forked from tiny-dnn/tiny-dnn
-
Notifications
You must be signed in to change notification settings - Fork 0
Data Format
nyanp edited this page May 31, 2015
·
14 revisions
Tiny-cnn has following interfaces to train networks.
template<typename LossFunction, typename Optimizer>
class network {
...
/**
* training conv-net
*
* @param in array of input data
* @param t array of training signals(label or vector)
* @param epoch number of training epochs
* @param on_batch_enumerate callback for each mini-batch enumerate
* @param on_epoch_enumerate callback for each epoch
*/
template <typename OnBatchEnumerate, typename OnEpochEnumerate, typename T>
void train(const std::vector<vec_t>& in,
const std::vector<T>& t,
size_t batch_size,
int epoch,
OnBatchEnumerate on_batch_enumerate,
OnEpochEnumerate on_epoch_enumerate);
/**
* training conv-net without callback
**/
template<typename T>
void train(const std::vector<vec_t>& in,
const std::vector<T>& t,
size_t batch_size = 1,
int epoch = 1);
...
};
"in" is array of input data, and "t" is array of training signal. Actual type of T depends on your task.
task | T |
---|---|
classification | label_t (typedef of size_t) |
regression | vec_t (typedef of std::vector<double>) |
using namespace tiny_cnn;
void classification() {
auto mlp = make_mlp<mse, adagrad, tan_h>({2, 10, 2});
std::vector<vec_t> data = { {0.1, 0.9}, {0.9, 0.1} };
std::vector<label_t> labels = { 1, 0 };
mlp.train(data, labels); // T == label_t
}
void regression() {
auto mlp = make_mlp<mse, adagrad, tan_h>({ 2, 10, 2 });
std::vector<vec_t> data = { { 0.1, 0.9 }, { 0.9, 0.1 } };
std::vector<vec_t> target = { { 0.3, 0.2 }, { 1.0, 0.0 } };
mlp.train(data, target); // T == vec_t
}
If you want to train network by your original data, You have to convert your data to vec_t, i.e. std::vector<double>. If your input is image data, pixels should be organized by row-wise.
Here are some examples.
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc.hpp>
#include <boost/foreach.hpp>
#include <boost/filesystem.hpp>
using namespace boost::filesystem;
// convert image to vec_t
void convert_image(const std::string& imagefilename,
double scale,
int w,
int h,
std::vector<vec_t>& data)
{
auto img = cv::imread(imagefilename, cv::IMREAD_GRAYSCALE);
if (img.data == nullptr) return; // cannot open, or it's not an image
cv::Mat_<uint8_t> resized;
cv::resize(img, resized, cv::Size(w, h));
vec_t d;
std::transform(resized.begin(), resized.end(), std::back_inserter(d),
[=](uint8_t c) { return c * scale; });
data.push_back(d);
}
// convert all images found in directory to vec_t
void convert_images(const std::string& directory,
double scale,
int w,
int h,
std::vector<vec_t>& data)
{
path dpath(directory);
BOOST_FOREACH(const path& p,
std::make_pair(directory_iterator(dpath), directory_iterator())) {
if (is_directory(p)) continue;
convert_image(p.string(), scale, w, h, data);
}
}
Another example can be found in issue#16, which can treat color channels.
2. using mnisten (image file => idx format)
mnisten is a library to convert image files to idx format.
mnisten -d my_image_files_directory_name -o my_prefix -s 32x32
After generating idx files, you can use parse_mnist_images / parse_mnist_labels utilities in mnist_parser.h
Caffe supports levelDB data format. Following code can convert levelDB created by Caffe into data/label arrays.
#include "leveldb/db.h"
void convert_leveldb(const std::string& dbname,
double scale,
std::vector<vec_t>& data,
std::vector<label_t>& label)
{
leveldb::DB *db;
leveldb::Options options;
options.create_if_missing = false;
auto status = leveldb::DB::Open(options, dbname, &db);
leveldb::Iterator* it = db->NewIterator(leveldb::ReadOptions());
for (it->SeekToFirst(); it->Valid(); it->Next()) {
const char* src = it->value().data();
size_t sz = it->value().size();
vec_t d;
std::transform(src, src + sz - 1, std::back_inserter(d),
[=](char c){ return c * scale; });
data.push_back(d);
label.push_back(src[sz - 1]);
}
delete it;
delete db;
}