forked from LUMC/ribosome-profiling-analysis-framework
-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate_stats_peaks_per_location.php
executable file
·760 lines (690 loc) · 40.6 KB
/
generate_stats_peaks_per_location.php
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
#!/usr/bin/php
<?php
/*******************************************************************************
*
* Generates statistics; the number of peaks per location in a gene (5' UTR,
* Annotated TIS, Downstream coding, 3' UTR, Multiple. It takes all analysis
* results files from the find_ORFs.php script, and generates one result file
* per sample.
*
* Created : 2014-01-08
* Modified : 2016-12-16
* Version : 0.7
*
* Copyright : 2014-2015 Leiden University Medical Center; http://www.LUMC.nl/
* Programmer : Ing. Ivo F.A.C. Fokkema <[email protected]>
*
* Changelog : 0.5 2014-07-07
* Now ignoring notices when encountering NM reference sequence
* files that do not seem to have a sequence.
* 0.51 2014-09-23
* Renamed "extended_5UTR" category to "unannotated_5UTR".
* 0.6 2014-10-08
* Prevented notices when not passing the ORF results both before
* and after the cutoff as input files.
* Interrupted CDSs (e.g. "join(105..308,310..789)") are now also
* supported.
* Added Status column in the output files, where error messages
* are displayed, that were before in the sequence column.
* For the unannotated_5UTR category and the no_UTR category, we
* download the sequence by requesting a "slice" of the genomic
* sequence with enough downstream sequence, we parse the file and
* find the CDS, truncating the sequence until the annotated CDS,
* and finally we remove the annotated introns.
* 0.61 2015-02-27
* Script halted when finding merged ORF analyses, now it silently
* ignores them.
* 0.7 2016-12-16
* The NCBI has stopped using GI numbers, so use the protein ID to
* link the transcript to the CDS.
* Added support for CDSs starting or ending with just one base in
* the first or last exon, respectively.
*
*
* This work is licensed under the Creative Commons
* Attribution-NonCommercial-ShareAlike 4.0 International License. To view a
* copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/
* or send a letter to:
* Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
*
*************/
$_SETT =
array(
'version' => '0.61',
'output_suffix' =>
array(
'stats' => '.ORF_analysis_results.stats_peaks_per_location.txt',
'peak_classification' => '.ORF_analysis_results.peaks_classification.txt',
'peak_classification_5UTR' => '.ORF_analysis_results.peaks_classification_5UTR.txt',
),
'categories' =>
array(
'5UTR',
'annotated_TIS',
'coding',
'3UTR',
'multiple',
),
'NM_cache_dir' => '/data/NM_cache/',
'terminal_width' => 100,
'NC_identifiers' =>
array(
'1' => 'NC_000067.6',
'2' => 'NC_000068.7',
'3' => 'NC_000069.6',
'4' => 'NC_000070.6',
'5' => 'NC_000071.6',
'6' => 'NC_000072.6',
'7' => 'NC_000073.6',
'8' => 'NC_000074.6',
'9' => 'NC_000075.6',
'10' => 'NC_000076.6',
'11' => 'NC_000077.6',
'12' => 'NC_000078.6',
'13' => 'NC_000079.6',
'14' => 'NC_000080.6',
'15' => 'NC_000081.6',
'16' => 'NC_000082.6',
'17' => 'NC_000083.6',
'18' => 'NC_000084.6',
'19' => 'NC_000085.6',
'X' => 'NC_000086.7',
'Y' => 'NC_000087.7',
),
'NC_slice_length' => 75000, // How many bases in size should the NC slices be that we download? (50K is not always enough)
);
$_SETT['NC_slice_length'] --; // Since the bases are counted inclusive.
function RPF_translateDNA ($sSequence)
{
// Takes a DNA sequence and returns the protein sequence.
static $aTranslationTable = array();
if (!$sSequence || !is_string($sSequence)) {
return false;
}
if (!$aTranslationTable) {
$aAminoAcids =
array(
'A' => array('GCA','GCC','GCG','GCT'),
'C' => array('TGC','TGT'),
'D' => array('GAC','GAT'),
'E' => array('GAA','GAG'),
'F' => array('TTC','TTT'),
'G' => array('GGA','GGC','GGG','GGT'),
'H' => array('CAC','CAT'),
'I' => array('ATA','ATC','ATT'),
'K' => array('AAA','AAG'),
'L' => array('CTA','CTC','CTG','CTT','TTA','TTG'),
'M' => array('ATG'),
'N' => array('AAC','AAT'),
'P' => array('CCA','CCC','CCG','CCT'),
'Q' => array('CAA','CAG'),
'R' => array('AGA','AGG','CGA','CGC','CGG','CGT'),
'S' => array('AGC','AGT','TCA','TCC','TCG','TCT'),
'T' => array('ACA','ACC','ACG','ACT'),
'V' => array('GTA','GTC','GTG','GTT'),
'W' => array('TGG'),
'Y' => array('TAC','TAT'),
'*' => array('TAA','TAG','TGA'),
);
// Parse it into a easier format for us to use.
$aTranslationTable = array();
foreach ($aAminoAcids as $sAminoAcid => $aCodons) {
foreach ($aCodons as $sCodon) {
$aTranslationTable[$sCodon] = $sAminoAcid;
}
}
}
$sTranslatedSequence = '';
// Loop through sequence in codons.
$sSequence = strtoupper($sSequence);
$lSequence = strlen($sSequence);
for ($i = 0; $i < $lSequence; $i += 3) {
$sCodon = substr($sSequence, $i, 3);
if (isset($aTranslationTable[$sCodon])) {
$sTranslatedSequence .= $aTranslationTable[$sCodon];
} else {
$sTranslatedSequence .= '?';
}
}
return $sTranslatedSequence;
}
echo 'Stats: Peaks Per Location v.' . $_SETT['version'] . "\n";
$aFiles = $_SERVER['argv'];
$sScriptName = array_shift($aFiles);
if (count($aFiles) < 1) { // I guess you could run it with just one file...
die('Usage: ' . $sScriptName . ' ORF_FILE1 [ORF_FILE2 [ORF_FILE3 [...]]]' . "\n\n");
}
// Check if all files can be read.
$nSamples = count($aFiles);
foreach ($aFiles as $sFile) {
if (!is_readable($sFile)) {
die('Unable to open ' . $sFile . '.' . "\n");
}
}
// Check if the NM cache is available...
if (substr($_SETT['NM_cache_dir'], -1) != '/') {
$_SETT['NM_cache_dir'] .= '/';
}
if (!is_readable($_SETT['NM_cache_dir'])) {
die('Unable to open the NM cache. Please verify if the path is correct: ' . $_SETT['NM_cache_dir'] . '.' . "\n");
}
if (!is_writable($_SETT['NM_cache_dir'])) {
die('Unable to write to the NM cache. Please verify if the path is correct: ' . $_SETT['NM_cache_dir'] . '.' . "\n");
}
// Open NM cache.
$aNMCache = array();
$h = opendir($_SETT['NM_cache_dir']);
if (!$h) {
die('Unexpected error while reading the NM cache (' . $_SETT['NM_cache_dir'] . ').' . "\n");
}
closedir($h);
//while (($sFile = readdir($h)) !== false) {
// if (is_file($_SETT['NM_cache_dir'] . $sFile) && preg_match('/^(NM_\d+\.\d+)\.gb$/', $sFile, $aRegs)) {
// $aNMCache[$aRegs[1]] = $_SETT['NM_cache_dir'] . $sFile;
// }
//}
// Go through input files, recognize types. Determine how we should call the new file.
$aSamples = array(); // Will store the info about the samples and which files we have on them.
if ($nSamples == 1) {
// FIXME: Is this making sense? Shouldn't we try and recognize the file anyways? Like this, we also don't check the file's readability and fill $aSamples.
$sFileOut = $aFiles[0] . $_SETT['output_suffix']['stats'];
} else {
foreach ($aFiles as $nFile => $sFile) {
// Toss possible statistics files or result files out.
foreach ($_SETT['output_suffix'] as $sSuffix) {
if (substr($sFile, -(strlen($sSuffix))) == $sSuffix) {
unset($aFiles[$nFile]);
continue 2;
}
}
// Also ignore stats and merged ORF analyses.
if (preg_match('/\.ORF_analysis_results(_stats|\.txt\.merged_ORF_analyses)\.txt$/', $sFile)) {
unset($aFiles[$nFile]);
continue;
}
// Rest is matched.
if (!preg_match('/^(.+)\.(F|R)(?:\..*)?\.ORF_analysis_results(_after_cutoff)?\.txt$/', $sFile, $aRegs)) {
// [1] [2] [3]
// Unrecognized file, complain.
die('Sorry, I do not understand the file name of the file \'' . $sFile . '\', aborting.' . "\n");
}
$sSampleID = $aRegs[1]; // Actually, basically the whole prefix until the strand info.
$sStrand = $aRegs[2];
$bCutOff = !empty($aRegs[3]);
if (!isset($aSamples[$sSampleID])) {
$aSamples[$sSampleID] =
array(
'F' => array(), // File names. We'll end up with two keys here hopefully: false = file with peaks before cutoff, true = file with peaks after cutoff.
'R' => array(), // File names. We'll end up with two keys here hopefully: false = file with peaks before cutoff, true = file with peaks after cutoff.
'data' => array(
false => array_combine($_SETT['categories'], array_fill(0, count($_SETT['categories']), array(0, 0))), // Number of peaks, Total coverage.
true => array_combine($_SETT['categories'], array_fill(0, count($_SETT['categories']), array(0, 0))), // Number of peaks, Total coverage.
),
'peak_data' => array_combine($_SETT['categories'], array_fill(0, count($_SETT['categories']), array())), // The raw peak data, to be displayed at the bottom of the file.
'peak_count' => 0,
);
}
$aSamples[$sSampleID][$sStrand][$bCutOff] = $sFile;
}
}
// Checking if we are allowed to create the output files.
$aFilesOut = array();
foreach ($aSamples as $sSampleID => $aSample) {
$aSamples[$sSampleID]['file_out'] = array();
foreach ($_SETT['output_suffix'] as $sType => $sSuffix) {
$sFileOut = $sSampleID . $sSuffix;
if (file_exists($sFileOut)) {
if (!is_writable($sFileOut)) {
die('Can not overwrite ' . $sFileOut . ', aborting.' . "\n");
}
} elseif (!is_writable(dirname($sFileOut))) {
die('Can not create ' . $sFileOut . ', aborting.' . "\n");
}
$fOut = @fopen($sFileOut, 'w');
if (!$fOut) {
die('Unable to open file for writing: ' . $sFileOut . '.' . "\n\n");
}
$aSamples[$sSampleID]['file_out'][$sType] = array('name' => $sFileOut, 'handle' => $fOut);
// Nicely sort the files, so we always parse them in the same order (before cutoff, after cutoff).
ksort($aSamples[$sSampleID]['F']);
ksort($aSamples[$sSampleID]['R']);
}
}
// Now, loop the ORF analysis files, load them one by one in the memory.
foreach ($aSamples as $sSampleID => $aSample) {
foreach (array('F', 'R') as $sStrand) {
$aFiles = $aSample[$sStrand];
foreach ($aFiles as $bCutOff => $sFile) {
$aORFFile = file($sFile, FILE_IGNORE_NEW_LINES);
print('Parsing ' . $sFile . '... ');
$sGene = '';
$aTranscripts = array();
$nPositions = 0;
foreach ($aORFFile as $sLine) {
if (!trim($sLine)) {
continue;
}
// We're looking at the data, or just before.
// If we don't have a gene yet, look for it.
if (preg_match('/^(.+)\tPositions found:\t\d+\tPositions analyzed:\t\d+\tT[IS]S found:\t\d+$/', $sLine, $aRegs)) {
$sGene = $aRegs[1];
} elseif ($sGene && preg_match('/^G_Position\tCoverage((?:\tNM_[0-9]+(?:\.[0-9]+)?)+)$/', $sLine, $aRegs)) {
$aTranscripts = explode("\t", trim($aRegs[1]));
} elseif ($sGene && preg_match('/^(chr(?:\d+|[XYM])):(\d+)\t(\d+)((?:\t[0-9*-]+)+)$/', $sLine, $aRegs)) {
// [1] [2] [3] [4]
// We have matched a data line.
$nPositions ++;
list(,$sChr, $nPosition, $nCoverage) = $aRegs;
$aPositions = array();
$aPositionsInGene = explode("\t", trim($aRegs[4]));
// Loop all positions in genes, and determine category. Store these categories.
foreach ($aPositionsInGene as $key => $sPositionInGene) {
if ($sPositionInGene == '-') {
// There was no mapping on this transcript.
continue;
}
if ($sPositionInGene{0} == '-') {
if ($sPositionInGene < -12) {
$sCategory = '5UTR';
} elseif ($sPositionInGene >= -12 && $sPositionInGene <= -10) {
$sCategory = 'annotated_TIS';
} else {
$sCategory = 'coding';
}
} elseif ($sPositionInGene{0} == '*') {
$sCategory = '3UTR';
} else {
$sCategory = 'coding';
}
$aPositions[$key] = $sCategory;
}
// Now see how many different categories we have for this position.
// Apparently, without array_values(), sometimes we have no [0]. Weird.
$aPositionsUnique = array_values(array_unique($aPositions));
if (count($aPositionsUnique) == 1) {
// One transcript, or multiple but at least in the same category of position.
$sCategory = $aPositionsUnique[0];
} else {
// Multiple different positions. If one of them is annotated_TIS, we will assume annotated_TIS.
// Otherwise, we don't know what to do, and we call this 'multiple';
if (in_array('annotated_TIS', $aPositionsUnique)) {
$sCategory = 'annotated_TIS';
} else {
$sCategory = 'multiple';
}
}
// We have now determined the category. Store, and count.
// FIXME: We can also just inject directly into $aSample, so we don't need to reload $aSample later.
// Anyways we don't need this information outside of this loop.
$aSamples[$sSampleID]['data'][$bCutOff][$sCategory][0] ++;
$aSamples[$sSampleID]['data'][$bCutOff][$sCategory][1] += $nCoverage;
// v.0.3: Also store the raw peak data, so that we can show it. Only for when BEFORE the cut off.
if (!$bCutOff) {
// v.0.4: Changed the way the positions are stored; now in a big array.
// For 5'UTR peaks, we store *all* positions to be able to report *all* upstream sequences.
$aAllPositions = array();
if ($sCategory == '5UTR') {
foreach ($aPositionsInGene as $key => $sPositionInGene) {
if ($sPositionInGene == '-') {
// There was no mapping on this transcript.
continue;
}
if ($sPositionInGene{0} == '-' && $sPositionInGene < -12 && !isset($aAllPositions[$sPositionInGene])) {
// 5'UTR position, that we haven't seen before (we're looking for unique positions; -15 twice is useless).
$aAllPositions[$sPositionInGene] = array($sPositionInGene + 12, $aTranscripts[$key]);
}
}
}
// Pick transcript and report detailed information.
$key = (int) array_search($sCategory, $aPositions); // If the search returns false (category = 'multiple'), we'll get the first.
$sTranscript = $aTranscripts[$key];
$sPositionInGene = $aPositionsInGene[$key];
if (substr($sPositionInGene, 0, 1) == '*') {
$sPositionInGeneShifted = '*' . (substr($sPositionInGene, 1) + 12);
} elseif ($sPositionInGene >= -12 && $sPositionInGene < 0) {
$sPositionInGeneShifted = $sPositionInGene + 13; // We're skipping over the -1 -> 1 border here.
} else {
$sPositionInGeneShifted = $sPositionInGene + 12;
}
// v.0.4: Changed the way the positions are stored; now in a big array.
if (!$aAllPositions) {
// No positions stored yet, put in the selected one.
$aAllPositions[$sPositionInGene] = array($sPositionInGeneShifted, $sTranscript);
}
$aSamples[$sSampleID]['peak_data'][$sCategory][] = array($sChr . ':' . $nPosition, $sChr . ':' . ($sStrand == 'F'? $nPosition + 12 : $nPosition - 12), $sGene, $sStrand, $nCoverage, $aAllPositions);
$aSamples[$sSampleID]['peak_count'] ++;
}
}
}
print('done, loaded ' . $nPositions . ' positions.' . "\n");
}
}
$aSample = $aSamples[$sSampleID]; // Reload, since we're in a foreach and we're working on a copy of the array.
// Let user know we're working here...
print('Writing output to ' . $aSample['file_out']['stats']['name'] . '... ');
fputs($aSample['file_out']['stats']['handle'], '# ' . $sScriptName . ' v.' . $_SETT['version'] . "\n" .
'# NOTE: Read start positions at the end of the coding region, less than 12 bp' . "\n" .
'# away from the 3\'UTR, are counted as coding while in fact in reality they are' . "\n" .
'# of course a peak in the 3\'UTR. This can not be detected however, because we' . "\n" .
'# don\'t know the length of the coding region of the transcripts.' . "\n");
foreach (array(false, true) as $bCutOff) {
fputs($aSample['file_out']['stats']['handle'], "\n\n" .
'# Results for ORF start sites with ' . ($bCutOff? 'no' : 'a') . ' cutoff applied. Using files:' . "\n" .
(!isset($aSample['F'][$bCutOff])? '' :
'# ' . $aSample['F'][$bCutOff] . "\n") .
(!isset($aSample['R'][$bCutOff])? '' :
'# ' . $aSample['R'][$bCutOff] . "\n") .
(!$bCutOff? '' :
(!isset($aSample['F'][!$bCutOff])? '' :
'# ' . $aSample['F'][!$bCutOff] . "\n") .
(!isset($aSample['R'][!$bCutOff])? '' :
'# ' . $aSample['R'][!$bCutOff] . "\n")) .
'# Category' . "\t" . 'Number of TISs found' . "\t" . 'Total coverage' . "\n");
foreach ($_SETT['categories'] as $sCategory) {
fputs($aSample['file_out']['stats']['handle'], $sCategory . "\t" . ($aSample['data'][$bCutOff][$sCategory][0] + (!$bCutOff? 0 : $aSample['data'][!$bCutOff][$sCategory][0])) . "\t" . ($aSample['data'][$bCutOff][$sCategory][1] + (!$bCutOff? 0 : $aSample['data'][!$bCutOff][$sCategory][1])) . "\n");
}
}
print('done.' . "\n");
// v.0.3: Print out the found TISs, sorted on category.
$aTypes = array_keys($_SETT['output_suffix']);
unset($aTypes[0]); // Stats removed.
foreach ($aTypes as $sType) {
print('Writing output to ' . $aSample['file_out'][$sType]['name'] . '...' . "\n");
fputs($aSample['file_out'][$sType]['handle'], '# ' . $sScriptName . ' v.' . $_SETT['version'] . "\n" .
'# NOTE: Read start positions at the end of the coding region, less than 12 bp' . "\n" .
'# away from the 3\'UTR, are counted as coding while in fact in reality they are' . "\n" .
'# of course a peak in the 3\'UTR. This can not be detected however, because we' . "\n" .
'# don\'t know the length of the coding region of the transcripts.' . "\n\n\n" .
($sType != 'peak_classification'? '' :
'# Showing all ORF start sites before the set cutoff (default: 5KB), sorted on category, strand and genomic position.' . "\n") .
'# NOTE: The PosGenomic+12 field is the genomic position of the TIS, calculated by shifting the position of the start of the read (PeakPosGenomic)' . "\n" .
'# by 12 nucleotides downstream in the gene direction. It might be incorrect, since this kind of shifting does not compensate for introns.' . "\n" .
'# The mentioned coverage is the summed coverage of the replicates.' . "\n" .
($sType != 'peak_classification_5UTR'? '' :
'# The sequence from the found TIS until the annotated TIS is also given, and translated.' . "\n"));
$aHeaders = array(
'Category',
'PeakPosGenomic',
'PosGenomic+12',
'Gene',
'Strand',
'Coverage',
'RefSeqID',
'PeakPosTrans',
'PosTrans+12',
'Status',
);
if ($sType == 'peak_classification') {
$aHeaders[] = 'Motif';
} else {
$aHeaders[] = 'DNASeqToAUG';
$aHeaders[] = 'ProtSeqToAUG';
}
$nHeaders = count($aHeaders);
fputs($aSample['file_out'][$sType]['handle'],
'# ' . implode("\t", $aHeaders) . "\n");
// Print the peak data.
$nLine = 0;
foreach ($aSample['peak_data'] as $sCategory => $aData) {
foreach ($aData as $aTIS) {
$nLine ++;
// For peak_classification_5UTR we only print 5UTR results...
if ($sType == 'peak_classification_5UTR' && $sCategory != '5UTR') {
continue 2; // We will only have more non-5'UTR that follow.
}
// v.0.4: Changed the way the positions are stored; now in a big array.
// For 5'UTR peaks, we report *all* positions and upstream sequences.
$aAllPositions = array_pop($aTIS);
// Map data with column names.
array_unshift($aTIS, $sCategory);
$aTIS = array_combine($aHeaders, array_pad($aTIS, $nHeaders, ''));
foreach ($aAllPositions as $sPositionInGene => $aPosition) {
list($sPositionInGeneShifted, $sRefSeqID) = $aPosition;
if ($sCategory == 'multiple') {
// Remove the values we don't show for the Multiple group.
$aTIS['RefSeqID'] = $aTIS['PeakPosTrans'] = $aTIS['PosTrans+12'] = '';
} else {
$aTIS['RefSeqID'] = $sRefSeqID;
$aTIS['PeakPosTrans'] = $sPositionInGene;
$aTIS['PosTrans+12'] = $sPositionInGeneShifted;
}
// Now check if we already have the file in the cache; otherwise, download.
if ($aTIS['RefSeqID']) {
if (!isset($aNMCache[$aTIS['RefSeqID']])) {
// File hasn't been parsed yet.
$sNMFile = $_SETT['NM_cache_dir'] . $aTIS['RefSeqID'] . '.gb';
if (!is_file($sNMFile)) {
// In fact, it hasn't been downloaded yet!
$fNM = fopen($sNMFile, 'w');
$sNM = file_get_contents('http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nuccore&id=' . $aTIS['RefSeqID'] . '&rettype=gb');
if (!$sNM) {
// Failed to download NM.
die("\n" .
'Failed to download NM sequence for ' . $aTIS['RefSeqID'] . "\n");
}
fputs($fNM, $sNM);
fclose($fNM);
} else {
$sNM = file_get_contents($sNMFile);
}
// Parse NM, isolate sequence and isolate CDS position.
$aNMCache[$aTIS['RefSeqID']] = array();
if (!preg_match('/^\s+CDS\s+(?:join\()?(\d+)\.\.(\d+)((,\d+\.\.\d+)*\))?$/m', $sNM, $aRegs)) {
die("\n" .
'Failed to find CDS for ' . $aTIS['RefSeqID'] . "\n");
$nCDSstart = $nCDSend = 0;
} else {
list(,$nCDSstart, $nCDSend) = $aRegs;
}
// Get sequence.
@list(,$sSequenceRaw) = preg_split('/^ORIGIN\s+$/m', $sNM, 2); // Ignore notices unknown index 1.
$sSequence = rtrim(preg_replace('/[^a-z]+/', '', $sSequenceRaw), "\n/");
$aNMCache[$aTIS['RefSeqID']] = array($nCDSstart, $nCDSend, $sSequence);
}
list($nCDSstart, $nCDSend, $sSequence) = $aNMCache[$aTIS['RefSeqID']];
// Get Motif or upstream sequence.
if ($sType == 'peak_classification' && $nCDSstart) {
// Fetch motif.
if ($aTIS['PosTrans+12'] < 0) {
// Upstream.
if (!$nCDSstart) {
// No annotated CDS found (could not parse)
$aTIS['Status'] = 'could_not_parse_CDS';
} elseif ($nCDSstart == 1) {
// No upstream sequence.
$aTIS['Status'] = 'no_5UTR';
} elseif (abs($aTIS['PosTrans+12']) > ($nCDSstart-1)) {
// Not enough upstream sequence available.
$aTIS['Status'] = 'unannotated_5UTR';
} else {
$aTIS['Motif'] = substr($sSequence, ($nCDSstart-1+$aTIS['PosTrans+12']), 3);
}
} else {
// Compensate 3'UTR reads.
if (substr($aTIS['PosTrans+12'], 0, 1) == '*') {
$nPosMotif = substr($aTIS['PosTrans+12'], 1) + $nCDSend;
} else {
$nPosMotif = $aTIS['PosTrans+12'];
}
$aTIS['Motif'] = substr($sSequence, ($nCDSstart+$nPosMotif-2), 3);
}
} else {
// For 5'UTR (all we see here), get the whole upstream sequence.
if (!$nCDSstart) {
// No annotated CDS found (could not parse)
$aTIS['Status'] = 'could_not_parse_CDS';
} elseif ($nCDSstart == 1) {
// No upstream sequence.
$aTIS['Status'] = 'no_5UTR';
} elseif (abs($aTIS['PosTrans+12']) > ($nCDSstart-1)) {
// Not enough upstream sequence available.
$aTIS['Status'] = 'unannotated_5UTR';
} else {
$aTIS['DNASeqToAUG'] = substr($sSequence, ($nCDSstart-1+$aTIS['PosTrans+12']), abs($aTIS['PosTrans+12']));
}
// Now, get it translated.
$sProteinSequence = RPF_translateDNA($aTIS['DNASeqToAUG']);
$aTIS['ProtSeqToAUG'] = $sProteinSequence;
}
// 2014-10-03; 0.6; Solving no_5UTR and unannotated_5UTR problems by downloading sequence slices from the NCBI.
if (in_array($aTIS['Status'], array('no_5UTR', 'unannotated_5UTR'))) {
// We'll have to get the sequence in a different way, directly from the genomic sequence.
// FIXME; Perhaps we should have stored the Chr when we had it?
$sChr = '';
$nStartPos = 0;
if (preg_match('/^chr(\d+|[XYM]):(\d+)$/', $aTIS['PosGenomic+12'], $aRegs)) {
list(,$sChr, $nStartPos) = $aRegs;
} else {
die("\n" .
'Failed to determine chromosome for ' . $aTIS['PosGenomic+12'] . "\n");
}
if (!isset($_SETT['NC_identifiers'][$sChr])) {
die("\n" .
'Failed to determine chromosomal reference sequence for ' . $aTIS['PeakPosGenomic'] . "\n");
}
$sRefSeqNC = $_SETT['NC_identifiers'][$sChr];
$sNCFileID = $sRefSeqNC . ':' . $aTIS['Strand'] . ':' . $nStartPos;
if (!isset($aNMCache[$sNCFileID . ':' . $sRefSeqID])) {
// File hasn't been parsed yet.
$sNCFile = $_SETT['NM_cache_dir'] . $sNCFileID . '.gb';
if (!is_file($sNCFile)) {
// In fact, it hasn't been downloaded yet!
$fNC = fopen($sNCFile, 'w');
$sNC = file_get_contents('http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nuccore&id=' . $sRefSeqNC . '&strand=' . ($aTIS['Strand'] != 'F'? 2 : 1) . '&seq_start=' . $nStartPos . '&seq_stop=' . ($nStartPos + (($aTIS['Strand'] != 'F'? -1 : 1) * $_SETT['NC_slice_length'])) . '&rettype=gb');
if (!$sNC) {
// Failed to download NC.
die("\n" .
'Failed to download NC sequence for ' . $sNCFileID . "\n");
}
fputs($fNC, $sNC);
fclose($fNC);
} else {
$sNC = file_get_contents($sNCFile);
}
// The NC files are messy. Multiple transcripts, no nice way of finding out which CDS we need, etc.
// It's easier to fetch the CDS' GI ID from the NM, check for annotated introns there, and then
// fetch the sequence from the NC.
$aNMCache[$sNCFileID . ':' . $sRefSeqID] = array();
// Parse the NC and find the exon boundaries. Can't search for the NM directly, can't get the regexp to not be greedy like that.
$aExons = array();
$sExons = '';
// Also match <1 and ># positions, since we allow to match newer versions of the transcript, and those could have been enlarged.
if (preg_match_all('/\s+mRNA\s+(?:join\()?(<?\d+\.\.>?\d+(?:(?:,\s*\d+\.\.>?\d+)*\))?)\n.+\s+\/transcript_id="([NX]M_[0-9]+\.)[0-9]+"\n/sU', $sNC, $aRegs)) {
// Loop mRNAs to find the correct one (but ignore versions).
// FIXME: Currently ignoring a > in front of the first exon's end; no clue what to do with it or where it comes from.
foreach (array_keys($aRegs[0]) as $i) {
if (strpos($sRefSeqID, $aRegs[2][$i]) === 0) {
$sExons = preg_replace('/[^0-9.,]+/', '', $aRegs[1][$i]);
break;
}
}
}
if ($sExons) {
$aExons = explode(',', $sExons);
$aExons = array_map('explode', array_fill(0, count($aExons), '..'), $aExons);
}
if (!$aExons) {
// This really should not happen... unless the transcript doesn't really map here (such as NM_027892.2).
// Check if the NC has been downloaded correctly...!
if (preg_match_all('/\s+mRNA\s+\?\n.+\s+\/transcript_id="([NX]M_[0-9]+\.)[0-9]+"\n/sU', $sNC, $aRegs)) {
print("\n" .
'mRNA ' . $aTIS['RefSeqID'] . ' does not have a location in ' . $sNCFileID . '; please remove and re-download the NC slice.' . "\n");
} else {
print("\n" .
'Failed to get mRNA definition for ' . $aTIS['RefSeqID'] . ' in ' . $sNCFileID . '; transcript mapping two different locations, maybe?' . "\n");
}
$aTIS['Status'] .= ';no_mRNA_definition';
$nCDSstartNC = $nCDSendNC = 1;
$sSequence = '';
} else {
// Re-parse the NM, find the CDS.
// No need to check if it exists, we just already parsed it.
$sNM = file_get_contents($_SETT['NM_cache_dir'] . $aTIS['RefSeqID'] . '.gb');
$sCDSID = '';
if (!preg_match('/^\s+\/protein_id="([A-Z_0-9.]+)"$/m', $sNM, $aRegs)) {
// 2016-12-16; 0.7; Matching on NP ID, which should always be in the file.
// Previously, we were using GI IDs, but the NCBI has stopped using them.
die("\n" .
'Failed to get Protein ID for ' . $aTIS['RefSeqID'] . "\n");
}
$sCDSID = $aRegs[1];
// Check CDS start in NC.
$nCDSstartNC = $nCDSendNC = 0;
if (preg_match_all('/\s+CDS\s+(?:join\()?(\d+)(?:\.\.(\d+))?(?:(?:,\s*\d+(?:\.\.>?\d+)?)*\))?\n.+\s+\/protein_id="([A-Z_0-9.]+)"\n/sU', $sNC, $aCDSs)) {
// Loop CDSs to find the correct one.
foreach (array_keys($aCDSs[0]) as $i) {
if ($aCDSs[3][$i] == $sCDSID) {
$nCDSstartNC = $aCDSs[1][$i];
$nCDSendNC = $aCDSs[2][$i];
break;
}
}
}
if (!$nCDSstartNC) {
//var_dump($aTIS, $aCDSs, $sCDSID);
// Note that this can happen, when the NC slice downloaded contains a new transcript version. Quickest way to fix, is to find the CDS
// (using the NP, or using the GI from the CDS of the correct NM version) and replace the GI.
// Also, make sure there is no > or < in the starting locations (or should we handle that?).
die("\n" .
'Failed to find CDS for ' . $sNCFileID . ':' . $sRefSeqID . "\n");
}
}
// Now get sequence.
@list(,$sSequenceRaw) = preg_split('/^ORIGIN\s+$/m', $sNC, 2); // Ignore notices unknown index 1.
$sSequence = rtrim(preg_replace('/[^a-z]+/', '', $sSequenceRaw), "\n/");
// End sequence with the annotated TIS codon, so we can check if we got the distance right.
$sSequence = substr($sSequence, 0, ($nCDSstartNC+2));
// Remove introns when necessary.
if (count($aExons) > 1) {
$aExons[0][0] = 1; // The unannotated part is regarded 100% exon.
$sSequenceSpliced = '';
foreach ($aExons as $aExon) {
list($nStart, $nEnd) = $aExon;
// If we already passed the pTIS, no need to splice (we lost the sequence anyway).
if ($nStart > $nCDSstartNC) {
break;
}
$sSequenceSpliced .= substr($sSequence, ($nStart - 1), ($nEnd - $nStart) + 1);
}
$lCut = strlen($sSequence) - strlen($sSequenceSpliced);
$sSequence = $sSequenceSpliced;
$nCDSstartNC -= $lCut;
$nCDSendNC -= $lCut;
}
$aNMCache[$sNCFileID . ':' . $sRefSeqID] = array($nCDSstartNC, $nCDSendNC, $sSequence);
}
list($nCDSstart, $nCDSend, $sSequence) = $aNMCache[$sNCFileID . ':' . $sRefSeqID];
// Get Motif or upstream sequence.
if ($sType == 'peak_classification') {
// Fetch motif.
$aTIS['Motif'] = substr($sSequence, 0, 3);
} else {
// For 5'UTR (all we see here), get the whole upstream sequence.
$aTIS['DNASeqToAUG'] = substr($sSequence, 0, -3);
// Now, get it translated.
$sProteinSequence = RPF_translateDNA($aTIS['DNASeqToAUG']);
$aTIS['ProtSeqToAUG'] = $sProteinSequence;
}
}
}
fputs($aSample['file_out'][$sType]['handle'], implode("\t", $aTIS) . "\n");
// Only for 5'UTR classification, we show all. Otherwise, just the first will do.
if ($sType != 'peak_classification_5UTR') {
break;
}
}
if (!($nLine % 50)) {
$nPercentageRead = round($nLine/$aSample['peak_count'], 2);
$nAvailableWidth = $_SETT['terminal_width'] - 8 - strlen($nLine);
$lDone = round($nPercentageRead*$nAvailableWidth);
print(str_repeat(chr(8), $_SETT['terminal_width']) .
'[' . str_repeat('=', $lDone) . str_repeat(' ', $nAvailableWidth - $lDone) . '] ' . $nLine . ' ' . str_pad(round($nPercentageRead*100), 3, ' ', STR_PAD_LEFT) . '%');
}
}
}
$nAvailableWidth = $_SETT['terminal_width'] - 8 - strlen($nLine);
print(str_repeat(chr(8), $_SETT['terminal_width']) .
'[' . str_repeat('=', $nAvailableWidth) . '] ' . $nLine . ' 100%' . "\n");
}
}
?>