From e6bf9ef95f9aa091d35800de8c4c6224538e0610 Mon Sep 17 00:00:00 2001 From: Florian Zimmermeister Date: Thu, 21 Nov 2024 10:29:57 +0100 Subject: [PATCH 1/7] Create sage_attention.py Signed-off-by: Florian Zimmermeister --- vllm/attention/backends/sage_attention.py | 668 ++++++++++++++++++++++ 1 file changed, 668 insertions(+) create mode 100644 vllm/attention/backends/sage_attention.py diff --git a/vllm/attention/backends/sage_attention.py b/vllm/attention/backends/sage_attention.py new file mode 100644 index 0000000000000..dab55a3f3c8ae --- /dev/null +++ b/vllm/attention/backends/sage_attention.py @@ -0,0 +1,668 @@ +""" Attention layer with sageattn + and PagedAttention.""" +from dataclasses import dataclass +from typing import Any, Dict, List, Optional, Tuple, Type + +import torch +from sageattention import sageattn + +from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl, + AttentionMetadata, + AttentionMetadataBuilder, + AttentionType) +from vllm.attention.backends.utils import CommonAttentionState +from vllm.attention.ops.ipex_attn import PagedAttention +from vllm.attention.ops.paged_attn import PagedAttentionMetadata +from vllm.utils import make_tensor_with_pad +from vllm.worker.cpu_model_runner import ModelInputForCPUBuilder + + +class SageAttentionBackend(AttentionBackend): + + @staticmethod + def get_name() -> str: + return "TORCH_SDPA" + + @staticmethod + def get_impl_cls() -> Type["SageAttentionBackendImpl"]: + return SageAttentionBackendImpl + + @staticmethod + def get_metadata_cls() -> Type["AttentionMetadata"]: + return SageAttentionMetadata + + @staticmethod + def get_state_cls() -> Type["CommonAttentionState"]: + return CommonAttentionState + + @staticmethod + def get_builder_cls() -> Type["SageAttentionMetadataBuilder"]: + return SageAttentionMetadataBuilder + + @staticmethod + def get_kv_cache_shape( + num_blocks: int, + block_size: int, + num_kv_heads: int, + head_size: int, + ) -> Tuple[int, ...]: + return PagedAttention.get_kv_cache_shape(num_blocks, block_size, + num_kv_heads, head_size) + + @staticmethod + def swap_blocks( + src_kv_cache: torch.Tensor, + dst_kv_cache: torch.Tensor, + src_to_dst: torch.Tensor, + ) -> None: + PagedAttention.swap_blocks(src_kv_cache, dst_kv_cache, src_to_dst) + + @staticmethod + def copy_blocks( + kv_caches: List[torch.Tensor], + src_to_dists: torch.Tensor, + ) -> None: + PagedAttention.copy_blocks(kv_caches, src_to_dists) + + +@dataclass +class SageAttentionMetadata(AttentionMetadata, PagedAttentionMetadata): + """Metadata for SageAttentionBackend. + """ + # Currently, input sequences can only contain all prompts + # or all decoding. True if all sequences are prompts. + chunked_prefill: bool + seq_lens: Optional[List[int]] = None # For non-chunked prefill + + # For chunked prefill only + max_query_len: Optional[int] = None + max_kv_len: Optional[int] = None + query_start_loc: Optional[torch.Tensor] = None + kv_start_loc: Optional[torch.Tensor] = None + prefill_block_tables: Optional[torch.Tensor] = None + + # Begin encoder attn & enc/dec cross-attn fields... + # Encoder sequence lengths representation + encoder_seq_lens: Optional[List[int]] = None + encoder_seq_lens_tensor: Optional[torch.Tensor] = None + + # Maximum sequence length among encoder sequences + max_encoder_seq_len: Optional[int] = None + + # Number of tokens input to encoder + num_encoder_tokens: Optional[int] = None + + # Cross-attention memory-mapping data structures: slot mapping + # and block tables + cross_slot_mapping: Optional[torch.Tensor] = None + cross_block_tables: Optional[torch.Tensor] = None + + def __post_init__(self): + # Set during the execution of the first attention op. + # It is a list because it is needed to set per prompt + # when alibi slopes is used. It is because of the limitation + # from xformer API. + # will not appear in the __repr__ and __init__ + self.attn_bias: Optional[List[torch.Tensor]] = None + self.encoder_attn_bias: Optional[List[torch.Tensor]] = None + self.cross_attn_bias: Optional[List[torch.Tensor]] = None + + @property + def is_all_encoder_attn_metadata_set(self): + ''' + All attention metadata required for encoder attention is set. + ''' + return ((self.encoder_seq_lens is not None) + and (self.encoder_seq_lens_tensor is not None) + and (self.max_encoder_seq_len is not None)) + + @property + def is_all_cross_attn_metadata_set(self): + ''' + All attention metadata required for enc/dec cross-attention is set. + + Superset of encoder attention required metadata. + ''' + return (self.is_all_encoder_attn_metadata_set + and (self.cross_slot_mapping is not None) + and (self.cross_block_tables is not None)) + + @property + def prefill_metadata(self) -> Optional["SageAttentionMetadata"]: + if self.num_prefill_tokens == 0: + return None + return self + + @property + def decode_metadata(self) -> Optional["SageAttentionMetadata"]: + if self.num_decode_tokens == 0: + return None + return self + + def get_seq_lens( + self, + attn_type: AttentionType, + ): + ''' + Extract appropriate sequence lengths from attention metadata + according to attention type. + + Arguments: + + * attn_metadata: Attention metadata structure associated with attention + * attn_type: encoder attention, decoder self-attention, + encoder/decoder cross-attention + + Returns: + * Appropriate sequence lengths tensor for query + * Appropriate sequence lengths tensor for key & value + ''' + + if (attn_type == AttentionType.DECODER + or attn_type == AttentionType.ENCODER_ONLY): + seq_lens_q = self.seq_lens + seq_lens_kv = self.seq_lens + elif attn_type == AttentionType.ENCODER: + seq_lens_q = self.encoder_seq_lens + seq_lens_kv = self.encoder_seq_lens + elif attn_type == AttentionType.ENCODER_DECODER: + seq_lens_q = self.seq_lens + seq_lens_kv = self.encoder_seq_lens + else: + raise AttributeError(f"Invalid attention type {str(attn_type)}") + return seq_lens_q, seq_lens_kv + + def get_attn_bias( + self, + attn_type: AttentionType, + ) -> Optional[List[torch.Tensor]]: + ''' + Extract appropriate attention bias from attention metadata + according to attention type. + + Arguments: + + * attn_metadata: Attention metadata structure associated with attention + * attn_type: encoder attention, decoder self-attention, + encoder/decoder cross-attention + + Returns: + * Appropriate attention bias value given the attention type + ''' + + if (attn_type == AttentionType.DECODER + or attn_type == AttentionType.ENCODER_ONLY): + return self.attn_bias + elif attn_type == AttentionType.ENCODER: + return self.encoder_attn_bias + elif attn_type == AttentionType.ENCODER_DECODER: + return self.cross_attn_bias + else: + raise AttributeError(f"Invalid attention type {str(attn_type)}") + + def set_attn_bias( + self, + attn_bias: List[torch.Tensor], + attn_type: AttentionType, + ) -> None: + ''' + Update appropriate attention bias field of attention metadata, + according to attention type. + + Arguments: + + * attn_metadata: Attention metadata structure associated with attention + * attn_bias: The desired attention bias value + * attn_type: encoder attention, decoder self-attention, + encoder/decoder cross-attention + ''' + + if (attn_type == AttentionType.DECODER + or attn_type == AttentionType.ENCODER_ONLY): + self.attn_bias = attn_bias + elif attn_type == AttentionType.ENCODER: + self.encoder_attn_bias = attn_bias + elif attn_type == AttentionType.ENCODER_DECODER: + self.cross_attn_bias = attn_bias + else: + raise AttributeError(f"Invalid attention type {str(attn_type)}") + + def get_seq_len_block_table_args( + self, + attn_type: AttentionType, + ) -> tuple: + ''' + The particular choice of sequence-length- and block-table-related + attributes which should be extracted from attn_metadata is dependent + on the type of attention operation. + + Decoder attn -> select entirely decoder self-attention-related fields + Encoder/decoder cross-attn -> select encoder sequence lengths & + cross-attn block-tables fields + Encoder attn -> select encoder sequence lengths fields & no block tables + + Arguments: + + * attn_metadata: Attention metadata structure associated with attention + * is_prompt: True if prefill, False otherwise + * attn_type: encoder attention, decoder self-attention, + encoder/decoder cross-attention + + Returns: + + * Appropriate sequence-lengths tensor + * Appropriate max sequence-length scalar + * Appropriate block tables (or None) + ''' + + if (attn_type == AttentionType.DECODER + or attn_type == AttentionType.ENCODER_ONLY): + # Decoder self-attention + # Choose max_seq_len based on whether we are in prompt_run + return (self.seq_lens_tensor, self.max_decode_seq_len, + self.block_tables) + elif attn_type == AttentionType.ENCODER_DECODER: + # Enc/dec cross-attention KVs match encoder sequence length; + # cross-attention utilizes special "cross" block tables + return (self.encoder_seq_lens_tensor, self.max_encoder_seq_len, + self.cross_block_tables) + elif attn_type == AttentionType.ENCODER: + # No block tables associated with encoder attention + return (self.encoder_seq_lens_tensor, self.max_encoder_seq_len, + None) + else: + raise AttributeError(f"Invalid attention type {str(attn_type)}") + + +class SageAttentionMetadataBuilder(AttentionMetadataBuilder[SageAttentionMetadata]): + + def __init__(self, input_builder: ModelInputForCPUBuilder) -> None: + self.chunked_prefill = input_builder.chunked_prefill + self.input_data = input_builder.input_data + + def build(self, seq_lens: List[int], query_lens: List[int], + cuda_graph_pad_size: int, batch_size: int) -> SageAttentionMetadata: + input_data = self.input_data + prefill_seq_lens = seq_lens[0:input_data.num_prefills] + prefill_query_lens = query_lens[0:input_data.num_prefills] + slot_mapping = torch.tensor(input_data.slot_mapping, + dtype=torch.long, + device="cpu") + + # For chunked-prefill + if self.chunked_prefill and input_data.num_prefill_tokens != 0: + prefill_block_tables = make_tensor_with_pad( + self.input_data.prefill_block_tables, + pad=0, + dtype=torch.int32, + device="cpu", + ) + query_lens_tensor = torch.tensor(prefill_query_lens, + dtype=torch.int32, + device="cpu") + kv_lens_tensor = torch.tensor(prefill_seq_lens, + dtype=torch.int32, + device="cpu") + query_start_loc = torch.zeros(input_data.num_prefills + 1, + dtype=torch.int32, + device="cpu") + kv_start_loc = torch.zeros(input_data.num_prefills + 1, + dtype=torch.int32, + device="cpu") + torch.cumsum(query_lens_tensor, + dim=0, + dtype=torch.int32, + out=query_start_loc[1:]) + torch.cumsum(kv_lens_tensor, + dim=0, + dtype=torch.int32, + out=kv_start_loc[1:]) + max_query_len = max(prefill_query_lens) + max_kv_len = max(prefill_seq_lens) + else: + prefill_block_tables = None + query_start_loc = None + kv_start_loc = None + max_query_len = None + max_kv_len = None + + # For paged attention + if input_data.num_decode_tokens != 0: + seq_lens_tensor = torch.tensor( + input_data.seq_lens[input_data.num_prefills:], + dtype=torch.int32, + device="cpu", + ) + block_tables = make_tensor_with_pad( + self.input_data.decode_block_tables, + pad=0, + dtype=torch.int32, + device="cpu", + ) + else: + block_tables = torch.tensor([]) + seq_lens_tensor = torch.tensor([]) + + # For multi-modal models + placeholder_index_maps = None + if len(input_data.multi_modal_inputs_list) != 0: + placeholder_index_maps = { + modality: placeholder_map.index_map() + for modality, placeholder_map in + input_data.multi_modal_placeholder_maps.items() + } + + attn_metadata = SageAttentionMetadata( + chunked_prefill=self.chunked_prefill, + seq_lens=prefill_seq_lens, + seq_lens_tensor=seq_lens_tensor, + max_query_len=max_query_len, + max_kv_len=max_kv_len, + query_start_loc=query_start_loc, + kv_start_loc=kv_start_loc, + max_decode_seq_len=input_data.max_decode_seq_len, + num_prefills=input_data.num_prefills, + num_prefill_tokens=input_data.num_prefill_tokens, + num_decode_tokens=input_data.num_decode_tokens, + block_tables=block_tables, + prefill_block_tables=prefill_block_tables, + slot_mapping=slot_mapping, + multi_modal_placeholder_index_maps=placeholder_index_maps, + ) + + return attn_metadata + + +class SageAttentionBackendImpl(AttentionImpl[SageAttentionMetadata]): + + def __init__( + self, + num_heads: int, + head_size: int, + scale: float, + num_kv_heads: int, + alibi_slopes: Optional[List[float]], + sliding_window: Optional[int], + kv_cache_dtype: str, + blocksparse_params: Optional[Dict[str, Any]] = None, + logits_soft_cap: Optional[float] = None, + ) -> None: + if blocksparse_params is not None: + raise ValueError( + "Torch SPDA does not support block-sparse attention.") + if logits_soft_cap is not None: + raise ValueError("Torch SPDA does not support logits soft cap.") + self.num_heads = num_heads + self.head_size = head_size + self.scale = float(scale) + self.num_kv_heads = num_kv_heads + if alibi_slopes is not None: + alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32) + self.alibi_slopes = alibi_slopes + self.sliding_window = sliding_window + self.kv_cache_dtype = kv_cache_dtype + + assert self.num_heads % self.num_kv_heads == 0 + self.num_queries_per_kv = self.num_heads // self.num_kv_heads + self.need_mask = (self.alibi_slopes is not None + or self.sliding_window is not None) + + supported_head_sizes = PagedAttention.get_supported_head_sizes() + if head_size not in supported_head_sizes: + raise ValueError( + f"Head size {head_size} is not supported by PagedAttention. " + f"Supported head sizes are: {supported_head_sizes}.") + if kv_cache_dtype != "auto": + raise NotImplementedError( + "Torch SDPA backend does not support FP8 KV cache. " + "Please use xFormers backend instead.") + + def forward( + self, + query: torch.Tensor, + key: torch.Tensor, + value: torch.Tensor, + kv_cache: torch.Tensor, + attn_metadata: SageAttentionMetadata, # type: ignore + k_scale: float = 1.0, + v_scale: float = 1.0, + attn_type: AttentionType = AttentionType.DECODER, + ) -> torch.Tensor: + """Forward pass with torch SDPA and PagedAttention. + + Args: + query: shape = [num_tokens, num_heads * head_size] + key: shape = [num_tokens, num_kv_heads * head_size] + value: shape = [num_tokens, num_kv_heads * head_size] + kv_cache = [2, num_blocks, block_size * num_kv_heads * head_size] + NOTE: kv_cache will be an empty tensor with shape [0] + for profiling run. + attn_metadata: Metadata for attention. + Returns: + shape = [num_tokens, num_heads * head_size] + """ + assert k_scale == 1.0 and v_scale == 1.0 + if (attn_type == AttentionType.ENCODER + and (not attn_metadata.is_all_encoder_attn_metadata_set)): + raise AttributeError("Encoder attention requires setting " + "encoder metadata attributes.") + elif (attn_type == AttentionType.ENCODER_DECODER + and (not attn_metadata.is_all_cross_attn_metadata_set)): + raise AttributeError("Encoder/decoder cross-attention " + "requires setting cross-attention " + "metadata attributes.") + + # Reshape the query, key, and value tensors. + query = query.view(-1, self.num_heads, self.head_size) + if key is not None: + assert value is not None + key = key.view(-1, self.num_kv_heads, self.head_size) + value = value.view(-1, self.num_kv_heads, self.head_size) + else: + assert value is None + + if (attn_type != AttentionType.ENCODER and kv_cache.numel() > 0): + # KV-cache during decoder-self- or + # encoder-decoder-cross-attention, but not + # during encoder attention. + # + # Even if there are no new key/value pairs to cache, + # we still need to break out key_cache and value_cache + # i.e. for later use by paged attention + key_cache, value_cache = PagedAttention.split_kv_cache( + kv_cache, self.num_kv_heads, self.head_size) + + if (key is not None) and (value is not None): + if attn_type == AttentionType.ENCODER_DECODER: + # Update cross-attention KV cache (prefill-only) + # During cross-attention decode, key & value will be None, + # preventing this IF-statement branch from running + updated_slot_mapping = attn_metadata.cross_slot_mapping + else: + # Update self-attention KV cache (prefill/decode) + updated_slot_mapping = attn_metadata.slot_mapping + + PagedAttention.write_to_paged_cache(key, value, key_cache, + value_cache, + updated_slot_mapping, + self.kv_cache_dtype, + k_scale, v_scale) + + if attn_type != AttentionType.ENCODER: + # Decoder self-attention supports chunked prefill. + # Encoder/decoder cross-attention requires no chunked + # prefill (100% prefill or 100% decode tokens, no mix) + num_prefill_tokens = attn_metadata.num_prefill_tokens + num_decode_tokens = attn_metadata.num_decode_tokens + else: + # Encoder attention - chunked prefill is not applicable; + # derive token-count from query shape & and treat them + # as 100% prefill tokens + assert attn_metadata.num_encoder_tokens is not None + num_prefill_tokens = attn_metadata.num_encoder_tokens + num_decode_tokens = 0 + + if attn_type == AttentionType.DECODER: + # Only enforce this shape-constraint for decoder + # self-attention + assert key.shape[0] == num_prefill_tokens + num_decode_tokens + assert value.shape[0] == num_prefill_tokens + num_decode_tokens + + output = torch.empty_like(query) + if prefill_meta := attn_metadata.prefill_metadata: + assert attn_metadata.seq_lens is not None + if not prefill_meta.prefill_metadata.chunked_prefill: # type: ignore + self._run_sdpa_forward(output, + query, + key, + value, + prefill_meta, + attn_type=attn_type) + else: + # prefix-enabled attention + assert not self.need_mask + import intel_extension_for_pytorch.llm.modules as ipex_modules + output = torch.empty_like(query) + ipex_modules.PagedAttention.flash_attn_varlen_func( + output[:prefill_meta.num_prefill_tokens, :, :], + query[:prefill_meta.num_prefill_tokens, :, :], + key_cache, + value_cache, + prefill_meta.query_start_loc, + prefill_meta.kv_start_loc, + prefill_meta.max_query_len, + prefill_meta.max_kv_len, + self.scale, + True, + prefill_meta.prefill_block_tables, + self.alibi_slopes, + ) + + if decode_meta := attn_metadata.decode_metadata: + assert attn_type != AttentionType.ENCODER_ONLY, ( + "Encoder-only models should not have decode metadata.") + # Decoding run. + ( + seq_lens_arg, + max_seq_len_arg, + block_tables_arg, + ) = decode_meta.get_seq_len_block_table_args(attn_type) + + PagedAttention.forward_decode( + output[attn_metadata.num_prefill_tokens:, :, :], + query[attn_metadata.num_prefill_tokens:, :, :], + key_cache, + value_cache, + block_tables_arg, + seq_lens_arg, + max_seq_len_arg, + self.kv_cache_dtype, + self.num_kv_heads, + self.scale, + self.alibi_slopes, + k_scale, + v_scale, + ) + + # Reshape the output tensor. + return output.view(-1, self.num_heads * self.head_size) + + def _run_sdpa_forward( + self, + output: torch.Tensor, + query: torch.Tensor, + key: torch.Tensor, + value: torch.Tensor, + attn_metadata: SageAttentionMetadata, + attn_type: AttentionType = AttentionType.DECODER, + ) -> None: + if self.num_kv_heads != self.num_heads: + key = key.repeat_interleave(self.num_queries_per_kv, dim=1) + value = value.repeat_interleave(self.num_queries_per_kv, dim=1) + + attn_masks = attn_metadata.get_attn_bias(attn_type) + if attn_masks is None: + if self.alibi_slopes is not None: + attn_masks = _make_alibi_bias( + self.alibi_slopes, query.dtype, + attn_metadata.seq_lens) # type: ignore + elif self.sliding_window is not None: + assert attn_metadata.seq_lens is not None + attn_masks = _make_sliding_window_bias( + attn_metadata.seq_lens, self.sliding_window, + query.dtype) # type: ignore + else: + seq_lens, _ = attn_metadata.get_seq_lens(attn_type) + attn_masks = [None] * len(seq_lens) + attn_metadata.set_attn_bias(attn_masks, attn_type) + + query = query.movedim(0, query.dim() - 2) + key = key.movedim(0, key.dim() - 2) + value = value.movedim(0, value.dim() - 2) + + causal_attn = (attn_type == AttentionType.DECODER) + + seq_lens_q, seq_lens_kv = attn_metadata.get_seq_lens(attn_type) + start_q, start_kv = 0, 0 + for seq_len_q, seq_len_kv, mask in zip(seq_lens_q, seq_lens_kv, + attn_masks): + end_q = start_q + seq_len_q + end_kv = start_kv + seq_len_kv + sub_out = sageattn( + query[None, :, start_q:end_q, :], + key[None, :, start_kv:end_kv, :], + value[None, :, start_kv:end_kv, :], + attn_mask=mask, + dropout_p=0.0, + is_causal=causal_attn and not self.need_mask, + scale=self.scale).squeeze(0).movedim(query.dim() - 2, 0) + output[start_q:end_q, :, :] = sub_out + start_q, start_kv = end_q, end_kv + + +def _make_alibi_bias( + alibi_slopes: torch.Tensor, + dtype: torch.dtype, + seq_lens: List[int], +) -> List[torch.Tensor]: + attn_biases: List[torch.Tensor] = [] + for seq_len in seq_lens: + bias = torch.arange(seq_len, dtype=dtype) + # NOTE(zhuohan): HF uses + # `bias = bias[None, :].repeat(seq_len, 1)` + # here. We find that both biases give the same results, but + # the bias below more accurately follows the original ALiBi + # paper. + bias = bias[None, :] - bias[:, None] + + num_heads = alibi_slopes.shape[0] + bias = bias[None, :].repeat((num_heads, 1, 1)) + bias.mul_(alibi_slopes[:, None, None]).unsqueeze_(0) + inf_mask = torch.empty( + (1, seq_len, seq_len), + dtype=bias.dtype).fill_(-torch.inf).triu_(diagonal=1) + attn_biases.append((bias + inf_mask).to(dtype)) + + return attn_biases + + +def _make_sliding_window_bias( + seq_lens: List[int], + window_size: Optional[int], + dtype: torch.dtype, +) -> List[torch.Tensor]: + attn_biases: List[torch.Tensor] = [] + for seq_len in seq_lens: + tensor = torch.full( + (1, seq_len, seq_len), + dtype=dtype, + fill_value=1, + ) + shift = 0 + mask = torch.tril(tensor, diagonal=shift).to(dtype) # type: ignore + if window_size is not None: + mask = torch.triu(mask, diagonal=shift - window_size + 1) + mask = torch.log(mask) + attn_biases.append(mask.to(dtype)) + + return attn_biases From 629a38c38b2d8a4b15b47c4dc7e6c90ff43240c5 Mon Sep 17 00:00:00 2001 From: Florian Zimmermeister Date: Thu, 21 Nov 2024 11:46:38 +0100 Subject: [PATCH 2/7] Update selector.py Signed-off-by: Florian Zimmermeister --- vllm/attention/selector.py | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/vllm/attention/selector.py b/vllm/attention/selector.py index d263839705690..7ea452ef5a14f 100644 --- a/vllm/attention/selector.py +++ b/vllm/attention/selector.py @@ -141,6 +141,10 @@ def _cached_get_attn_backend( logger.info("Using Torch SDPA backend.") from vllm.attention.backends.torch_sdpa import TorchSDPABackend return TorchSDPABackend + elif backend == _Backend.TORCH_SDPA: + logger.info("Using Torch SDPA backend.") + from vllm.attention.backends.sage_attention import SageAttentionBackend + return SageAttentionBackend elif backend == _Backend.OPENVINO: logger.info("Using OpenVINO Attention backend.") from vllm.attention.backends.openvino import OpenVINOAttentionBackend From 0cd658005bbf1776fb7b988cb2a8062e5747a15b Mon Sep 17 00:00:00 2001 From: Florian Zimmermeister Date: Thu, 21 Nov 2024 11:48:12 +0100 Subject: [PATCH 3/7] Update interface.py Signed-off-by: Florian Zimmermeister --- vllm/platforms/interface.py | 1 + 1 file changed, 1 insertion(+) diff --git a/vllm/platforms/interface.py b/vllm/platforms/interface.py index 07f23167d509a..8ce743df50eda 100644 --- a/vllm/platforms/interface.py +++ b/vllm/platforms/interface.py @@ -17,6 +17,7 @@ class _Backend(enum.Enum): XFORMERS = enum.auto() ROCM_FLASH = enum.auto() TORCH_SDPA = enum.auto() + SAGE_ATTTN = enum.auto() OPENVINO = enum.auto() FLASHINFER = enum.auto() HPU_ATTN = enum.auto() From aa2b46d7dcb78e88f8bf5e692560642e19a1371a Mon Sep 17 00:00:00 2001 From: Florian Zimmermeister Date: Thu, 21 Nov 2024 11:48:54 +0100 Subject: [PATCH 4/7] Update sage_attention.py Signed-off-by: Florian Zimmermeister --- vllm/attention/backends/sage_attention.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/vllm/attention/backends/sage_attention.py b/vllm/attention/backends/sage_attention.py index dab55a3f3c8ae..2d6091ff92436 100644 --- a/vllm/attention/backends/sage_attention.py +++ b/vllm/attention/backends/sage_attention.py @@ -21,7 +21,7 @@ class SageAttentionBackend(AttentionBackend): @staticmethod def get_name() -> str: - return "TORCH_SDPA" + return "SAGE_ATTTN" @staticmethod def get_impl_cls() -> Type["SageAttentionBackendImpl"]: From dfe968303532234a7fd439cfa1df9ed6261688d1 Mon Sep 17 00:00:00 2001 From: Florian Zimmermeister Date: Thu, 21 Nov 2024 11:50:34 +0100 Subject: [PATCH 5/7] ruff Signed-off-by: Florian Zimmermeister --- vllm/attention/backends/sage_attention.py | 7 +++++-- 1 file changed, 5 insertions(+), 2 deletions(-) diff --git a/vllm/attention/backends/sage_attention.py b/vllm/attention/backends/sage_attention.py index 2d6091ff92436..a2d37f71d2b5e 100644 --- a/vllm/attention/backends/sage_attention.py +++ b/vllm/attention/backends/sage_attention.py @@ -274,14 +274,17 @@ def get_seq_len_block_table_args( raise AttributeError(f"Invalid attention type {str(attn_type)}") -class SageAttentionMetadataBuilder(AttentionMetadataBuilder[SageAttentionMetadata]): +class SageAttentionMetadataBuilder( + AttentionMetadataBuilder[SageAttentionMetadata] +): def __init__(self, input_builder: ModelInputForCPUBuilder) -> None: self.chunked_prefill = input_builder.chunked_prefill self.input_data = input_builder.input_data def build(self, seq_lens: List[int], query_lens: List[int], - cuda_graph_pad_size: int, batch_size: int) -> SageAttentionMetadata: + cuda_graph_pad_size: int, + batch_size: int) -> SageAttentionMetadata: input_data = self.input_data prefill_seq_lens = seq_lens[0:input_data.num_prefills] prefill_query_lens = query_lens[0:input_data.num_prefills] From a98bc4ee9e534eab4d10376fd8c38c103db754e5 Mon Sep 17 00:00:00 2001 From: Florian Zimmermeister Date: Thu, 21 Nov 2024 11:57:03 +0100 Subject: [PATCH 6/7] yapf Signed-off-by: Florian Zimmermeister --- vllm/attention/backends/sage_attention.py | 21 ++++++++++----------- 1 file changed, 10 insertions(+), 11 deletions(-) diff --git a/vllm/attention/backends/sage_attention.py b/vllm/attention/backends/sage_attention.py index a2d37f71d2b5e..4ecd5974d3103 100644 --- a/vllm/attention/backends/sage_attention.py +++ b/vllm/attention/backends/sage_attention.py @@ -275,15 +275,14 @@ def get_seq_len_block_table_args( class SageAttentionMetadataBuilder( - AttentionMetadataBuilder[SageAttentionMetadata] -): + AttentionMetadataBuilder[SageAttentionMetadata]): def __init__(self, input_builder: ModelInputForCPUBuilder) -> None: self.chunked_prefill = input_builder.chunked_prefill self.input_data = input_builder.input_data def build(self, seq_lens: List[int], query_lens: List[int], - cuda_graph_pad_size: int, + cuda_graph_pad_size: int, batch_size: int) -> SageAttentionMetadata: input_data = self.input_data prefill_seq_lens = seq_lens[0:input_data.num_prefills] @@ -611,14 +610,14 @@ def _run_sdpa_forward( attn_masks): end_q = start_q + seq_len_q end_kv = start_kv + seq_len_kv - sub_out = sageattn( - query[None, :, start_q:end_q, :], - key[None, :, start_kv:end_kv, :], - value[None, :, start_kv:end_kv, :], - attn_mask=mask, - dropout_p=0.0, - is_causal=causal_attn and not self.need_mask, - scale=self.scale).squeeze(0).movedim(query.dim() - 2, 0) + sub_out = sageattn(query[None, :, start_q:end_q, :], + key[None, :, start_kv:end_kv, :], + value[None, :, start_kv:end_kv, :], + attn_mask=mask, + dropout_p=0.0, + is_causal=causal_attn and not self.need_mask, + scale=self.scale).squeeze(0).movedim( + query.dim() - 2, 0) output[start_q:end_q, :, :] = sub_out start_q, start_kv = end_q, end_kv From 7b7ff76f09d0b1ff0b9e4970daa6439096b73767 Mon Sep 17 00:00:00 2001 From: Florian Zimmermeister Date: Thu, 21 Nov 2024 12:00:12 +0100 Subject: [PATCH 7/7] yapf Signed-off-by: Florian Zimmermeister --- vllm/attention/backends/sage_attention.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/vllm/attention/backends/sage_attention.py b/vllm/attention/backends/sage_attention.py index 4ecd5974d3103..fe32aacd5fb18 100644 --- a/vllm/attention/backends/sage_attention.py +++ b/vllm/attention/backends/sage_attention.py @@ -275,7 +275,7 @@ def get_seq_len_block_table_args( class SageAttentionMetadataBuilder( - AttentionMetadataBuilder[SageAttentionMetadata]): + AttentionMetadataBuilder[SageAttentionMetadata]): def __init__(self, input_builder: ModelInputForCPUBuilder) -> None: self.chunked_prefill = input_builder.chunked_prefill