lr_mnb_binary_char_(2, 3) mean 0.9025 0.9029 0.8989 0.907
svm_lr_mnb_binary_char_(2, 3) max 0.908 0.9089 0.9 0.918
svm_lr_mnb_binary_char_(2, 3) vote 0.888 0.8869 0.8959 0.878
svm_lr_mnb_binary_char_(2, 3)_0.4 max 0.91 0.9111 0.9003 0.922
all_dl_model gnb 0.9005 0.9017 0.8907 0.913
all_dl_model_0.56 lr 0.9015 0.9010 0.9060 0.896
all_dl_model mean 0.905 0.9046 0.9083 0.901
all_dl_model max 0.9015 0.9010 0.9060 0.896
all_dl_model vote 0.906 0.9057 0.9085 0.903
  • traditional
ensemble_model ensemble_type val_acc val_f1 val_p val_r
bilstm_word mnb_binary_char_(2, 3) mean 0.924 0.9242 0.9223 0.926
bilstm_word mnb_binary_char_(2, 3)_0.46 mean 0.925 0.9257 0.9166 0.935
bilstm_word mnb_binary_char_(2, 3)_0.48 mean 0.926 0.9264 0.9218 0.931
bilstm_word mnb_bianry_char_(2, 3) max 0.924 0.9242 0.9223 0.926
bilstm_word mnb_binary_char_(2, 3)_0.46 max 0.924 0.9242 0.9223 0.926
bilstm_word mnb_binary_char_(2, 3)_0.48 max 0.924 0.9242 0.9223 0.926
bilstm_word mnb_bianry_char_(2, 3) vote 0.9225 0.9234 0.9130 0.934
bilstm_word mnb_binary_char_(2, 3)_0.46 vote 0.924 0.9242 0.9223 0.926
bilstm_word mnb_binary_char_(2, 3)_0.48 vote 0.924 0.9242 0.9223 0.926
bilstm_word mnb_binary_char_(2, 3) gnb 0.9215 0.9216 0.9202 0.923
svm_lr_mnb_binary_char_(2, 3) mean 0.917 0.9171 0.9162 0.918
svm_lr_mnb_binary_char_(2, 3) max 0.9225 0.9231 0.9162 0.93
svm_lr_mnb_binary_char_(2, 3)_0.4 max 0.924 0.9247 0.9165 0.933
svm_lr_mnb_binary_char_(2, 3) vote 0.8985 0.8976 0.9054 0.89
svm_lr_mnb_binary_char_(2, 3) gnb 0.906 0.906 0.906 0.906
svm_lr_mnb_binary_char_(2, 3) mnb 0.918 0.9205 0.8936 0.949
svm_lr_mnb_binary_char_(2, 3)_0.54 mnb 0.92 0.9209 0.9101 0.932
svm_lr_mnb_binary_char_(2, 3)_0.56 mnb 0.922 0.9221 0.9212 0.923
all_dl_model gnb 0.9155 0.9161 0.9094 0.923
all_dl_model mean 0.9215 0.9207 0.9297 0.912
all_dl_model max 0.91 0.9090 0.9192 0.899
all_dl_model vote 0.9195 0.9185 0.9303 0.907

Performance of shared task

  • simplified
model acc f1_mocro f1_macro f1_weighted
simplified_bilstm_word_w2v_data_tune 0.812000 0.812000 0.811795 0.81179
simplified_mnb_binary_char_(2, 3) 0.850500 0.850500 0.849895 0.849895
simplified_bilstm_mnb_mean_ensemble 0.853500 0.853500 0.853031 0.853031
  • traditional
model acc f1_mocro f1_macro f1_weighted
simplified_bilstm_word_w2v_data_tune 0.845000 0.845000 0.844965 0.844965
simplified_mnb_binary_char_(2, 3) 0.865500 0.865500 0.865022 0.865022
simplified_bilstm_mnb_mean_ensemble 0.869000 0.869000 0.868710 0.868710

About

VarDial19 shared task: Discriminating between Mainland and Taiwan Variation of Mandarin Chinese (DMT)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published