MLHEP'19 slides and notebooks
- Day 1:
- Figures of Merit, overfitting (MLE vs MAP vs AP)
- Day 2:
- Ensembles of models; bagging, boosting, random forest
- Clustering
- Day 3:
- Computing gradient by hand. Pytorch
- Convolutional Neural Networks ;
- Model Zoo:
- Day 4:
- Bayesian 2
- Day 5
- Learning to Pivot:
- toy example 1:
- toy example 2:
- toy example 3:
- SUSY exercise:
- Language modeling
- Tracking
- Day 6
- Introductory example 1 :
- Introductory example 2 :
- Practice :
- GANs 1
- GANs 2
- GANs 3
- Day 8
- Black-Box:
- ABO:
- AVO:
- NN optimisation
- 1-scikit-search:
- 2-skorch:
- 3-bayesian_optimization:
- 4-skorch_comet:
- 5-skorch_skopt_comet:
- Independence of NN classifier from a continuous parameter: