forked from dpteague/PyMASWdisp
-
Notifications
You must be signed in to change notification settings - Fork 1
/
dcprocessing.py
372 lines (298 loc) · 16.3 KB
/
dcprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
"""
The functions contained in this file compute experimental dispersion data
for a given source-offset (i.e., for an instance of the 'shotgather' class).
Functions:
fk:
Compute dispersion data using a standard frequency-wavenumber
transformation (i.e., convert the data from x-t to f-k domain using a
two-dimensional Fast Fourier Transformation).
fdbf:
Compute dispersion data using frequency domain beamformer. Multiple
receiver weighting techniques are available. Refer to Zywicki (1999) and
Foti et al. (2014).
phase_shift:
Compute dispersion data using phase-shift transformation described in
Park et al. (1998).
tau_p:
Compute dispersion data using a slant-stack (linear Radon) transform.
Refer to McMechan and Yedlin (1981), Sacchi and Ulrych(1995), and
Louie (2001).
nextpow2:
Function to find exponent that will result in 2^exponent >= value.
References:
Foti, S., Lai, C.G., Rix, G.R., and Strobbia, C. (2014). Surface
Wave Methods for Near-Surface Characterization. CRC Press.
Louie, John N. (2001) "Faster, Better: Shear Wave Velocity to 100
Meters Depth From Refraction Microtremor Arrays." Bulletin of
Seismological Society of America, Vol. 91 (2), pp. 347-364
Park, C. B., R. D. Miller, and J. Xia (1998). "Imaging dispersion curves of
surface waves on multichannel record", 68th Annual International
Soc. Explor. Geophys., New Orleans, Sept. 13-18, Expanded Abstracts,
p. 1377-1380.
Sacchi M.D. and Ulrych T.J. (1995). "High Resolution velocity gathers
and offset space reconstruction", Geophysics, Vol. 60, pp. 1169-
1177.
Zywicki, D.J. and Rix, G.J. (2005). Mitigation of Near-Field Effects
for Seismic Surface Wave Velocity Estimation with Cylindrical
Beamformers. Journal of Geotechnical and Geoenvironmental
Engineering, 131(8), pp. 970-977.
Zywicki, D.J. (1999). Advanced signal processing methods applied to
engineering analysis of seismic surface waves. Ph.D.
Dissertation, School of Civil and Environmental Engineering,
Georgia Institute of Technology, Atlanta, GA, p. 357.
This code was developed at the University of Texas at Austin.
Copyright (C) 2016 David P. Teague, Clinton M. Wood, and Brady R. Cox
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
# Import modues
import numpy as np
from scipy import signal
from scipy import special
import dctypes
#*******************************************************************************
# Frequency-Wavenumber Transformation (two-dimensional Fourier Transform)
def fk( shotGather, numk=2048, min_frequency=5, max_frequency=100 ):
# Check that spacing is uniform.............................................
if sum( np.diff(shotGather.position) - np.mean(np.diff(shotGather.position)) )!=0:
raise ValueError('Receiver spacing must be uniform for FK transform')
else:
spacing = shotGather.position[1]-shotGather.position[0]
# Sampling parameters.......................................................
# Time
freq = np.arange( 0, shotGather.fnyq+shotGather.df, shotGather.df )
# Space
dk = 2*np.pi / (numk*spacing)
k_vals = np.arange( dk, shotGather.kres, dk )
# Perform two-dimensional FFT...............................................
fk = np.fft.fft2( shotGather.timeHistories, s=(shotGather.n_samples, numk) )
# Reverse order so that F[:,n] corresponds to kvals[n]
fk = np.fliplr( fk )
# Remove k = 0 column
fk = fk[ 0:len(freq), 1:: ]
# Remove frequencies above/below specificied max/min frequencies and downsample (if required by zero padding)
fminID = np.argmin( np.absolute(freq-min_frequency) )
fmaxID = np.argmin( np.absolute(freq-max_frequency) )
freq_id = range(fminID,(fmaxID+1), shotGather.multiple)
freq = freq[freq_id]
fk = fk[freq_id, :]
# Identify wavenumber associated with maximum in fk domain..................
pnorm = np.zeros( np.shape(fk) )
k_peak = np.zeros( np.shape(freq) )
for k in range( np.shape(fk)[0] ):
# Normalize by largest number in fk domain at each frequency
pnorm[k,:] = np.abs( fk[k,:] ) / np.max( np.abs( fk[k,:] ) )
# Find peak
pk_id = np.argmax( pnorm[k,:] )
k_peak[k] = k_vals[pk_id]
# Create instance of DispersionPower class..................................
dispersionPower = dctypes.DispersionPower( freq, k_peak, k_vals, 'wavenumber', shotGather.kres, np.transpose(pnorm) )
return dispersionPower
#*******************************************************************************
# Frequency Domain Beamformer
def fdbf( shotGather, weightType='none', steeringVector='plane', numv=2048, min_vel=1, max_vel=1000, min_frequency=5, max_frequency=100 ):
# Ensure that min_velocity is greater than zero for numerical stability
if min_vel<1:
min_vel = 1
# Spatiospectral correlation matrix.........................................
R = np.zeros(( (shotGather.n_samples/2+1), shotGather.n_channels, shotGather.n_channels), complex)
for m in range(shotGather.n_channels):
for n in range(shotGather.n_channels):
freq,R[:,m,n] = signal.csd( shotGather.timeHistories[:,m], shotGather.timeHistories[:,n],
fs=1.0/shotGather.dt, window='boxcar', nperseg=shotGather.n_samples )
# Remove frequencies above/below specificied max/min frequencies and downsample (if required by zero padding)
fminID = np.argmin( np.absolute(freq-min_frequency) )
fmaxID = np.argmin( np.absolute(freq-max_frequency) )
freq_id = range(fminID,(fmaxID+1), shotGather.multiple)
R = R[freq_id,:,:]
freq = freq[freq_id]
# Weighting matrices........................................................
W = np.zeros( np.shape(R) )
# Sqare root of distance from source
if str.lower(weightType) == 'sqrt':
W[:,:,:] = np.diag( np.sqrt(abs(shotGather.offset) + shotGather.position) )
# 1/|A(f,x)|, where A is Fourier Transform of a(t,x)
elif str.lower(weightType) == 'invamp':
freqFFT = np.concatenate([np.arange(0, shotGather.fnyq+shotGather.df, shotGather.df), np.arange(-(shotGather.fnyq-shotGather.df), 0, shotGather.df) ])
Af = np.fft.fft(shotGather.timeHistories, axis=0)
for bb in range(len(freq)):
freq_id = np.argmin( np.absolute(freqFFT-freq[bb]) )
weight = 1.0 / np.absolute( Af[freq_id,:] )
W[bb,:,:] = np.diag( weight )
# No weighting
else:
W[:,:,:] = np.eye( shotGather.n_channels )
# Beamforming...............................................................
v_vals = np.linspace(min_vel, max_vel, numv)
# Pre-allocate variables for efficiency
power = np.zeros( (numv, len(freq)), complex )
pnorm = np.zeros( np.shape(power), complex )
v_peak = np.zeros( np.shape(freq) )
# Loop through all frequency values, compute power at all trial wavenumbers
for m in range( len(freq) ):
# Convert trial velocities to wavenumbers (set equal to 0 for k > kres)
k_vals = 2*np.pi*freq[m] / v_vals
alias_id = np.where( k_vals > shotGather.kres )[0]
# Weighting matrix for current frequency
Wf = W[m,:,:]
for k in range( numv ):
# Steering vector
if str.lower(steeringVector) == 'cylindrical':
pos = shotGather.position
# If x[0]=0, set equal to arbitrarilly small number for stability
if pos[0]==0:
pos[0] = 1e-16
H0 = special.j0( k_vals[k] * pos ) + 1j*special.y0( k_vals[k] * pos )
expterm = np.exp( 1j * np.angle(H0) )
else:
expterm = np.exp( 1j * k_vals[k] * shotGather.position )
# power[k,m] = expterm' * Wf * R[m,:,:] * Wf' * expterm
power[k,m] = np.dot( np.dot( np.dot( np.dot( np.conj(expterm).transpose(),Wf ),R[m,:,:] ),Wf.transpose()),expterm)
power[alias_id,m] = 0
# Index of wavenumber corresponding to maximum power at freq[m]
max_id = np.argmax( np.abs(power[:,m]) )
# Normalize all power values at freq[m] by the maximum power at freq[m]
pnorm[:,m] = np.abs(power[:,m]) / np.max(np.abs(power[:,m]))
pnorm[alias_id,m] = float( 'nan' )
# Wavenumber corresponding to max power at freq[m]
v_peak[m] = v_vals[max_id]
# Create instance of DispersionPower class
dispersionPower = dctypes.DispersionPower( freq, v_peak, v_vals, 'velocity', shotGather.kres, pnorm )
return dispersionPower
#*******************************************************************************
# Phase-Shift Transformation
def phase_shift( shotGather, num_vel=2048, min_frequency=5, max_frequency=100, min_velocity=1, max_velocity=1000 ):
# Ensure that min_velocity is greater than zero for numerical stability
if min_velocity < 1:
min_velocity = 1
# Frequency vector
freq = np.arange(0, shotGather.fnyq, shotGather.df)
# FFT of timeHistories (Equation 1 of Park et al. 1998).....................
U = np.fft.fft(shotGather.timeHistories, axis=0)
# Remove frequencies above/below specificied max/min frequencies and downsample (if required by zero padding)
fminID = np.argmin( np.absolute(freq-min_frequency) )
fmaxID = np.argmin( np.absolute(freq-max_frequency) )
freq_id = range(fminID,(fmaxID+1), shotGather.multiple)
freq = freq[freq_id]
U = U[freq_id, :]
# Trial velocities
v_vals = np.linspace( min_velocity, max_velocity, num_vel )
# Initialize variables
v_peak = np.zeros( np.shape(freq) )
V = np.zeros( (np.shape(v_vals)[0], len(freq)) )
pnorm = np.zeros( np.shape(V) )
# Transformation ...........................................................
# Loop through frequencies
for c in range( len(freq) ):
# Loop through trial velocities at each frequency
for r in range( np.shape(v_vals)[0] ):
# Set power equal to NaN at wavenumbers > kres
if v_vals[r] < (2*np.pi*freq[c]/shotGather.kres):
V[r,c] = float( 'nan' )
# (Equation 4 in Park et al. 1998)
else:
V[r,c] = np.abs( np.sum( U[c,:]/np.abs(U[c,:]) * np.exp( 1j*2*np.pi*freq[c]*shotGather.position / v_vals[r] ) ) )
# Identify index associated with peak power at current frequency
max_id = np.nanargmax( V[:,c] )
pnorm[:,c] = V[:,c] / V[max_id,c]
v_peak[c] = v_vals[max_id]
# Create instance of DispersionPower class..................................
dispersionPower = dctypes.DispersionPower( freq, v_peak, v_vals, 'velocity', shotGather.kres, pnorm )
return dispersionPower
#*******************************************************************************
# Slant-stack transform
def tau_p( shotGather, num_vel=2048, min_frequency=5, max_frequency=100, min_velocity=1, max_velocity=1000 ):
# Ensure that min_velocity is greater than zero
if min_velocity<80:
print 'Warning: minimum velocity may result in loss of precision, 80 m/s recommended for slant-stack transform'
if min_velocity<1:
min_velocity = 1
# Processing parameters.......................................................
freq = np.arange(0, shotGather.fnyq+shotGather.df, shotGather.df)
h = shotGather.position
# Processing parameters.....................................................
p_max = 1.0 / min_velocity
# Trial slowness values (positive and negative for two-directions, positive for one-direction)
q = np.linspace(0, p_max ,num_vel+1)
# Number of trial slowness values and location of p=0
nq = len(q)
# Perform slant-stack (Radon) transform in freq. domain for efficiency......
# Refer to Sacchi and Ulrych (1995)
# d = observed data
# D = FFT of observed data
# m = data transformed to the tau-p domain
# M = FFT of m
nfft = 2**nextpow2(shotGather.n_samples)
D = np.fft.fft( shotGather.timeHistories, n=nfft, axis=0 )
M = np.zeros( (nfft, nq), complex )
klow = 1
khigh = int( np.floor(nfft/2) )
for kfreq in range(klow, khigh+1):
omega = 2*np.pi*kfreq / nfft / shotGather.dt
# Equations 5 and 6 in Sacchi (1995)
L = np.exp( -1j*omega*np.matrix(h).H * np.matrix(q) )
y = np.matrix(D[kfreq,:]).transpose()
x = L.H * y
M[kfreq,:] = np.array( x.transpose() )
M[nfft-kfreq,:] = np.array( x.conj().transpose() )
M[nfft/2,:] = np.zeros( (1,nq) )
m = np.real( np.fft.ifft(M, axis=0) )
m = m[0:shotGather.n_samples,:]
# Compute dispersion data as described in Louie (2001), but only using positive slowness values
# Compute FFT on p-f trace (equation 4)
Fa = np.fft.fft(m, axis=0)
# Compute power spectrum for p (equaton 5)
Sa = np.real( Fa[0:(shotGather.n_samples/2),:] * Fa[0:(shotGather.n_samples/2),:].conj() )
# Normalize by the maximum power at a given frequency
pnorm = np.zeros( np.shape(Sa) )
for j in range( 0, np.shape(Sa)[0] ):
pnorm[j,:] = Sa[j,:] / np.max(Sa[j,:])
# Remove frequencies above/below specified max/min frequencies and downsample (if required by zero padding)
fminID = np.argmin( np.absolute(freq-min_frequency) )
fmaxID = np.argmin( np.absolute(freq-max_frequency) )
freq_id = range(fminID,(fmaxID+1), shotGather.multiple)
freq = freq[freq_id]
pnorm = pnorm[freq_id, :]
# Find peaks in power spectrum..............................................
# Pre-allocate memory for variables
v_alias = np.zeros( np.shape(freq) )
p_alias = np.zeros( np.shape(freq) )
p_peak = np.zeros( np.shape(freq) )
max_power = np.zeros( np.shape(freq) )
# Compute peaks in power spectrum (avoid aliased velocites)
for n in range( len(freq) ):
# Aliasing criteria
v_alias[n] = freq[n]*2*np.pi / shotGather.kres
p_alias[n] = 1.0 / v_alias[n]
# Set power associated with all aliased wavenumbers equal to NaN
aliased_id = np.where( q > p_alias[n] )[0]
pnorm[n, aliased_id] = float('nan')
# Find maximum power
max_id = np.nanargmax( pnorm[n,:] )
max_power[n] = pnorm[n,max_id]
# If maximum is associated with slowness=0, set p_peak equal to arbitrary high number (for numerical stability)
p_peak[n] = np.max(np.array([q[max_id], 1e-10]))
v_peak = 1.0/p_peak
# Transpose matrices so that frequency is on x-axis and remove column for slowness=0
q = q[1::]
v_vals = 1.0/q
pnorm = pnorm[:,1::].transpose()
# Create instance of DispersionPower class..................................
dispersionPower = dctypes.DispersionPower( freq, v_peak, v_vals, 'velocity', shotGather.kres, pnorm )
return dispersionPower
#*******************************************************************************
# Auxillary functions
# Function to find exponent that will result in 2^exponent >= value
def nextpow2( val ):
exponent = 0
while 2**exponent < val:
exponent += 1
return exponent