-
Notifications
You must be signed in to change notification settings - Fork 3
/
transfer_learning_end2end_freezeNo.py
205 lines (171 loc) · 9.5 KB
/
transfer_learning_end2end_freezeNo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# --------------------------------------------------------
# Deformable Convolutional Networks
# Copyright (c) 2016 by Contributors
# Copyright (c) 2017 Microsoft
# Licensed under The Apache-2.0 License [see LICENSE for details]
# Modified by Shuo Wang
# --------------------------------------------------------
import _init_paths
import cv2
import time
import argparse
import logging
import pprint
import os
import sys
from config.config import config, update_config
def parse_args():
parser = argparse.ArgumentParser(description='Train R-FCN network')
# general
parser.add_argument('--cfg', help='experiment configure file name', required=True, type=str)
args, rest = parser.parse_known_args()
# update config
update_config(args.cfg)
# training
parser.add_argument('--frequent', help='frequency of logging', default=config.default.frequent, type=int)
args = parser.parse_args()
return args
args = parse_args()
curr_path = os.path.abspath(os.path.dirname(__file__))
sys.path.insert(0, os.path.join(curr_path, '../external/mxnet', config.MXNET_VERSION))
import shutil
import numpy as np
import mxnet as mx
from symbols import *
from core import callback, metric
from core.loader import AnchorLoader
from core.module import MutableModule,MutableModule_Shuo
from utils.create_logger import create_logger
from utils.load_data import load_gt_roidb, merge_roidb, filter_roidb
from utils.load_model import load_param
from utils.PrefetchingIter import PrefetchingIter
from utils.lr_scheduler import WarmupMultiFactorScheduler
def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch, lr, lr_step):
logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set)
prefix = os.path.join(final_output_path, prefix)
# load symbol
shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'), final_output_path)
sym_instance = eval(config.symbol + '.' + config.symbol)()
sym = sym_instance.get_symbol(config, is_train=True)
feat_sym = sym.get_internals()['rpn_cls_score_output']
# setup multi-gpu
batch_size = len(ctx)
input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size
# print config
pprint.pprint(config)
logger.info('training config:{}\n'.format(pprint.pformat(config)))
# load dataset and prepare imdb for training
image_sets = [iset for iset in config.dataset.image_set.split('+')]
roidbs = [load_gt_roidb(config.dataset.dataset, image_set, config.dataset.root_path, config.dataset.dataset_path,
flip=config.TRAIN.FLIP)
for image_set in image_sets]
roidb = merge_roidb(roidbs)
roidb = filter_roidb(roidb, config)
# load training data
train_data = AnchorLoader(feat_sym, roidb, config, batch_size=input_batch_size, shuffle=config.TRAIN.SHUFFLE, ctx=ctx,
feat_stride=config.network.RPN_FEAT_STRIDE, anchor_scales=config.network.ANCHOR_SCALES,
anchor_ratios=config.network.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING)
# infer max shape
max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))]
max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape)
max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_IMAGES, 100, 5)))
print('providing maximum shape', max_data_shape, max_label_shape)
data_shape_dict = dict(train_data.provide_data_single + train_data.provide_label_single)
pprint.pprint(data_shape_dict)
sym_instance.infer_shape(data_shape_dict)
# load and initialize params
#if config.TRAIN.RESUME:
# print('continue training from ', begin_epoch)
# arg_params, aux_params = load_param(prefix, begin_epoch, convert=True)
#else:
# arg_params, aux_params = load_param(pretrained, epoch, convert=True)
# sym_instance.init_weight(config, arg_params, aux_params)
print('transfer learning...')
# Choose the initialization weights (COCO or UADETRAC or pretrained)
#arg_params, aux_params = load_param('/raid10/home_ext/Deformable-ConvNets/output/rfcn_dcn_Shuo_UADTRAC/resnet_v1_101_voc0712_rfcn_dcn_Shuo_UADETRAC/trainlist_full/rfcn_UADTRAC', 5, convert=True)
#arg_params, aux_params = load_param('/raid10/home_ext/Deformable-ConvNets/model/rfcn_dcn_coco', 0, convert=True)
arg_params, aux_params = load_param('/raid10/home_ext/Deformable-ConvNets/output/rfcn_dcn_Shuo_AICity/resnet_v1_101_voc0712_rfcn_dcn_Shuo_AICityVOC1080_FreezeCOCO_rpnOnly_all/1080_all/rfcn_AICityVOC1080_FreezeCOCO_rpnOnly_all', 4, convert=True)
sym_instance.init_weight_Shuo(config, arg_params, aux_params)
# check parameter shapes
sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict)
# create solver
fixed_param_prefix = config.network.FIXED_PARAMS
data_names = [k[0] for k in train_data.provide_data_single]
label_names = [k[0] for k in train_data.provide_label_single]
mod = MutableModule(sym, data_names=data_names, label_names=label_names,
logger=logger, context=ctx, max_data_shapes=[max_data_shape for _ in range(batch_size)],
max_label_shapes=[max_label_shape for _ in range(batch_size)], fixed_param_prefix=fixed_param_prefix)
# #freeze parameters using fixed_param_names:list of str
# para_file = open('/raid10/home_ext/Deformable-ConvNets/rfcn/symbols/arg_params.txt')
# para_list = [line.split('<')[0] for line in para_file.readlines()]
# para_list.remove('rfcn_cls_weight')
# para_list.remove('rfcn_cls_bias')
# para_list.remove('rfcn_cls_offset_t_weight')
# para_list.remove('rfcn_cls_offset_t_bias')
#
# para_list.remove('res5a_branch2b_offset_weight')
# para_list.remove('res5a_branch2b_offset_bias')
# para_list.remove('res5b_branch2b_offset_weight')
# para_list.remove('res5b_branch2b_offset_bias')
# para_list.remove('res5c_branch2b_offset_weight')
# para_list.remove('res5c_branch2b_offset_bias')
# para_list.remove('conv_new_1_weight')
# para_list.remove('conv_new_1_bias')
# para_list.remove('rfcn_bbox_weight')
# para_list.remove('rfcn_bbox_bias')
# para_list.remove('rfcn_bbox_offset_t_weight')
# para_list.remove('rfcn_bbox_offset_t_bias')
#
# mod = MutableModule_Shuo(sym, data_names=data_names, label_names=label_names,
# logger=logger, context=ctx, max_data_shapes=[max_data_shape for _ in range(batch_size)],
# max_label_shapes=[max_label_shape for _ in range(batch_size)], fixed_param_prefix=fixed_param_prefix,
# fixed_param_names=para_list)
if config.TRAIN.RESUME:
mod._preload_opt_states = '%s-%04d.states'%(prefix, begin_epoch)
# decide training params
# metric
rpn_eval_metric = metric.RPNAccMetric()
rpn_cls_metric = metric.RPNLogLossMetric()
rpn_bbox_metric = metric.RPNL1LossMetric()
eval_metric = metric.RCNNAccMetric(config)
cls_metric = metric.RCNNLogLossMetric(config)
bbox_metric = metric.RCNNL1LossMetric(config)
eval_metrics = mx.metric.CompositeEvalMetric()
# rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric
for child_metric in [rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric]:
eval_metrics.add(child_metric)
# callback
batch_end_callback = callback.Speedometer(train_data.batch_size, frequent=args.frequent)
means = np.tile(np.array(config.TRAIN.BBOX_MEANS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES)
stds = np.tile(np.array(config.TRAIN.BBOX_STDS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES)
epoch_end_callback = [mx.callback.module_checkpoint(mod, prefix, period=1, save_optimizer_states=True), callback.do_checkpoint(prefix, means, stds)]
# decide learning rate
base_lr = lr
lr_factor = config.TRAIN.lr_factor
lr_epoch = [float(epoch) for epoch in lr_step.split(',')]
lr_epoch_diff = [epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch]
lr = base_lr * (lr_factor ** (len(lr_epoch) - len(lr_epoch_diff)))
lr_iters = [int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff]
print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters)
lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor, config.TRAIN.warmup, config.TRAIN.warmup_lr, config.TRAIN.warmup_step)
# optimizer
optimizer_params = {'momentum': config.TRAIN.momentum,
'wd': config.TRAIN.wd,
'learning_rate': lr,
'lr_scheduler': lr_scheduler,
'rescale_grad': 1.0,
'clip_gradient': None}
if not isinstance(train_data, PrefetchingIter):
train_data = PrefetchingIter(train_data)
# train
mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback,
batch_end_callback=batch_end_callback, kvstore=config.default.kvstore,
optimizer='sgd', optimizer_params=optimizer_params,
arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch)
def main():
print('Called with argument:', args)
ctx = [mx.gpu(int(i)) for i in config.gpus.split(',')]
train_net(args, ctx, config.network.pretrained, config.network.pretrained_epoch, config.TRAIN.model_prefix,
config.TRAIN.begin_epoch, config.TRAIN.end_epoch, config.TRAIN.lr, config.TRAIN.lr_step)
if __name__ == '__main__':
main()