Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Setup benchmarks #64

Merged
merged 7 commits into from
Aug 10, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,9 @@ nosetests.xml
coverage.xml
*,cover

# asv environments
.asv

# Translations
*.mo
*.pot
Expand Down
1 change: 1 addition & 0 deletions .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ repos:
- id: end-of-file-fixer
- id: check-docstring-first
- id: check-json
exclude: "asv_bench/asv.conf.json"
- id: check-yaml
- id: double-quote-string-fixer

Expand Down
1 change: 1 addition & 0 deletions CONTRIBUTING.md
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
Xbatcher's contributor guidelines [can be found in the online documentation](https://xbatcher.readthedocs.io/en/latest/contributing.html).
188 changes: 188 additions & 0 deletions asv_bench/asv.conf.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,188 @@
{
// The version of the config file format. Do not change, unless
// you know what you are doing.
"version": 1,

// The name of the project being benchmarked
"project": "xbatcher",

// The project's homepage
"project_url": "https://xbatcher.readthedocs.io/",

// The URL or local path of the source code repository for the
// project being benchmarked
"repo": "..",

// The Python project's subdirectory in your repo. If missing or
// the empty string, the project is assumed to be located at the root
// of the repository.
// "repo_subdir": "",

// Customizable commands for building, installing, and
// uninstalling the project. See asv.conf.json documentation.
//
// "install_command": ["in-dir={env_dir} python -mpip install {wheel_file}"],
// "uninstall_command": ["return-code=any python -mpip uninstall -y {project}"],
// "build_command": [
// "python setup.py build",
// "PIP_NO_BUILD_ISOLATION=false python -mpip wheel --no-deps --no-index -w {build_cache_dir} {build_dir}"
// ],

// List of branches to benchmark. If not provided, defaults to "master"
// (for git) or "default" (for mercurial).
"branches": ["main"], // for git

// The DVCS being used. If not set, it will be automatically
// determined from "repo" by looking at the protocol in the URL
// (if remote), or by looking for special directories, such as
// ".git" (if local).
"dvcs": "git",

// The tool to use to create environments. May be "conda",
// "virtualenv" or other value depending on the plugins in use.
// If missing or the empty string, the tool will be automatically
// determined by looking for tools on the PATH environment
// variable.
"environment_type": "conda",

// timeout in seconds for installing any dependencies in environment
// defaults to 10 min
"install_timeout": 600,

// the base URL to show a commit for the project.
// "show_commit_url": "http://github.com/pangeo-data/xbatcher/commit/",

// The Pythons you'd like to test against. If not provided, defaults
// to the current version of Python used to run `asv`.
// "pythons": ["3.8"],

// The list of conda channel names to be searched for benchmark
// dependency packages in the specified order
"conda_channels": ["conda-forge"],

// A conda environment file that is used for environment creation.
// "conda_environment_file": "environment.yml",

// The matrix of dependencies to test. Each key of the "req"
// requirements dictionary is the name of a package (in PyPI) and
// the values are version numbers. An empty list or empty string
// indicates to just test against the default (latest)
// version. null indicates that the package is to not be
// installed. If the package to be tested is only available from
// PyPi, and the 'environment_type' is conda, then you can preface
// the package name by 'pip+', and the package will be installed
// via pip (with all the conda available packages installed first,
// followed by the pip installed packages).
//
// The ``@env`` and ``@env_nobuild`` keys contain the matrix of
// environment variables to pass to build and benchmark commands.
// An environment will be created for every combination of the
// cartesian product of the "@env" variables in this matrix.
// Variables in "@env_nobuild" will be passed to every environment
// during the benchmark phase, but will not trigger creation of
// new environments. A value of ``null`` means that the variable
// will not be set for the current combination.
//
// "matrix": {
// "req": {
// "numpy": ["1.6", "1.7"],
// "six": ["", null], // test with and without six installed
// "pip+emcee": [""] // emcee is only available for install with pip.
// },
// "env": {"ENV_VAR_1": ["val1", "val2"]},
// "env_nobuild": {"ENV_VAR_2": ["val3", null]},
// },
// "matrix": {
// "xarray": [""],
// "numpy": [""],
// "dask": [""],
// },

// Combinations of libraries/python versions can be excluded/included
// from the set to test. Each entry is a dictionary containing additional
// key-value pairs to include/exclude.
//
// An exclude entry excludes entries where all values match. The
// values are regexps that should match the whole string.
//
// An include entry adds an environment. Only the packages listed
// are installed. The 'python' key is required. The exclude rules
// do not apply to includes.
//
// In addition to package names, the following keys are available:
//
// - python
// Python version, as in the *pythons* variable above.
// - environment_type
// Environment type, as above.
// - sys_platform
// Platform, as in sys.platform. Possible values for the common
// cases: 'linux2', 'win32', 'cygwin', 'darwin'.
// - req
// Required packages
// - env
// Environment variables
// - env_nobuild
// Non-build environment variables
//
// "exclude": [
// {"python": "3.2", "sys_platform": "win32"}, // skip py3.2 on windows
// {"environment_type": "conda", "req": {"six": null}}, // don't run without six on conda
// {"env": {"ENV_VAR_1": "val2"}}, // skip val2 for ENV_VAR_1
// ],
//
// "include": [
// // additional env for python2.7
// {"python": "2.7", "req": {"numpy": "1.8"}, "env_nobuild": {"FOO": "123"}},
// // additional env if run on windows+conda
// {"platform": "win32", "environment_type": "conda", "python": "2.7", "req": {"libpython": ""}},
// ],

// The directory (relative to the current directory) that benchmarks are
// stored in. If not provided, defaults to "benchmarks"
"benchmark_dir": "benchmarks",

// The directory (relative to the current directory) to cache the Python
// environments in. If not provided, defaults to "env"
"env_dir": ".asv/env",

// The directory (relative to the current directory) that raw benchmark
// results are stored in. If not provided, defaults to "results".
"results_dir": ".asv/results",

// The directory (relative to the current directory) that the html tree
// should be written to. If not provided, defaults to "html".
"html_dir": ".asv/html"

// The number of characters to retain in the commit hashes.
// "hash_length": 8,

// `asv` will cache results of the recent builds in each
// environment, making them faster to install next time. This is
// the number of builds to keep, per environment.
// "build_cache_size": 2,

// The commits after which the regression search in `asv publish`
// should start looking for regressions. Dictionary whose keys are
// regexps matching to benchmark names, and values corresponding to
// the commit (exclusive) after which to start looking for
// regressions. The default is to start from the first commit
// with results. If the commit is `null`, regression detection is
// skipped for the matching benchmark.
//
// "regressions_first_commits": {
// "some_benchmark": "352cdf", // Consider regressions only after this commit
// "another_benchmark": null, // Skip regression detection altogether
// },

// The thresholds for relative change in results, after which `asv
// publish` starts reporting regressions. Dictionary of the same
// form as in ``regressions_first_commits``, with values
// indicating the thresholds. If multiple entries match, the
// maximum is taken. If no entry matches, the default is 5%.
//
// "regressions_thresholds": {
// "some_benchmark": 0.01, // Threshold of 1%
// "another_benchmark": 0.5, // Threshold of 50%
// },
}
12 changes: 12 additions & 0 deletions asv_bench/benchmarks/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
def parameterized(names, params):
"""
Copied from xarray benchmarks:
https://github.com/pydata/xarray/blob/main/asv_bench/benchmarks/__init__.py#L9-L15
"""

def decorator(func):
func.param_names = names
func.params = params
return func

return decorator
147 changes: 147 additions & 0 deletions asv_bench/benchmarks/benchmarks.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,147 @@
import numpy as np
import torch
import xarray as xr

from xbatcher import BatchGenerator
from xbatcher.loaders.torch import IterableDataset, MapDataset

from . import parameterized


class Base:
def setup(self, *args, **kwargs):
shape = (10, 50, 100)
self.ds_3d = xr.Dataset(
{
'foo': (['time', 'y', 'x'], np.random.rand(*shape)),
},
{
'x': (['x'], np.arange(shape[-1])),
'y': (['y'], np.arange(shape[-2])),
},
)

shape_4d = (10, 50, 100, 3)
self.ds_4d = xr.Dataset(
{
'foo': (['time', 'y', 'x', 'b'], np.random.rand(*shape_4d)),
},
{
'x': (['x'], np.arange(shape_4d[-2])),
'y': (['y'], np.arange(shape_4d[-3])),
'b': (['b'], np.arange(shape_4d[-1])),
},
)

self.ds_xy = xr.Dataset(
{
'x': (
['sample', 'feature'],
np.random.random((shape[-1], shape[0])),
),
'y': (['sample'], np.random.random(shape[-1])),
},
)


class Generator(Base):
@parameterized(['preload_batch'], ([True, False]))
def time_batch_preload(self, preload_batch):
"""
Construct a generator on a chunked DataSet with and without preloading
batches.
"""
ds_dask = self.ds_xy.chunk({'sample': 2})
BatchGenerator(
ds_dask, input_dims={'sample': 2}, preload_batch=preload_batch
)

@parameterized(
['input_dims', 'batch_dims', 'input_overlap'],
(
[{'x': 5}, {'x': 10}, {'x': 5, 'y': 5}, {'x': 10, 'y': 5}],
[{}, {'x': 20}, {'x': 30}],
[{}, {'x': 1}, {'x': 2}],
),
)
def time_batch_input(self, input_dims, batch_dims, input_overlap):
"""
Benchmark simple batch generation case.
"""
BatchGenerator(
self.ds_3d,
input_dims=input_dims,
batch_dims=batch_dims,
input_overlap=input_overlap,
)

@parameterized(
['input_dims', 'concat_input_dims'],
([{'x': 5}, {'x': 10}, {'x': 5, 'y': 5}], [True, False]),
)
def time_batch_concat(self, input_dims, concat_input_dims):
"""
Construct a generator on a DataSet with and without concatenating
chunks specified by ``input_dims`` into the batch dimension.
"""
BatchGenerator(
self.ds_3d,
input_dims=input_dims,
concat_input_dims=concat_input_dims,
)

@parameterized(
['input_dims', 'batch_dims', 'concat_input_dims'],
(
[{'x': 5}, {'x': 5, 'y': 5}],
[{}, {'x': 10}, {'x': 10, 'y': 10}],
[True, False],
),
)
def time_batch_concat_4d(self, input_dims, batch_dims, concat_input_dims):
"""
Construct a generator on a DataSet with and without concatenating
chunks specified by ``input_dims`` into the batch dimension.
"""
BatchGenerator(
self.ds_4d,
input_dims=input_dims,
batch_dims=batch_dims,
concat_input_dims=concat_input_dims,
)


class Accessor(Base):
@parameterized(
['input_dims'],
([{'x': 2}, {'x': 4}, {'x': 2, 'y': 2}, {'x': 4, 'y': 2}]),
)
def time_accessor_input_dim(self, input_dims):
"""
Benchmark simple batch generation case using xarray accessor
Equivalent to subset of ``time_batch_input()``.
"""
self.ds_3d.batch.generator(input_dims=input_dims)


class TorchLoader(Base):
def setup(self, *args, **kwargs):
super().setup(**kwargs)
self.x_gen = BatchGenerator(self.ds_xy['x'], {'sample': 10})
self.y_gen = BatchGenerator(self.ds_xy['y'], {'sample': 10})

def time_map_dataset(self):
"""
Benchmark MapDataset integration with torch DataLoader.
"""
dataset = MapDataset(self.x_gen, self.y_gen)
loader = torch.utils.data.DataLoader(dataset)
iter(loader).next()

def time_iterable_dataset(self):
"""
Benchmark IterableDataset integration with torch DataLoader.
"""
dataset = IterableDataset(self.x_gen, self.y_gen)
loader = torch.utils.data.DataLoader(dataset)
iter(loader).next()
1 change: 1 addition & 0 deletions dev-requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -3,4 +3,5 @@ torch
coverage
pytest-cov
adlfs
asv
-r requirements.txt
Loading