forked from SanaxM/BraTPRO-challenge
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset.py
62 lines (49 loc) · 2.42 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from torch.utils.data import TensorDataset as Dataset
import SimpleITK as sitk
import json
import os
import torch
class CustomDataset(Dataset):
def __init__(self, patient_ids, labels, abs_path, json_f):
''' initialize the dataset with the list of patient-case IDs and their respective label '''
self.patients = patient_ids
self.labels = labels
self.absolute_path = abs_path
# dump the json file data
file = open(json_f, "r")
self.file_data = json.loads(file.read())
def __len__(self):
''' returning length of labels, as that represents the number of cases '''
return len(self.patients)
def __patient__(self, index):
''' returns the patient case id at the given index '''
return self.patients[index]
def __getitem__(self, index):
''' get back one a registered scan and its label '''
patient_case_id = self.patients[index]
label = self.labels[patient_case_id]
# get the patient and case id seperately
patient = patient_case_id.split("-")[0]
case = patient_case_id.split("-")[1]
# get the image from the directory and convert it to an array
img_dir_path = ((self.file_data[patient])[case])["followup_registered"]
try:
path = self.absolute_path + img_dir_path + "/" + img_dir_path.split("/")[-1] + "_0002.nii.gz"
img = sitk.ReadImage(self.absolute_path + img_dir_path + "/" + img_dir_path.split("/")[-1] + "_0002.nii.gz", imageIO="NiftiImageIO")
except:
print("Image IO Error of path: ", path, "Reading next image instead.")
img = sitk.ReadImage(self.absolute_path + img_dir_path + "/" + img_dir_path.split("/")[-1] + "_0003.nii.gz", imageIO="NiftiImageIO")
img_array = sitk.GetArrayFromImage(sitk.DICOMOrient(img, 'LPS'))
# get the seg mask from the directory and convert it to an array
img_seg_path = ((self.file_data[patient])[case])["followup_seg_registered"]
seg_mask = sitk.ReadImage(self.absolute_path + img_seg_path, imageIO="NiftiImageIO")
seg_array = sitk.GetArrayFromImage(seg_mask)
# crop the image
roi = img_array * seg_array
# convert to tensor
roi = torch.tensor(roi)
# increase num channels to 3
roi = roi[None, :, :, :]
roi = roi.expand(3, *roi.shape[1:])
roi = roi[None, :, :, :, :]
return roi, label