Skip to content

Multi-class classification model for predicting the types of crimes in Toronto

Notifications You must be signed in to change notification settings

7cb15/Predicting-Crime-in-Toronto

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 

Repository files navigation

Predicting-Crime-in-Toronto

Using data sourced from the Toronto Police (http://data.torontopolice.on.ca/pages/open-data), I construct a multi-class classification model using a Random Forest classifier to predict the type of major crime committed based on time of day, neighbourhood, division, year, month, etc. The dataset includes every major crime committed from 2014-2017* in the city of Toronto, with detailed information about the location and time of offence. The data contains only categorical variables so the modeling process tests both numeric encoding and OneHot encoding, with some improvement with the latter approach.

The model performs reasonably well on F1-score (precision and recall) for a five-class classification problem. Though the data set is somewhat unbalanced towards assaults (higher volume), balancing class weights does not materially impact model performance.

Releases

No releases published

Packages

No packages published

Languages