-
Notifications
You must be signed in to change notification settings - Fork 2
/
lSet.ml
173 lines (140 loc) · 4.68 KB
/
lSet.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
(**
Sets as ordered polymorphic lists.
Author: S-Aébastien Ferré-b
License: LGPL
*)
include List
let compare x y = Pervasives.compare y x
type 'a t = 'a list
(** The empty set. *)
let empty : unit -> 'a list = fun () -> []
(** Test if a set is empty or not. *)
let is_empty : 'a list -> bool = function [] -> true | _ -> false
(** Return the cardinal of a set. *)
let cardinal : 'a list -> int = List.length
(** Return a list of the elements. *)
let elements : 'a t -> 'a list = fun l -> l
(** Comparison of 2 sets for any relation among: Contains, Contained, Equals, Other. *)
type comp = Contains | Contained | Equals | Other
let rec comp : 'a list -> 'a list -> comp =
fun l1 l2 -> match l1, l2 with
| [], [] -> Equals
| _, [] -> Contains
| [], _ -> Contained
| x1::l1, x2::l2 ->
let c = compare x1 x2 in
if c < 0 then
match comp l1 (x2::l2) with
| Equals
| Contains -> Contains
| Contained
| Other -> Other
else if c > 0 then
match comp (x1::l1) l2 with
| Equals
| Contained -> Contained
| Contains
| Other -> Other
else comp l1 l2
(** Return true if the first set contains the second. *)
let rec contains : 'a list -> 'a list -> bool =
fun l1 l2 -> match l1, l2 with
_, [] -> true
| [], _ -> false
| x1::l1, x2::l2 ->
let comp = compare x1 x2 in
if comp < 0 then contains l1 (x2::l2)
else if comp > 0 then false
else contains l1 l2
let subset l1 l2 = contains l2 l1
let equal = (=)
let mem : 'a -> 'a list -> bool =
fun x l -> contains l [x]
(** Return the union of 2 and several sets. *)
let rec union : 'a list -> 'a list -> 'a list =
fun l1 l2 -> match l1, l2 with
[], l2 -> l2
| l1, [] -> l1
| x1::l1, x2::l2 ->
let comp = compare x1 x2 in
if comp < 0 then x1::union l1 (x2::l2)
else if comp > 0 then x2::union (x1::l1) l2
else x1::union l1 l2
let union_r : 'a list list -> 'a list =
fun sets -> List.fold_left (fun res set -> union res set) [] sets
let add : 'a -> 'a list -> 'a list =
fun x l -> union [x] l
let singleton : 'a -> 'a list =
fun x -> [x]
(** Get a set from a list. *)
let of_list : 'a list -> 'a t =
fun l -> List.fold_left (fun res x -> add x res) [] l
(** Return the intersection of 2 sets. *)
let rec inter : 'a list -> 'a list -> 'a list =
fun l1 l2 -> match l1, l2 with
[], _ -> []
| _, [] -> []
| x1::l1, x2:: l2 ->
let comp = compare x1 x2 in
if comp < 0 then inter l1 (x2::l2)
else if comp > 0 then inter (x1::l1) l2
else x1::inter l1 l2
let rec inter_r : 'a list list -> 'a list =
function
[] -> raise (Invalid_argument "inter_r : empty list of sets")
| set::sets -> List.fold_right (fun set res -> inter set res) sets set
(** Return the subtraction of 2 sets. *)
let rec subtract : 'a list -> 'a list -> 'a list =
fun l1 l2 -> match l1, l2 with
[], _ -> []
| l1, [] -> l1
| x1::l1, x2::l2 ->
let comp = compare x1 x2 in
if comp < 0 then x1::subtract l1 (x2::l2)
else if comp > 0 then subtract (x1::l1) l2
else subtract l1 l2
let diff = subtract
let subtract_r : 'a list -> 'a list list -> 'a list =
fun set sets -> List.fold_left (fun res set -> subtract res set) set sets
let remove : 'a -> 'a list -> 'a list =
fun x l -> subtract l [x]
(* partition by the belonging to a set *)
(* partitioner -> partitionee -> inter * diff *)
let rec partition_set : 'a t -> 'a t -> 'a t * 'a t =
fun l1 l2 -> match l1, l2 with
| [], l2 -> [], l2
| _, [] -> [], []
| x1::l1, x2::l2 ->
let comp = compare x1 x2 in
if comp < 0 then
partition_set l1 (x2::l2)
else if comp > 0 then
let inter, diff = partition_set (x1::l1) l2 in
inter, x2::diff
else
let inter, diff = partition_set l1 l2 in
x2::inter, diff
(** Remove an element if present, add it otherwise. *)
let rec flip : 'a -> 'a list -> 'a list =
fun x -> function
[] -> [x]
| y::l ->
let comp = compare x y in
if comp < 0 then x::y::l
else if comp > 0 then y::flip x l
else l
(** Generic folding over the synchronized traversal of 2 LSets *)
type inwhich = Infst | Insnd | Inboth
let rec fold : ('b -> inwhich * 'a -> 'b) -> 'b -> 'a list -> 'a list -> 'b =
fun f e l1 l2 -> match l1, l2 with
| [], [] -> e
| x1::l1, [] -> fold f (f e (Infst,x1)) l1 []
| [], x2::l2 -> fold f (f e (Insnd,x2)) [] l2
| x1::l1, x2::l2 ->
let comp = compare x1 x2 in
if comp < 0 then fold f (f e (Infst,x1)) l1 (x2::l2)
else if comp > 0 then fold f (f e (Insnd,x2)) (x1::l1) l2
else fold f (f e (Inboth,x1)) l1 l2
(*
iterative functions on lists can also be applied, provided they preserve the order of lists
*)