-
Notifications
You must be signed in to change notification settings - Fork 11
/
models.py
169 lines (137 loc) · 5.96 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# coding:utf-8
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.nn.utils import weight_norm
class SimpleRNN(nn.Module):
def __init__(self, input_size, hidden_size=32, output_size=1, num_layers=1, dropout=0.25):
super(SimpleRNN, self).__init__()
self.hidden_size = hidden_size
self.rnn = nn.RNN(
input_size=input_size,
hidden_size=hidden_size,
nonlinearity='relu', # 'tanh' or 'relu'
num_layers=num_layers,
dropout=dropout,
batch_first=True
)
self.linear = nn.Linear(hidden_size, output_size)
def forward(self, x, hidden):
output, hidden = self.rnn(x, hidden)
pred = self.linear(output[:, -1, :])
return pred, hidden
def init_hidden(self):
return torch.randn(1, 24, self.hidden_size)
class SimpleGRU(nn.Module):
def __init__(self, input_size, hidden_size, output_size=1, num_layers=1, dropout=0.25):
super(SimpleGRU, self).__init__()
self.hidden_size = hidden_size
self.gru = nn.GRU(
input_size=input_size,
hidden_size=hidden_size,
num_layers=num_layers,
# dropout=dropout,
batch_first=True
)
self.linear = nn.Linear(hidden_size, output_size)
def forward(self, x, hidden):
output, hidden = self.gru(x, hidden)
pred = self.linear(output[:, -1, :])
return pred, hidden
def init_hidden(self):
return torch.randn(1, 24, self.hidden_size)
class SimpleLSTM(nn.Module):
def __init__(self, input_size, hidden_size, output_size=1, num_layers=1, dropout=0.25):
super(SimpleLSTM, self).__init__()
self.hidden_size = hidden_size
self.lstm = nn.LSTM(
input_size=input_size,
hidden_size=hidden_size,
num_layers=num_layers,
# dropout=dropout,
batch_first=True
)
self.linear = nn.Linear(hidden_size, output_size)
def forward(self, x):
output, (h_n, c_n) = self.lstm(x)
pred = self.linear(output[:, -1, :])
return pred
def init_hidden(self):
return torch.randn(1, 24, self.hidden_size)
class TCN(nn.Module):
def __init__(self, input_size, output_size, num_channels, kernel_size, dropout):
super(TCN, self).__init__()
self.tcn = TemporalConvNet(input_size, num_channels, kernel_size, dropout=dropout)
self.linear = nn.Linear(num_channels[-1], output_size)
def forward(self, x):
output = self.tcn(x.transpose(1, 2)).transpose(1, 2)
pred = self.linear(output[:, -1, :])
return pred
class Chomp1d(nn.Module):
def __init__(self, chomp_size):
super(Chomp1d, self).__init__()
self.chomp_size = chomp_size
def forward(self, x):
return x[:, :, :-self.chomp_size].contiguous()
class TemporalBlock(nn.Module):
def __init__(self, n_inputs, n_outputs, kernel_size, stride, dilation, padding, dropout=0.2):
super(TemporalBlock, self).__init__()
self.conv1 = weight_norm(nn.Conv1d(n_inputs, n_outputs, kernel_size,
stride=stride, padding=padding, dilation=dilation))
self.chomp1 = Chomp1d(padding)
self.relu1 = nn.ReLU()
self.dropout1 = nn.Dropout(dropout)
self.conv2 = weight_norm(nn.Conv1d(n_outputs, n_outputs, kernel_size,
stride=stride, padding=padding, dilation=dilation))
self.chomp2 = Chomp1d(padding)
self.relu2 = nn.ReLU()
self.dropout2 = nn.Dropout(dropout)
self.net = nn.Sequential(self.conv1, self.chomp1, self.relu1, self.dropout1,
self.conv2, self.chomp2, self.relu2, self.dropout2)
self.downsample = nn.Conv1d(n_inputs, n_outputs, 1) if n_inputs != n_outputs else None
self.relu = nn.ReLU()
self.init_weights()
def init_weights(self):
self.conv1.weight.data.normal_(0, 0.01)
self.conv2.weight.data.normal_(0, 0.01)
if self.downsample is not None:
self.downsample.weight.data.normal_(0, 0.01)
def forward(self, x):
out = self.net(x)
res = x if self.downsample is None else self.downsample(x)
return self.relu(out + res)
class TemporalConvNet(nn.Module):
def __init__(self, num_inputs, num_channels, kernel_size=2, dropout=0.2):
super(TemporalConvNet, self).__init__()
layers = []
num_levels = len(num_channels)
for i in range(num_levels):
dilation_size = 2 ** i
in_channels = num_inputs if i == 0 else num_channels[i-1]
out_channels = num_channels[i]
layers += [TemporalBlock(in_channels, out_channels, kernel_size, stride=1, dilation=dilation_size,
padding=(kernel_size-1) * dilation_size, dropout=dropout)]
self.network = nn.Sequential(*layers)
def forward(self, x):
return self.network(x)
class STCN(nn.Module):
def __init__(self, input_size, in_channels, output_size, num_channels, kernel_size, dropout):
super(STCN, self).__init__()
self.conv = torch.nn.Sequential(
torch.nn.Conv2d(in_channels=in_channels, out_channels=64, kernel_size=(1, 1), stride=1, padding=0),
torch.nn.BatchNorm2d(64),
torch.nn.ReLU(),
torch.nn.Conv2d(in_channels=64, out_channels=1, kernel_size=(1, 1), stride=1, padding=0),
torch.nn.BatchNorm2d(1),
torch.nn.ReLU()
)
self.tcn = TemporalConvNet(input_size, num_channels, kernel_size, dropout=dropout)
self.linear = nn.Linear(num_channels[-1], output_size)
def forward(self, x):
conv_out = self.conv(x).squeeze(0)
output = self.tcn(conv_out.transpose(1, 2)).transpose(1, 2)
pred = self.linear(output[:, -1, :])
return pred