Word-To-Image: Morphing Arabic Text to a Visual Representation
Preprocessing:
- Extract the caption from the images' names.
- Remove the numbers in the caption using Maha library.
- Write the "file_name" and "text" in jsonl file as recommended from HF.
- Upload the dataset to HF dataset hub.
References:
-
Creating venv using venv in python.
-
Install the diffusers using these instructions: https://github.com/huggingface/diffusers/tree/main/examples/text_to_image#installing-the-dependencies.
-
Run the training using the command line:
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export dataset_name="lambdalabs/pokemon-blip-captions"
accelerate launch --mixed_precision="fp16" train_text_to_image.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--dataset_name=$dataset_name \
--use_ema \
--resolution=512 --center_crop --random_flip \
--train_batch_size=1 \
--gradient_accumulation_steps=4 \
--gradient_checkpointing \
--max_train_steps=15000 \
--learning_rate=1e-05 \
--max_grad_norm=1 \
--lr_scheduler="constant" --lr_warmup_steps=0 \
--output_dir="calliar_1"
- References:
- The model and the latest checkpoint, here.