-
Notifications
You must be signed in to change notification settings - Fork 44
/
app_cbir.py
293 lines (241 loc) · 9.99 KB
/
app_cbir.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
#! /usr/bin/env python
#coding=utf-8
import os
import time
import cPickle
import datetime
import logging
import flask
import werkzeug
import optparse
import tornado.wsgi
import tornado.httpserver
import numpy as np
import pandas as pd
from PIL import Image
import cStringIO as StringIO
import urllib
import exifutil
import sys
sys.path.append("/opt/down/caffe-master/python")
import caffe
REPO_DIRNAME = os.path.abspath(os.path.dirname(os.path.abspath(__file__)) + '/../..')
UPLOAD_FOLDER = '/tmp/caffe_demos_uploads'
ALLOWED_IMAGE_EXTENSIONS = set(['png', 'bmp', 'jpg', 'jpe', 'jpeg', 'gif'])
# Obtain the flask app object
app = flask.Flask(__name__)
@app.route('/')
def index():
return flask.render_template('index.html', has_result=False)
@app.route('/classify_url', methods=['GET'])
def classify_url():
imageurl = flask.request.args.get('imageurl', '')
try:
string_buffer = StringIO.StringIO(
urllib.urlopen(imageurl).read())
image = caffe.io.load_image(string_buffer)
except Exception as err:
# For any exception we encounter in reading the image, we will just
# not continue.
logging.info('URL Image open error: %s', err)
return flask.render_template(
'index.html', has_result=True,
result=(False, 'Cannot open image from URL.')
)
logging.info('Image: %s', imageurl)
result = app.clf.classify_image(image)
return flask.render_template(
'index.html', has_result=True, result=result, imagesrc=imageurl)
@app.route('/classify_upload', methods=['POST'])
def classify_upload():
try:
# We will save the file to disk for possible data collection.
imagefile = flask.request.files['imagefile']
filename_ = str(datetime.datetime.now()).replace(' ', '_') + \
werkzeug.secure_filename(imagefile.filename)
filename = os.path.join(UPLOAD_FOLDER, filename_)
imagefile.save(filename)
logging.info('Saving to %s.', filename)
image = exifutil.open_oriented_im(filename)
except Exception as err:
logging.info('Uploaded image open error: %s', err)
return flask.render_template(
'index.html', has_result=True,
result=(False, 'Cannot open uploaded image.')
)
result = app.clf.classify_image(image)
return flask.render_template(
'index.html', has_result=True, result=result,
imagesrc=embed_image_html(image)
)
def embed_image_html(image):
"""Creates an image embedded in HTML base64 format."""
image_pil = Image.fromarray((255 * image).astype('uint8'))
image_pil = image_pil.resize((256, 256))
string_buf = StringIO.StringIO()
image_pil.save(string_buf, format='png')
data = string_buf.getvalue().encode('base64').replace('\n', '')
return 'data:image/png;base64,' + data
def allowed_file(filename):
return (
'.' in filename and
filename.rsplit('.', 1)[1] in ALLOWED_IMAGE_EXTENSIONS
)
class ImagenetClassifier(object):
default_args = {
'model_def_file': (
'{}/examples/cbir/model/cbir.prototxt'.format(REPO_DIRNAME)),
'pretrained_model_file': (
'{}/examples/cbir/model/cbir_iter_100000.caffemodel'.format(REPO_DIRNAME)),
'mean_file': (
'{}/examples/cbir/data/imagenet_mean.npy'.format(REPO_DIRNAME)),
#'class_labels_file': (
# '{}/data/ilsvrc12/synset_words.txt'.format(REPO_DIRNAME)),
#'lsh_file': (
# '{}lsh10.pkl'.format(REPO_DIRNAME)),
}
for key, val in default_args.iteritems():
if not os.path.exists(val):
raise Exception(
"File for {} is missing. Should be at: {}".format(key, val))
default_args['image_dim'] = 256
default_args['raw_scale'] = 255.
def __init__(self, model_def_file, pretrained_model_file, mean_file,
raw_scale, image_dim, gpu_mode):
logging.info('Loading net and associated files...')
if gpu_mode:
caffe.set_mode_gpu()
else:
caffe.set_mode_cpu()
self.net = caffe.Classifier(
model_def_file, pretrained_model_file,
image_dims=(image_dim, image_dim), raw_scale=raw_scale,
mean=np.load(mean_file).mean(1).mean(1), channel_swap=(2, 1, 0)
)
"""
with open(class_labels_file) as f:
labels_df = pd.DataFrame([
{
'synset_id': l.strip().split(' ')[0],
'name': ' '.join(l.strip().split(' ')[1:]).split(',')[0]
}
for l in f.readlines()
])
self.labels = labels_df.sort('synset_id')['name'].values
self.bet = cPickle.load(open(lsh_file))
# A bias to prefer children nodes in single-chain paths
# I am setting the value to 0.1 as a quick, simple model.
# We could use better psychological models here...
self.bet['infogain'] -= np.array(self.bet['preferences']) * 0.1
"""
#load nearly index
lsh_file = open('lsh10.pkl', 'rb')
self.lsh = cPickle.load(lsh_file)
lsh_file.close()
#get candidate images by query result
index_file = open('index10_fea.pkl', 'rb')
self.index_data = cPickle.load(index_file)
index_file.close()
fea_file = open('img10_fea.pkl', 'rb')
self.fea_data = cPickle.load(fea_file)
fea_file.close()
train_file = open('static/train.txt', 'rb')
self.train_txt = train_file.readlines()
train_file.close()
def classify_image(self, image):
try:
starttime = time.time()
scores = self.net.predict([image], oversample=True).flatten()
endtime = time.time()
# get fc7 layer features
fc7_fea = self.net.blobs["fc7"].data[:]
logging.info('fc7_fea:%d,%d',fc7_fea.shape[0], fc7_fea.shape[1])
# get fc8 layer features
fc8_fea = self.net.blobs["fc8_encode"].data[:]
fc8_fea = (fc8_fea>=0.5)*1
logging.info('fc8_fea:%d,%d',fc8_fea.shape[0], fc8_fea.shape[1])
#search nearly index
raw_result = self.lsh.query(np.array([int(tmp) for tmp in fc8_fea[0]]))
print 'lsh.query result:'
print raw_result
candidate_dic = {}
vec1 = np.array([int(tmp*100) for tmp in fc7_fea[0]])
print 'vec1:'
print vec1
for x in raw_result:
print 'x:'
print x
index_lsh = ','.join(str(i) for i in x[0]).replace(',', '')
print 'the candidate image id is:'
print index_lsh
print 'the candidate image name is:'
print self.index_data[index_lsh]
for index in self.index_data[index_lsh]:
print 'the candidate image feature is:'
condidate_fea = self.fea_data[''.join(index)]
print condidate_fea.toarray()
vec2 = np.array([int(tmp*100) for tmp in condidate_fea.toarray()[0]])
print 'vec2'
print vec2
dist = np.linalg.norm(vec1 - vec2)
print 'distance:'
print int(dist)
candidate_dic[''.join(index)] = int(dist)
candidate_list = sorted(candidate_dic.items(), key=lambda item:item[1])
print 'candidate_list:'
print candidate_list
# Get file path from candidate list
i = 0
for candidate_item in candidate_list:
candidate_str = candidate_item[0][0:-4] + '_' + candidate_item[0][-4:]
print 'candidate_str:'+candidate_str
for line in self.train_txt:
filename, tag = line.strip().split(" ")
#print 'filename:'+filename
if candidate_str in filename:
candidate_list[i] = ("/static/"+filename, candidate_list[i][1])
i += 1
break
print candidate_list
return (True, candidate_list, '%.3f' % (endtime - starttime))
except Exception as err:
logging.info('Classification error: %s', err)
return (False, 'Something went wrong when classifying the '
'image. Maybe try another one?')
def start_tornado(app, port=5000):
http_server = tornado.httpserver.HTTPServer(
tornado.wsgi.WSGIContainer(app))
http_server.listen(port)
print("Tornado server starting on port {}".format(port))
tornado.ioloop.IOLoop.instance().start()
def start_from_terminal(app):
"""
Parse command line options and start the server.
"""
parser = optparse.OptionParser()
parser.add_option(
'-d', '--debug',
help="enable debug mode",
action="store_true", default=False)
parser.add_option(
'-p', '--port',
help="which port to serve content on",
type='int', default=5000)
parser.add_option(
'-g', '--gpu',
help="use gpu mode",
action='store_true', default=False)
opts, args = parser.parse_args()
ImagenetClassifier.default_args.update({'gpu_mode': opts.gpu})
# Initialize classifier + warm start by forward for allocation
app.clf = ImagenetClassifier(**ImagenetClassifier.default_args)
app.clf.net.forward()
if opts.debug:
app.run(debug=True, host='0.0.0.0', port=opts.port)
else:
start_tornado(app, opts.port)
if __name__ == '__main__':
logging.getLogger().setLevel(logging.INFO)
if not os.path.exists(UPLOAD_FOLDER):
os.makedirs(UPLOAD_FOLDER)
start_from_terminal(app)