diff --git a/.nojekyll b/.nojekyll new file mode 100644 index 000000000..e69de29bb diff --git a/CNAME b/CNAME new file mode 100644 index 000000000..ad1c2a237 --- /dev/null +++ b/CNAME @@ -0,0 +1 @@ +docs.vanna.ai \ No newline at end of file diff --git a/chart.png b/chart.png new file mode 100644 index 000000000..1ebe3f61c Binary files /dev/null and b/chart.png differ diff --git a/databases.md b/databases.md new file mode 100644 index 000000000..6924d34c2 --- /dev/null +++ b/databases.md @@ -0,0 +1,142 @@ +# How to use Vanna with various databases + +You can use Vanna with any database that you can connect to via Python. Here are some examples of how to connect to various databases. + +All you have to do is provide Vanna with a function that takes in a SQL query and returns a Pandas DataFrame. Here are some examples of how to do that. + +## **PostgreSQL** + +```python +import pandas as pd +import psycopg2 + +conn_details = {...} # fill this with your connection details +conn_postgres = psycopg2.connect(**conn_details) + +def run_sql_postgres(sql: str) -> pd.DataFrame: + df = pd.read_sql_query(sql, conn_postgres) + return df + +vn.run_sql = run_sql_postgres +``` + +## **Snowflake** + +We have a built-in function for Snowflake, so you don't need to write your own. + +```python +vn.connect_to_snowflake(account='my-account', username='my-username', password='my-password', database='my-database') +``` + +```python +import pandas as pd +from snowflake.connector.pandas_tools import pd_read_sql +from snowflake.connector import connect + +conn_details = {...} # fill this with your connection details +conn_snowflake = connect(**conn_details) + +def run_sql_snowflake(sql: str) -> pd.DataFrame: + df = pd_read_sql(sql, conn_snowflake) + return df + +vn.run_sql = run_sql_snowflake +``` + +## **Google BigQuery** + +```python +from google.cloud import bigquery +import pandas as pd + +project_id = 'your-project-id' # replace with your Project ID +client_bigquery = bigquery.Client(project=project_id) + +def run_sql_bigquery(sql: str) -> pd.DataFrame: + df = client_bigquery.query(sql).to_dataframe() + return df + +vn.run_sql = run_sql_bigquery +``` + +## **Amazon Athena** + +```python +import pandas as pd +from pyathena import connect + +conn_details = {...} # fill this with your connection details +conn_athena = connect(**conn_details) + +def run_sql_athena(sql: str) -> pd.DataFrame: + df = pd.read_sql(sql, conn_athena) + return df + +vn.run_sql = run_sql_athena +``` + +## **Amazon Redshift** + +```python +import pandas as pd +import psycopg2 + +conn_details = {...} # fill this with your connection details +conn_redshift = psycopg2.connect(**conn_details) + +def run_sql_redshift(sql: str) -> pd.DataFrame: + df = pd.read_sql_query(sql, conn_redshift) + return df + +vn.run_sql = run_sql_redshift +``` + +Sure, here is an example for Google Cloud SQL using the MySQL connector: + +## **Google Cloud SQL (MySQL)** + +```python +import pandas as pd +import mysql.connector + +conn_details = {...} # fill this with your connection details +conn_google_cloud_sql = mysql.connector.connect(**conn_details) + +def run_sql_google_cloud_sql(sql: str) -> pd.DataFrame: + df = pd.read_sql(sql, conn_google_cloud_sql) + return df +``` + +Note: Google Cloud SQL supports MySQL, PostgreSQL, and SQL Server. The above example uses MySQL. If you are using PostgreSQL or SQL Server, you should use the appropriate connector. + +## **SQLite** + +```python +import sqlite3 +import pandas as pd + +db_path = 'path_to_your_db' # replace with your SQLite DB path +conn_sqlite = sqlite3.connect(db_path) + +def run_sql_sqlite(sql: str) -> pd.DataFrame: + df = pd.read_sql_query(sql, conn_sqlite) + return df + +vn.run_sql = run_sql_sqlite +``` + +## **Microsoft SQL Server** + +```python +import pandas as pd +import pyodbc + +conn_details = {...} # fill this with your connection details +conn_sql_server = pyodbc.connect(**conn_details) + +def run_sql_sql_server(sql: str) -> pd.DataFrame: + df = pd.read_sql(sql, conn_sql_server) + return df + +vn.run_sql = run_sql_sql_server +``` diff --git a/index.html b/index.html new file mode 100644 index 000000000..61bf32c29 --- /dev/null +++ b/index.html @@ -0,0 +1,7 @@ + + + + + + + diff --git a/index.md b/index.md new file mode 100644 index 000000000..d89bc7706 --- /dev/null +++ b/index.md @@ -0,0 +1,239 @@ +# Vanna.AI - Personalized AI SQL Agent + +**Let Vanna.AI write your nasty SQL for you**. Vanna is a Python based AI SQL agent trained on your schema that writes complex SQL in seconds. `pip install vanna` to get started now. + + + +## An example + +A business user asks you **"who are the top 2 customers in each region?"**. Right in the middle of lunch. And they need it for a presentation this afternoon. 😡😡😡 + +### The old way 😡 😫 💩 +Simple question to ask, not so fun to answer. You spend over an hour a) finding the tables, b) figuring out out the joins, c) look up the syntax for ranking, d) putting this into a CTE, e) filtering by rank, and f) choosing the correct metrics. Finally, you come up with this ugly mess - + +```sql +with ranked_customers as (SELECT c.c_name as customer_name, + r.r_name as region_name, + row_number() OVER (PARTITION BY r.r_name + ORDER BY sum(l.l_quantity * l.l_extendedprice) desc) as rank + FROM snowflake_sample_data.tpch_sf1.customer c join snowflake_sample_data.tpch_sf1.orders o + ON c.c_custkey = o.o_custkey join snowflake_sample_data.tpch_sf1.lineitem l + ON o.o_orderkey = l.l_orderkey join snowflake_sample_data.tpch_sf1.nation n + ON c.c_nationkey = n.n_nationkey join snowflake_sample_data.tpch_sf1.region r + ON n.n_regionkey = r.r_regionkey + GROUP BY customer_name, region_name) +SELECT region_name, + customer_name +FROM ranked_customers +WHERE rank <= 2; +``` + +And you had to skip your lunch. **HANGRY!** + +### The Vanna way 😍 🌟 🚀 +With Vanna, you train up a custom model on your data warehouse, and simply enter this in your Jupyter Notebook - + +```python +import vanna as vn +vn.set_model('your-model') +vn.ask('who are the top 2 customers in each region?') +``` + +Vanna generates that nasty SQL above for you, runs it (locally & securely) and gives you back a Dataframe in seconds: + +| region_name | customer_name | total_sales | +| ----------- | ------------- | ----------- | +| ASIA | Customer#000000001 | 68127.72 | +| ASIA | Customer#000000002 | 65898.69 | +... + +And you ate your lunch in peace. **YUMMY!** + +## How Vanna works +Vanna works in two easy steps - train a model on your data, and then ask questions. + +1. **Train a model on your data**. +2. **Ask questions**. + +When you ask a question, we utilize a custom model for your dataset to generate SQL, as seen below. Your model performance and accuracy depends on the quality and quantity of training data you use to train your model. +how-vanna-works + + + +## Why Vanna? + +1. **High accuracy on complex datasets.** + - Vanna’s capabilities are tied to the training data you give it + - More training data means better accuracy for large and complex datasets +2. **Secure and private.** + - Your database contents are never sent to Vanna’s servers + - We only see the bare minimum - schemas & queries. +3. **Isolated, custom model.** + - You train a custom model specific to your database and your schema. + - Nobody else can use your model or view your model’s training data unless you choose to add members to your model or make it public + - We use a combination of third-party foundational models (OpenAI, Google) and our own LLM. +4. **Self learning.** + - As you use Vanna more, your model continuously improves as we augment your training data +5. **Supports many databases.** + - We have out-of-the-box support Snowflake, BigQuery, Postgres + - You can easily make a connector for any [database](https://docs.vanna.ai/databases/) +6. **Pretrained models.** + - If you’re a data provider you can publish your models for anyone to use + - As part of our roadmap, we are in the process of pre-training models for common datasets (Google Ads, Facebook ads, etc) +7. **Choose your front end.** + - Start in a Jupyter Notebook. + - Expose to business users via Slackbot, web app, Streamlit app, or Excel plugin. + - Even integrate in your web app for customers. + +## Getting started +You can start by [automatically training Vanna (currently works for Snowflake)](https://docs.vanna.ai/notebooks/vn-train/) or add manual training data. + +### Train with DDL Statements +If you prefer to manually train, you do not need to connect to a database. You can use the train function with other parmaeters like ddl + + +```python +vn.train(ddl=""" + CREATE TABLE IF NOT EXISTS my-table ( + id INT PRIMARY KEY, + name VARCHAR(100), + age INT + ) +""") +``` + +### Train with Documentation +Sometimes you may want to add documentation about your business terminology or definitions. + +```python +vn.train(documentation="Our business defines OTIF score as the percentage of orders that are delivered on time and in full") +``` + +### Train with SQL +You can also add SQL queries to your training data. This is useful if you have some queries already laying around. You can just copy and paste those from your editor to begin generating new SQL. + +```python +vn.train(sql="SELECT * FROM my-table WHERE name = 'John Doe'") +``` + + + +## Asking questions +```python +vn.ask("What are the top 10 customers by sales?") +``` + + SELECT c.c_name as customer_name, + sum(l.l_extendedprice * (1 - l.l_discount)) as total_sales + FROM snowflake_sample_data.tpch_sf1.lineitem l join snowflake_sample_data.tpch_sf1.orders o + ON l.l_orderkey = o.o_orderkey join snowflake_sample_data.tpch_sf1.customer c + ON o.o_custkey = c.c_custkey + GROUP BY customer_name + ORDER BY total_sales desc limit 10; + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
CUSTOMER_NAMETOTAL_SALES
0Customer#0001435006757566.0218
1Customer#0000952576294115.3340
2Customer#0000871156184649.5176
3Customer#0001311136080943.8305
4Customer#0001343806075141.9635
5Customer#0001038346059770.3232
6Customer#0000696826057779.0348
7Customer#0001020226039653.6335
8Customer#0000985876027021.5855
9Customer#0000646605905659.6159
+
+ + + + +![png](vn-ask_files/vn-ask_10_2.png) + + + + +AI-generated follow-up questions: + +* What is the country name for each of the top 10 customers by sales? +* How many orders does each of the top 10 customers by sales have? +* What is the total revenue for each of the top 10 customers by sales? +* What are the customer names and total sales for customers in the United States? +* Which customers in Africa have returned the most parts with a gross value? +* What are the total sales for the top 3 customers? +* What are the customer names and total sales for the top 5 customers? +* What are the total sales for customers in Europe? +* How many customers are there in each country? + +## More resources + - [Full Documentation](https://docs.vanna.ai) + - [Website](https://vanna.ai) + - [Slack channel for support](https://join.slack.com/t/vanna-ai/shared_invite/zt-1unu0ipog-iE33QCoimQiBDxf2o7h97w) + - [LinkedIn](https://www.linkedin.com/company/vanna-ai/) diff --git a/intro-to-vanna.md b/intro-to-vanna.md new file mode 100644 index 000000000..d935082e0 --- /dev/null +++ b/intro-to-vanna.md @@ -0,0 +1,64 @@ +# Intro to Vanna: A Python-based AI SQL co-pilot + +**TLDR**: We help data people that know Python write SQL faster using AI. [See our starter notebook here](notebooks/vn-ask.md). + +## The deluge of data + +We are bathing in an ocean of data, sitting in Snowflake or BigQuery, that is brimming with potential insights. Yet only a small fraction of people in an enterprise have the two skills required to harness the data — + +1. A solid comprehension of advanced SQL, and +2. A comprehensive knowledge of the data structure & schema + +## The burden of being data-savvy + +Since you are reading this, chances are you are one of those fortunate few (data analysts, data scientists, data engineers, etc) with those abilities. It’s an invaluable skill, but you also get hit tons requests requiring you to write complex SQL queries. Annoying! + +## Introducing Vanna, the SQL co-pilot + +Vanna, at its core, is a co-pilot to Python & SQL savvy data people to to streamline the process of writing custom SQL on your company’s data warehouse using AI and LLMs. Most of our users use our Python package directly via Jupyter Notebooks ([starter notebook here](notebooks/vn-ask.md)) — + +```python +sql = vn.generate_sql(question='What are the top 10 customers by Sales?') +print(sql) +``` + +And here are the results — + +```sql +SELECT customer_name, + total_sales +FROM (SELECT c.c_name as customer_name, + sum(l.l_extendedprice * (1 - l.l_discount)) as total_sales, + row_number() OVER (ORDER BY sum(l.l_extendedprice * (1 - l.l_discount)) desc) as rank + FROM snowflake_sample_data.tpch_sf1.lineitem l join snowflake_sample_data.tpch_sf1.orders o + ON l.l_orderkey = o.o_orderkey join snowflake_sample_data.tpch_sf1.customer c + ON o.o_custkey = c.c_custkey + GROUP BY customer_name) +WHERE rank <= 10; +``` + +## Getting started with Vanna in a Notebook + +Vanna is super easy to get started with — + +1. **Grab an API key** directly through the notebook +2. **Train a custom model** on some past queries from your data warehouse +3. **Ask questions in plain English** and get back SQL that you can run in your workflow + +Check out the full starter notebook here. + +Vanna is built with a privacy-first and security-first design — **your data never leaves your environment**. + +## Using Vanna with a Streamlit front end + +[Streamlit](https://streamlit.io/) is an open source pure Python front end. We have built an UI for Vanna on top of Streamlit, that you can either use directly (eg our hosted version), and that you can clone, download, optionally modify, and self host. + +If you choose to self host it, you can run Vanna with a UI without any data leaving your environment. + +![Image](https://miro.medium.com/v2/resize:fit:640/format:webp/1*PmScp647UWIaxUatib_4SQ.png) + +[Check out the Streamlit UI here](https://github.com/vanna-ai/vanna-streamlit). + +## Conclusion + +Vanna is a powerful tool for data people that know Python to write SQL faster using AI. It's easy to get started with, and you can even use it with a Streamlit front end for a more interactive experience. Best of all, it's built with a privacy-first and security-first design, so your data never leaves your environment. Give it a try and see how it can streamline your SQL writing process. \ No newline at end of file diff --git a/onboarding.md b/onboarding.md new file mode 100644 index 000000000..8f15aa78b --- /dev/null +++ b/onboarding.md @@ -0,0 +1,30 @@ +## What do I need to do to use **Vanna.AI**? +Vanna.AI uses a combination of documentation and historical question and SQL pairs to generate SQL from natural language. + +### Step 1: Train **Vanna.AI** +- Give **Vanna.AI** sample SQL +- **Vanna.AI** will try to guess the question +- Verify the question is correct +```mermaid +flowchart LR + Generate[vn.generate_question] + Question[Question] + Verify{Is the question correct?} + SQL --> Generate + Generate --> Question + Question --> Verify + Verify -- Yes --> Store[vn.store_sql] + Verify -- No --> Update[Update the Question] + Update --> Store + +``` + +### Step 2: Ask **Vanna.AI** a Question +```mermaid +flowchart LR + Question[Question] + Generate[vn.generate_sql] + SQL[SQL] + Question --> Generate + Generate --> SQL +``` diff --git a/reference.md b/reference.md new file mode 100644 index 000000000..fc4459af9 --- /dev/null +++ b/reference.md @@ -0,0 +1,4 @@ +# Vanna Package Full Reference +::: vanna + options: + show_source: false \ No newline at end of file diff --git a/search.js b/search.js new file mode 100644 index 000000000..408d1094e --- /dev/null +++ b/search.js @@ -0,0 +1,46 @@ +window.pdocSearch = (function(){ +/** elasticlunr - http://weixsong.github.io * Copyright (C) 2017 Oliver Nightingale * Copyright (C) 2017 Wei Song * MIT Licensed */!function(){function e(e){if(null===e||"object"!=typeof e)return e;var t=e.constructor();for(var n in e)e.hasOwnProperty(n)&&(t[n]=e[n]);return t}var t=function(e){var n=new t.Index;return n.pipeline.add(t.trimmer,t.stopWordFilter,t.stemmer),e&&e.call(n,n),n};t.version="0.9.5",lunr=t,t.utils={},t.utils.warn=function(e){return function(t){e.console&&console.warn&&console.warn(t)}}(this),t.utils.toString=function(e){return void 0===e||null===e?"":e.toString()},t.EventEmitter=function(){this.events={}},t.EventEmitter.prototype.addListener=function(){var e=Array.prototype.slice.call(arguments),t=e.pop(),n=e;if("function"!=typeof t)throw new TypeError("last argument must be a function");n.forEach(function(e){this.hasHandler(e)||(this.events[e]=[]),this.events[e].push(t)},this)},t.EventEmitter.prototype.removeListener=function(e,t){if(this.hasHandler(e)){var n=this.events[e].indexOf(t);-1!==n&&(this.events[e].splice(n,1),0==this.events[e].length&&delete this.events[e])}},t.EventEmitter.prototype.emit=function(e){if(this.hasHandler(e)){var t=Array.prototype.slice.call(arguments,1);this.events[e].forEach(function(e){e.apply(void 0,t)},this)}},t.EventEmitter.prototype.hasHandler=function(e){return e in this.events},t.tokenizer=function(e){if(!arguments.length||null===e||void 0===e)return[];if(Array.isArray(e)){var n=e.filter(function(e){return null===e||void 0===e?!1:!0});n=n.map(function(e){return t.utils.toString(e).toLowerCase()});var i=[];return n.forEach(function(e){var n=e.split(t.tokenizer.seperator);i=i.concat(n)},this),i}return e.toString().trim().toLowerCase().split(t.tokenizer.seperator)},t.tokenizer.defaultSeperator=/[\s\-]+/,t.tokenizer.seperator=t.tokenizer.defaultSeperator,t.tokenizer.setSeperator=function(e){null!==e&&void 0!==e&&"object"==typeof e&&(t.tokenizer.seperator=e)},t.tokenizer.resetSeperator=function(){t.tokenizer.seperator=t.tokenizer.defaultSeperator},t.tokenizer.getSeperator=function(){return t.tokenizer.seperator},t.Pipeline=function(){this._queue=[]},t.Pipeline.registeredFunctions={},t.Pipeline.registerFunction=function(e,n){n in t.Pipeline.registeredFunctions&&t.utils.warn("Overwriting existing registered function: "+n),e.label=n,t.Pipeline.registeredFunctions[n]=e},t.Pipeline.getRegisteredFunction=function(e){return e in t.Pipeline.registeredFunctions!=!0?null:t.Pipeline.registeredFunctions[e]},t.Pipeline.warnIfFunctionNotRegistered=function(e){var n=e.label&&e.label in this.registeredFunctions;n||t.utils.warn("Function is not registered with pipeline. This may cause problems when serialising the index.\n",e)},t.Pipeline.load=function(e){var n=new t.Pipeline;return e.forEach(function(e){var i=t.Pipeline.getRegisteredFunction(e);if(!i)throw new Error("Cannot load un-registered function: "+e);n.add(i)}),n},t.Pipeline.prototype.add=function(){var e=Array.prototype.slice.call(arguments);e.forEach(function(e){t.Pipeline.warnIfFunctionNotRegistered(e),this._queue.push(e)},this)},t.Pipeline.prototype.after=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i+1,0,n)},t.Pipeline.prototype.before=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i,0,n)},t.Pipeline.prototype.remove=function(e){var t=this._queue.indexOf(e);-1!==t&&this._queue.splice(t,1)},t.Pipeline.prototype.run=function(e){for(var t=[],n=e.length,i=this._queue.length,o=0;n>o;o++){for(var r=e[o],s=0;i>s&&(r=this._queue[s](r,o,e),void 0!==r&&null!==r);s++);void 0!==r&&null!==r&&t.push(r)}return t},t.Pipeline.prototype.reset=function(){this._queue=[]},t.Pipeline.prototype.get=function(){return this._queue},t.Pipeline.prototype.toJSON=function(){return this._queue.map(function(e){return t.Pipeline.warnIfFunctionNotRegistered(e),e.label})},t.Index=function(){this._fields=[],this._ref="id",this.pipeline=new t.Pipeline,this.documentStore=new t.DocumentStore,this.index={},this.eventEmitter=new t.EventEmitter,this._idfCache={},this.on("add","remove","update",function(){this._idfCache={}}.bind(this))},t.Index.prototype.on=function(){var e=Array.prototype.slice.call(arguments);return this.eventEmitter.addListener.apply(this.eventEmitter,e)},t.Index.prototype.off=function(e,t){return this.eventEmitter.removeListener(e,t)},t.Index.load=function(e){e.version!==t.version&&t.utils.warn("version mismatch: current "+t.version+" importing "+e.version);var n=new this;n._fields=e.fields,n._ref=e.ref,n.documentStore=t.DocumentStore.load(e.documentStore),n.pipeline=t.Pipeline.load(e.pipeline),n.index={};for(var i in e.index)n.index[i]=t.InvertedIndex.load(e.index[i]);return n},t.Index.prototype.addField=function(e){return this._fields.push(e),this.index[e]=new t.InvertedIndex,this},t.Index.prototype.setRef=function(e){return this._ref=e,this},t.Index.prototype.saveDocument=function(e){return this.documentStore=new t.DocumentStore(e),this},t.Index.prototype.addDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.addDoc(i,e),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));this.documentStore.addFieldLength(i,n,o.length);var r={};o.forEach(function(e){e in r?r[e]+=1:r[e]=1},this);for(var s in r){var u=r[s];u=Math.sqrt(u),this.index[n].addToken(s,{ref:i,tf:u})}},this),n&&this.eventEmitter.emit("add",e,this)}},t.Index.prototype.removeDocByRef=function(e){if(e&&this.documentStore.isDocStored()!==!1&&this.documentStore.hasDoc(e)){var t=this.documentStore.getDoc(e);this.removeDoc(t,!1)}},t.Index.prototype.removeDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.hasDoc(i)&&(this.documentStore.removeDoc(i),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));o.forEach(function(e){this.index[n].removeToken(e,i)},this)},this),n&&this.eventEmitter.emit("remove",e,this))}},t.Index.prototype.updateDoc=function(e,t){var t=void 0===t?!0:t;this.removeDocByRef(e[this._ref],!1),this.addDoc(e,!1),t&&this.eventEmitter.emit("update",e,this)},t.Index.prototype.idf=function(e,t){var n="@"+t+"/"+e;if(Object.prototype.hasOwnProperty.call(this._idfCache,n))return this._idfCache[n];var i=this.index[t].getDocFreq(e),o=1+Math.log(this.documentStore.length/(i+1));return this._idfCache[n]=o,o},t.Index.prototype.getFields=function(){return this._fields.slice()},t.Index.prototype.search=function(e,n){if(!e)return[];e="string"==typeof e?{any:e}:JSON.parse(JSON.stringify(e));var i=null;null!=n&&(i=JSON.stringify(n));for(var o=new t.Configuration(i,this.getFields()).get(),r={},s=Object.keys(e),u=0;u0&&t.push(e);for(var i in n)"docs"!==i&&"df"!==i&&this.expandToken(e+i,t,n[i]);return t},t.InvertedIndex.prototype.toJSON=function(){return{root:this.root}},t.Configuration=function(e,n){var e=e||"";if(void 0==n||null==n)throw new Error("fields should not be null");this.config={};var i;try{i=JSON.parse(e),this.buildUserConfig(i,n)}catch(o){t.utils.warn("user configuration parse failed, will use default configuration"),this.buildDefaultConfig(n)}},t.Configuration.prototype.buildDefaultConfig=function(e){this.reset(),e.forEach(function(e){this.config[e]={boost:1,bool:"OR",expand:!1}},this)},t.Configuration.prototype.buildUserConfig=function(e,n){var i="OR",o=!1;if(this.reset(),"bool"in e&&(i=e.bool||i),"expand"in e&&(o=e.expand||o),"fields"in e)for(var r in e.fields)if(n.indexOf(r)>-1){var s=e.fields[r],u=o;void 0!=s.expand&&(u=s.expand),this.config[r]={boost:s.boost||0===s.boost?s.boost:1,bool:s.bool||i,expand:u}}else t.utils.warn("field name in user configuration not found in index instance fields");else this.addAllFields2UserConfig(i,o,n)},t.Configuration.prototype.addAllFields2UserConfig=function(e,t,n){n.forEach(function(n){this.config[n]={boost:1,bool:e,expand:t}},this)},t.Configuration.prototype.get=function(){return this.config},t.Configuration.prototype.reset=function(){this.config={}},lunr.SortedSet=function(){this.length=0,this.elements=[]},lunr.SortedSet.load=function(e){var t=new this;return t.elements=e,t.length=e.length,t},lunr.SortedSet.prototype.add=function(){var e,t;for(e=0;e1;){if(r===e)return o;e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o]}return r===e?o:-1},lunr.SortedSet.prototype.locationFor=function(e){for(var t=0,n=this.elements.length,i=n-t,o=t+Math.floor(i/2),r=this.elements[o];i>1;)e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o];return r>e?o:e>r?o+1:void 0},lunr.SortedSet.prototype.intersect=function(e){for(var t=new lunr.SortedSet,n=0,i=0,o=this.length,r=e.length,s=this.elements,u=e.elements;;){if(n>o-1||i>r-1)break;s[n]!==u[i]?s[n]u[i]&&i++:(t.add(s[n]),n++,i++)}return t},lunr.SortedSet.prototype.clone=function(){var e=new lunr.SortedSet;return e.elements=this.toArray(),e.length=e.elements.length,e},lunr.SortedSet.prototype.union=function(e){var t,n,i;this.length>=e.length?(t=this,n=e):(t=e,n=this),i=t.clone();for(var o=0,r=n.toArray();oWhat is Vanna.AI?\n\n

Vanna.AI is a platform that allows you to ask questions about your data in plain English. It is an AI-powered data analyst that can answer questions about your data, generate SQL, and create visualizations.

\n\n

How do I use Vanna.AI?

\n\n
    \n
  • Import the Vanna.AI library
  • \n
  • Set your API key
  • \n
  • Set your organization name
  • \n
  • Train Vanna.AI on your data
  • \n
  • Ask questions about your data
  • \n
\n\n

How does Vanna.AI work?

\n\n
flowchart TD\n DB[(Known Correct Question-SQL)]\n Try[Try to Use DDL/Documentation]\n SQL(SQL)\n Check{Is the SQL correct?}\n Generate[fa:fa-circle-question Use Examples to Generate]\n DB --> Find\n Question[fa:fa-circle-question Question] --> Find{fa:fa-magnifying-glass Do we have similar questions?}\n Find -- Yes --> Generate\n Find -- No --> Try\n Generate --> SQL\n Try --> SQL\n SQL --> Check\n Check -- Yes --> DB\n Check -- No --> Analyst[fa:fa-glasses Analyst Writes the SQL]\n Analyst -- Adds --> DB\n
\n\n

Getting Started

\n\n

How do I import the Vanna.AI library?

\n\n
\n
import vanna as vn\n
\n
\n\n

How do I set my API key?

\n\n
\n
vn.api_key = 'vanna-key-...'\n
\n
\n\n

How do I set my organization name?

\n\n
\n
vn.set_org('my_org')\n
\n
\n\n

How do I train Vanna.AI on my data?

\n\n
\n
vn.store_sql(\n    question="Who are the top 10 customers by Sales?", \n    sql="SELECT customer_name, sales FROM customers ORDER BY sales DESC LIMIT 10"\n)\n
\n
\n\n

How do I ask questions about my data?

\n\n
\n
my_question = 'What are the top 10 ABC by XYZ?'\n\nsql = vn.generate_sql(question=my_question, error_msg=None)\n# SELECT * FROM table_name WHERE column_name = 'value'\n
\n
\n\n

Full Example

\n\n
\n
import vanna as vn\n\nvn.api_key = 'vanna-key-...' # Set your API key\nvn.set_org('') # Set your organization name\n\n# Train Vanna.AI on your data\nvn.store_sql(\n    question="Who are the top 10 customers by Sales?", \n    sql="SELECT customer_name, sales FROM customers ORDER BY sales DESC LIMIT 10"\n)\n\n# Ask questions about your data\nmy_question = 'What are the top 10 ABC by XYZ?'\n\n# Generate SQL\nsql = vn.generate_sql(question=my_question, error_msg=None) \n\n# Connect to your database\nconn = snowflake.connector.connect(\n        user='my_user',\n        password='my_password',\n        account='my_account',\n        database='my_database',\n    )\n\ncs = conn.cursor()\n\n# Get results\ndf = vn.get_results(\n    cs=cs, \n    default_db=my_default_db, \n    sql=sql\n    )\n\n# Generate Plotly code\nplotly_code = vn.generate_plotly_code(\n    question=my_question, \n    sql=sql, \n    df=df\n    )\n\n# Get Plotly figure\nfig = vn.get_plotly_figure(\n    plotly_code=plotly_code, \n    df=df\n    )\n
\n
\n\n

API Reference

\n"}, "vanna.api_key": {"fullname": "vanna.api_key", "modulename": "vanna", "qualname": "api_key", "kind": "variable", "doc": "

\n", "annotation": ": Optional[str]", "default_value": "None"}, "vanna.set_org": {"fullname": "vanna.set_org", "modulename": "vanna", "qualname": "set_org", "kind": "function", "doc": "

Set the organization name for the Vanna.AI API.

\n\n
Arguments:
\n\n
    \n
  • org (str): The organization name.
  • \n
\n", "signature": "(org: str) -> None:", "funcdef": "def"}, "vanna.store_sql": {"fullname": "vanna.store_sql", "modulename": "vanna", "qualname": "store_sql", "kind": "function", "doc": "

Store a question and its corresponding SQL query in the Vanna.AI database.

\n\n
Arguments:
\n\n
    \n
  • question (str): The question to store.
  • \n
  • sql (str): The SQL query to store.
  • \n
\n", "signature": "(question: str, sql: str) -> bool:", "funcdef": "def"}, "vanna.flag_sql_for_review": {"fullname": "vanna.flag_sql_for_review", "modulename": "vanna", "qualname": "flag_sql_for_review", "kind": "function", "doc": "

Flag a question and its corresponding SQL query for review by the Vanna.AI team.

\n\n
Arguments:
\n\n
    \n
  • question (str): The question to flag.
  • \n
  • sql (str): The SQL query to flag.
  • \n
  • error_msg (str): The error message to flag.
  • \n
\n\n
Returns:
\n\n
\n

bool: True if the question and SQL query were flagged successfully, False otherwise.

\n
\n", "signature": "(\tquestion: str,\tsql: Optional[str] = None,\terror_msg: Optional[str] = None) -> bool:", "funcdef": "def"}, "vanna.remove_sql": {"fullname": "vanna.remove_sql", "modulename": "vanna", "qualname": "remove_sql", "kind": "function", "doc": "

Remove a question and its corresponding SQL query from the Vanna.AI database.

\n\n
Arguments:
\n\n
    \n
  • question (str): The question to remove.
  • \n
\n", "signature": "(question: str) -> bool:", "funcdef": "def"}, "vanna.generate_sql": {"fullname": "vanna.generate_sql", "modulename": "vanna", "qualname": "generate_sql", "kind": "function", "doc": "

Generate an SQL query using the Vanna.AI API.

\n\n
Arguments:
\n\n
    \n
  • question (str): The question to generate an SQL query for.
  • \n
\n\n
Returns:
\n\n
\n

str or None: The SQL query, or None if an error occurred.

\n
\n", "signature": "(question: str) -> str:", "funcdef": "def"}, "vanna.generate_plotly_code": {"fullname": "vanna.generate_plotly_code", "modulename": "vanna", "qualname": "generate_plotly_code", "kind": "function", "doc": "

Generate Plotly code using the Vanna.AI API.

\n\n
Arguments:
\n\n
    \n
  • question (str): The question to generate Plotly code for.
  • \n
  • sql (str): The SQL query to generate Plotly code for.
  • \n
  • df (pd.DataFrame): The dataframe to generate Plotly code for.
  • \n
\n\n
Returns:
\n\n
\n

str or None: The Plotly code, or None if an error occurred.

\n
\n", "signature": "(\tquestion: Optional[str],\tsql: Optional[str],\tdf: pandas.core.frame.DataFrame) -> str:", "funcdef": "def"}, "vanna.get_plotly_figure": {"fullname": "vanna.get_plotly_figure", "modulename": "vanna", "qualname": "get_plotly_figure", "kind": "function", "doc": "

Get a Plotly figure from a dataframe and Plotly code.

\n\n
Arguments:
\n\n
    \n
  • df (pd.DataFrame): The dataframe to use.
  • \n
  • plotly_code (str): The Plotly code to use.
  • \n
\n\n
Returns:
\n\n
\n

plotly.graph_objs.Figure: The Plotly figure.

\n
\n", "signature": "(\tplotly_code: str,\tdf: pandas.core.frame.DataFrame,\tdark_mode: bool = True) -> plotly.graph_objs._figure.Figure:", "funcdef": "def"}, "vanna.get_results": {"fullname": "vanna.get_results", "modulename": "vanna", "qualname": "get_results", "kind": "function", "doc": "

Run the SQL query and return the results as a pandas dataframe.

\n\n
Arguments:
\n\n
    \n
  • cs: Snowflake connection cursor.
  • \n
  • default_database (str): The default database to use.
  • \n
  • sql (str): The SQL query to execute.
  • \n
\n\n
Returns:
\n\n
\n

pd.DataFrame: The results of the SQL query.

\n
\n", "signature": "(cs, default_database: str, sql: str) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "vanna.generate_explanation": {"fullname": "vanna.generate_explanation", "modulename": "vanna", "qualname": "generate_explanation", "kind": "function", "doc": "

Example

\n\n
\n
vn.generate_explanation(sql="SELECT * FROM students WHERE name = 'John Doe'")\n# 'AI Response'\n
\n
\n\n

Generate an explanation of an SQL query using the Vanna.AI API.

\n\n
Arguments:
\n\n
    \n
  • sql (str): The SQL query to generate an explanation for.
  • \n
\n\n
Returns:
\n\n
\n

str or None: The explanation, or None if an error occurred.

\n
\n", "signature": "(sql: str) -> str:", "funcdef": "def"}, "vanna.generate_question": {"fullname": "vanna.generate_question", "modulename": "vanna", "qualname": "generate_question", "kind": "function", "doc": "

Example

\n\n
\n
vn.generate_question(sql="SELECT * FROM students WHERE name = 'John Doe'")\n# 'AI Response'\n
\n
\n\n

Generate a question from an SQL query using the Vanna.AI API.

\n\n
Arguments:
\n\n
    \n
  • sql (str): The SQL query to generate a question for.
  • \n
\n\n
Returns:
\n\n
\n

str or None: The question, or None if an error occurred.

\n
\n", "signature": "(sql: str) -> str:", "funcdef": "def"}, "vanna.get_flagged_questions": {"fullname": "vanna.get_flagged_questions", "modulename": "vanna", "qualname": "get_flagged_questions", "kind": "function", "doc": "

Example

\n\n
\n
vn.get_flagged_questions()\n# [FullQuestionDocument(...), ...]\n
\n
\n\n

Get a list of flagged questions from the Vanna.AI API.

\n\n
Returns:
\n\n
\n

List[FullQuestionDocument] or None: The list of flagged questions, or None if an error occurred.

\n
\n", "signature": "() -> vanna.types.QuestionList:", "funcdef": "def"}, "vanna.get_accuracy_stats": {"fullname": "vanna.get_accuracy_stats", "modulename": "vanna", "qualname": "get_accuracy_stats", "kind": "function", "doc": "

Example

\n\n
\n
vn.get_accuracy_stats()\n# {'accuracy': 0.0, 'total': 0, 'correct': 0}\n
\n
\n\n

Get the accuracy statistics from the Vanna.AI API.

\n\n
Returns:
\n\n
\n

dict or None: The accuracy statistics, or None if an error occurred.

\n
\n", "signature": "() -> vanna.types.AccuracyStats:", "funcdef": "def"}, "vanna.types": {"fullname": "vanna.types", "modulename": "vanna.types", "kind": "module", "doc": "

\n"}, "vanna.types.Status": {"fullname": "vanna.types.Status", "modulename": "vanna.types", "qualname": "Status", "kind": "class", "doc": "

\n"}, "vanna.types.Status.__init__": {"fullname": "vanna.types.Status.__init__", "modulename": "vanna.types", "qualname": "Status.__init__", "kind": "function", "doc": "

\n", "signature": "(success: bool, message: str)"}, "vanna.types.Status.success": {"fullname": "vanna.types.Status.success", "modulename": "vanna.types", "qualname": "Status.success", "kind": "variable", "doc": "

\n", "annotation": ": bool"}, "vanna.types.Status.message": {"fullname": "vanna.types.Status.message", "modulename": "vanna.types", "qualname": "Status.message", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.QuestionList": {"fullname": "vanna.types.QuestionList", "modulename": "vanna.types", "qualname": "QuestionList", "kind": "class", "doc": "

\n"}, "vanna.types.QuestionList.__init__": {"fullname": "vanna.types.QuestionList.__init__", "modulename": "vanna.types", "qualname": "QuestionList.__init__", "kind": "function", "doc": "

\n", "signature": "(questions: List[vanna.types.FullQuestionDocument])"}, "vanna.types.QuestionList.questions": {"fullname": "vanna.types.QuestionList.questions", "modulename": "vanna.types", "qualname": "QuestionList.questions", "kind": "variable", "doc": "

\n", "annotation": ": List[vanna.types.FullQuestionDocument]"}, "vanna.types.FullQuestionDocument": {"fullname": "vanna.types.FullQuestionDocument", "modulename": "vanna.types", "qualname": "FullQuestionDocument", "kind": "class", "doc": "

\n"}, "vanna.types.FullQuestionDocument.__init__": {"fullname": "vanna.types.FullQuestionDocument.__init__", "modulename": "vanna.types", "qualname": "FullQuestionDocument.__init__", "kind": "function", "doc": "

\n", "signature": "(\tid: vanna.types.QuestionId,\tquestion: vanna.types.Question,\tanswer: vanna.types.SQLAnswer | None,\tdata: vanna.types.DataResult | None,\tplotly: vanna.types.PlotlyResult | None)"}, "vanna.types.FullQuestionDocument.id": {"fullname": "vanna.types.FullQuestionDocument.id", "modulename": "vanna.types", "qualname": "FullQuestionDocument.id", "kind": "variable", "doc": "

\n", "annotation": ": vanna.types.QuestionId"}, "vanna.types.FullQuestionDocument.question": {"fullname": "vanna.types.FullQuestionDocument.question", "modulename": "vanna.types", "qualname": "FullQuestionDocument.question", "kind": "variable", "doc": "

\n", "annotation": ": vanna.types.Question"}, "vanna.types.FullQuestionDocument.answer": {"fullname": "vanna.types.FullQuestionDocument.answer", "modulename": "vanna.types", "qualname": "FullQuestionDocument.answer", "kind": "variable", "doc": "

\n", "annotation": ": vanna.types.SQLAnswer | None"}, "vanna.types.FullQuestionDocument.data": {"fullname": "vanna.types.FullQuestionDocument.data", "modulename": "vanna.types", "qualname": "FullQuestionDocument.data", "kind": "variable", "doc": "

\n", "annotation": ": vanna.types.DataResult | None"}, "vanna.types.FullQuestionDocument.plotly": {"fullname": "vanna.types.FullQuestionDocument.plotly", "modulename": "vanna.types", "qualname": "FullQuestionDocument.plotly", "kind": "variable", "doc": "

\n", "annotation": ": vanna.types.PlotlyResult | None"}, "vanna.types.QuestionSQLPair": {"fullname": "vanna.types.QuestionSQLPair", "modulename": "vanna.types", "qualname": "QuestionSQLPair", "kind": "class", "doc": "

\n"}, "vanna.types.QuestionSQLPair.__init__": {"fullname": "vanna.types.QuestionSQLPair.__init__", "modulename": "vanna.types", "qualname": "QuestionSQLPair.__init__", "kind": "function", "doc": "

\n", "signature": "(question: str, sql: str)"}, "vanna.types.QuestionSQLPair.question": {"fullname": "vanna.types.QuestionSQLPair.question", "modulename": "vanna.types", "qualname": "QuestionSQLPair.question", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.QuestionSQLPair.sql": {"fullname": "vanna.types.QuestionSQLPair.sql", "modulename": "vanna.types", "qualname": "QuestionSQLPair.sql", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.Organization": {"fullname": "vanna.types.Organization", "modulename": "vanna.types", "qualname": "Organization", "kind": "class", "doc": "

\n"}, "vanna.types.Organization.__init__": {"fullname": "vanna.types.Organization.__init__", "modulename": "vanna.types", "qualname": "Organization.__init__", "kind": "function", "doc": "

\n", "signature": "(\tname: str,\tuser: str | None,\tconnection: vanna.types.Connection | None)"}, "vanna.types.Organization.name": {"fullname": "vanna.types.Organization.name", "modulename": "vanna.types", "qualname": "Organization.name", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.Organization.user": {"fullname": "vanna.types.Organization.user", "modulename": "vanna.types", "qualname": "Organization.user", "kind": "variable", "doc": "

\n", "annotation": ": str | None"}, "vanna.types.Organization.connection": {"fullname": "vanna.types.Organization.connection", "modulename": "vanna.types", "qualname": "Organization.connection", "kind": "variable", "doc": "

\n", "annotation": ": vanna.types.Connection | None"}, "vanna.types.QuestionId": {"fullname": "vanna.types.QuestionId", "modulename": "vanna.types", "qualname": "QuestionId", "kind": "class", "doc": "

\n"}, "vanna.types.QuestionId.__init__": {"fullname": "vanna.types.QuestionId.__init__", "modulename": "vanna.types", "qualname": "QuestionId.__init__", "kind": "function", "doc": "

\n", "signature": "(id: str)"}, "vanna.types.QuestionId.id": {"fullname": "vanna.types.QuestionId.id", "modulename": "vanna.types", "qualname": "QuestionId.id", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.Question": {"fullname": "vanna.types.Question", "modulename": "vanna.types", "qualname": "Question", "kind": "class", "doc": "

\n"}, "vanna.types.Question.__init__": {"fullname": "vanna.types.Question.__init__", "modulename": "vanna.types", "qualname": "Question.__init__", "kind": "function", "doc": "

\n", "signature": "(question: str)"}, "vanna.types.Question.question": {"fullname": "vanna.types.Question.question", "modulename": "vanna.types", "qualname": "Question.question", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.QuestionCategory": {"fullname": "vanna.types.QuestionCategory", "modulename": "vanna.types", "qualname": "QuestionCategory", "kind": "class", "doc": "

\n"}, "vanna.types.QuestionCategory.__init__": {"fullname": "vanna.types.QuestionCategory.__init__", "modulename": "vanna.types", "qualname": "QuestionCategory.__init__", "kind": "function", "doc": "

\n", "signature": "(question: str, category: str)"}, "vanna.types.QuestionCategory.question": {"fullname": "vanna.types.QuestionCategory.question", "modulename": "vanna.types", "qualname": "QuestionCategory.question", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.QuestionCategory.category": {"fullname": "vanna.types.QuestionCategory.category", "modulename": "vanna.types", "qualname": "QuestionCategory.category", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.QuestionCategory.NO_SQL_GENERATED": {"fullname": "vanna.types.QuestionCategory.NO_SQL_GENERATED", "modulename": "vanna.types", "qualname": "QuestionCategory.NO_SQL_GENERATED", "kind": "variable", "doc": "

\n", "default_value": "'No SQL Generated'"}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"fullname": "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN", "modulename": "vanna.types", "qualname": "QuestionCategory.SQL_UNABLE_TO_RUN", "kind": "variable", "doc": "

\n", "default_value": "'SQL Unable to Run'"}, "vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"fullname": "vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY", "modulename": "vanna.types", "qualname": "QuestionCategory.BOOTSTRAP_TRAINING_QUERY", "kind": "variable", "doc": "

\n", "default_value": "'Bootstrap Training Query'"}, "vanna.types.QuestionCategory.ASSUMED_CORRECT": {"fullname": "vanna.types.QuestionCategory.ASSUMED_CORRECT", "modulename": "vanna.types", "qualname": "QuestionCategory.ASSUMED_CORRECT", "kind": "variable", "doc": "

\n", "default_value": "'Assumed Correct'"}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"fullname": "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW", "modulename": "vanna.types", "qualname": "QuestionCategory.FLAGGED_FOR_REVIEW", "kind": "variable", "doc": "

\n", "default_value": "'Flagged for Review'"}, "vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"fullname": "vanna.types.QuestionCategory.REVIEWED_AND_APPROVED", "modulename": "vanna.types", "qualname": "QuestionCategory.REVIEWED_AND_APPROVED", "kind": "variable", "doc": "

\n", "default_value": "'Reviewed and Approved'"}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"fullname": "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED", "modulename": "vanna.types", "qualname": "QuestionCategory.REVIEWED_AND_REJECTED", "kind": "variable", "doc": "

\n", "default_value": "'Reviewed and Rejected'"}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"fullname": "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED", "modulename": "vanna.types", "qualname": "QuestionCategory.REVIEWED_AND_UPDATED", "kind": "variable", "doc": "

\n", "default_value": "'Reviewed and Updated'"}, "vanna.types.AccuracyStats": {"fullname": "vanna.types.AccuracyStats", "modulename": "vanna.types", "qualname": "AccuracyStats", "kind": "class", "doc": "

\n"}, "vanna.types.AccuracyStats.__init__": {"fullname": "vanna.types.AccuracyStats.__init__", "modulename": "vanna.types", "qualname": "AccuracyStats.__init__", "kind": "function", "doc": "

\n", "signature": "(num_questions: int, data: Dict[str, int])"}, "vanna.types.AccuracyStats.num_questions": {"fullname": "vanna.types.AccuracyStats.num_questions", "modulename": "vanna.types", "qualname": "AccuracyStats.num_questions", "kind": "variable", "doc": "

\n", "annotation": ": int"}, "vanna.types.AccuracyStats.data": {"fullname": "vanna.types.AccuracyStats.data", "modulename": "vanna.types", "qualname": "AccuracyStats.data", "kind": "variable", "doc": "

\n", "annotation": ": Dict[str, int]"}, "vanna.types.Followup": {"fullname": "vanna.types.Followup", "modulename": "vanna.types", "qualname": "Followup", "kind": "class", "doc": "

\n"}, "vanna.types.Followup.__init__": {"fullname": "vanna.types.Followup.__init__", "modulename": "vanna.types", "qualname": "Followup.__init__", "kind": "function", "doc": "

\n", "signature": "(followup: str)"}, "vanna.types.Followup.followup": {"fullname": "vanna.types.Followup.followup", "modulename": "vanna.types", "qualname": "Followup.followup", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.QuestionEmbedding": {"fullname": "vanna.types.QuestionEmbedding", "modulename": "vanna.types", "qualname": "QuestionEmbedding", "kind": "class", "doc": "

\n"}, "vanna.types.QuestionEmbedding.__init__": {"fullname": "vanna.types.QuestionEmbedding.__init__", "modulename": "vanna.types", "qualname": "QuestionEmbedding.__init__", "kind": "function", "doc": "

\n", "signature": "(question: vanna.types.Question, embedding: List[float])"}, "vanna.types.QuestionEmbedding.question": {"fullname": "vanna.types.QuestionEmbedding.question", "modulename": "vanna.types", "qualname": "QuestionEmbedding.question", "kind": "variable", "doc": "

\n", "annotation": ": vanna.types.Question"}, "vanna.types.QuestionEmbedding.embedding": {"fullname": "vanna.types.QuestionEmbedding.embedding", "modulename": "vanna.types", "qualname": "QuestionEmbedding.embedding", "kind": "variable", "doc": "

\n", "annotation": ": List[float]"}, "vanna.types.Connection": {"fullname": "vanna.types.Connection", "modulename": "vanna.types", "qualname": "Connection", "kind": "class", "doc": "

\n"}, "vanna.types.SQLAnswer": {"fullname": "vanna.types.SQLAnswer", "modulename": "vanna.types", "qualname": "SQLAnswer", "kind": "class", "doc": "

\n"}, "vanna.types.SQLAnswer.__init__": {"fullname": "vanna.types.SQLAnswer.__init__", "modulename": "vanna.types", "qualname": "SQLAnswer.__init__", "kind": "function", "doc": "

\n", "signature": "(raw_answer: str, prefix: str, postfix: str, sql: str)"}, "vanna.types.SQLAnswer.raw_answer": {"fullname": "vanna.types.SQLAnswer.raw_answer", "modulename": "vanna.types", "qualname": "SQLAnswer.raw_answer", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.SQLAnswer.prefix": {"fullname": "vanna.types.SQLAnswer.prefix", "modulename": "vanna.types", "qualname": "SQLAnswer.prefix", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.SQLAnswer.postfix": {"fullname": "vanna.types.SQLAnswer.postfix", "modulename": "vanna.types", "qualname": "SQLAnswer.postfix", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.SQLAnswer.sql": {"fullname": "vanna.types.SQLAnswer.sql", "modulename": "vanna.types", "qualname": "SQLAnswer.sql", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.Explanation": {"fullname": "vanna.types.Explanation", "modulename": "vanna.types", "qualname": "Explanation", "kind": "class", "doc": "

\n"}, "vanna.types.Explanation.__init__": {"fullname": "vanna.types.Explanation.__init__", "modulename": "vanna.types", "qualname": "Explanation.__init__", "kind": "function", "doc": "

\n", "signature": "(explanation: str)"}, "vanna.types.Explanation.explanation": {"fullname": "vanna.types.Explanation.explanation", "modulename": "vanna.types", "qualname": "Explanation.explanation", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.DataResult": {"fullname": "vanna.types.DataResult", "modulename": "vanna.types", "qualname": "DataResult", "kind": "class", "doc": "

\n"}, "vanna.types.DataResult.__init__": {"fullname": "vanna.types.DataResult.__init__", "modulename": "vanna.types", "qualname": "DataResult.__init__", "kind": "function", "doc": "

\n", "signature": "(\tquestion: str | None,\tsql: str | None,\ttable_markdown: str,\terror: str | None,\tcorrection_attempts: int)"}, "vanna.types.DataResult.question": {"fullname": "vanna.types.DataResult.question", "modulename": "vanna.types", "qualname": "DataResult.question", "kind": "variable", "doc": "

\n", "annotation": ": str | None"}, "vanna.types.DataResult.sql": {"fullname": "vanna.types.DataResult.sql", "modulename": "vanna.types", "qualname": "DataResult.sql", "kind": "variable", "doc": "

\n", "annotation": ": str | None"}, "vanna.types.DataResult.table_markdown": {"fullname": "vanna.types.DataResult.table_markdown", "modulename": "vanna.types", "qualname": "DataResult.table_markdown", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.DataResult.error": {"fullname": "vanna.types.DataResult.error", "modulename": "vanna.types", "qualname": "DataResult.error", "kind": "variable", "doc": "

\n", "annotation": ": str | None"}, "vanna.types.DataResult.correction_attempts": {"fullname": "vanna.types.DataResult.correction_attempts", "modulename": "vanna.types", "qualname": "DataResult.correction_attempts", "kind": "variable", "doc": "

\n", "annotation": ": int"}, "vanna.types.PlotlyResult": {"fullname": "vanna.types.PlotlyResult", "modulename": "vanna.types", "qualname": "PlotlyResult", "kind": "class", "doc": "

\n"}, "vanna.types.PlotlyResult.__init__": {"fullname": "vanna.types.PlotlyResult.__init__", "modulename": "vanna.types", "qualname": "PlotlyResult.__init__", "kind": "function", "doc": "

\n", "signature": "(plotly_code: str)"}, "vanna.types.PlotlyResult.plotly_code": {"fullname": "vanna.types.PlotlyResult.plotly_code", "modulename": "vanna.types", "qualname": "PlotlyResult.plotly_code", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.WarehouseDefinition": {"fullname": "vanna.types.WarehouseDefinition", "modulename": "vanna.types", "qualname": "WarehouseDefinition", "kind": "class", "doc": "

\n"}, "vanna.types.WarehouseDefinition.__init__": {"fullname": "vanna.types.WarehouseDefinition.__init__", "modulename": "vanna.types", "qualname": "WarehouseDefinition.__init__", "kind": "function", "doc": "

\n", "signature": "(name: str, tables: List[vanna.types.TableDefinition])"}, "vanna.types.WarehouseDefinition.name": {"fullname": "vanna.types.WarehouseDefinition.name", "modulename": "vanna.types", "qualname": "WarehouseDefinition.name", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.WarehouseDefinition.tables": {"fullname": "vanna.types.WarehouseDefinition.tables", "modulename": "vanna.types", "qualname": "WarehouseDefinition.tables", "kind": "variable", "doc": "

\n", "annotation": ": List[vanna.types.TableDefinition]"}, "vanna.types.TableDefinition": {"fullname": "vanna.types.TableDefinition", "modulename": "vanna.types", "qualname": "TableDefinition", "kind": "class", "doc": "

\n"}, "vanna.types.TableDefinition.__init__": {"fullname": "vanna.types.TableDefinition.__init__", "modulename": "vanna.types", "qualname": "TableDefinition.__init__", "kind": "function", "doc": "

\n", "signature": "(\tschema_name: str,\ttable_name: str,\tddl: str | None,\tcolumns: List[vanna.types.ColumnDefinition])"}, "vanna.types.TableDefinition.schema_name": {"fullname": "vanna.types.TableDefinition.schema_name", "modulename": "vanna.types", "qualname": "TableDefinition.schema_name", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.TableDefinition.table_name": {"fullname": "vanna.types.TableDefinition.table_name", "modulename": "vanna.types", "qualname": "TableDefinition.table_name", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.TableDefinition.ddl": {"fullname": "vanna.types.TableDefinition.ddl", "modulename": "vanna.types", "qualname": "TableDefinition.ddl", "kind": "variable", "doc": "

\n", "annotation": ": str | None"}, "vanna.types.TableDefinition.columns": {"fullname": "vanna.types.TableDefinition.columns", "modulename": "vanna.types", "qualname": "TableDefinition.columns", "kind": "variable", "doc": "

\n", "annotation": ": List[vanna.types.ColumnDefinition]"}, "vanna.types.ColumnDefinition": {"fullname": "vanna.types.ColumnDefinition", "modulename": "vanna.types", "qualname": "ColumnDefinition", "kind": "class", "doc": "

\n"}, "vanna.types.ColumnDefinition.__init__": {"fullname": "vanna.types.ColumnDefinition.__init__", "modulename": "vanna.types", "qualname": "ColumnDefinition.__init__", "kind": "function", "doc": "

\n", "signature": "(\tname: str,\ttype: str,\tis_primary_key: bool,\tis_foreign_key: bool,\tforeign_key_table: str,\tforeign_key_column: str)"}, "vanna.types.ColumnDefinition.name": {"fullname": "vanna.types.ColumnDefinition.name", "modulename": "vanna.types", "qualname": "ColumnDefinition.name", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.ColumnDefinition.type": {"fullname": "vanna.types.ColumnDefinition.type", "modulename": "vanna.types", "qualname": "ColumnDefinition.type", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.ColumnDefinition.is_primary_key": {"fullname": "vanna.types.ColumnDefinition.is_primary_key", "modulename": "vanna.types", "qualname": "ColumnDefinition.is_primary_key", "kind": "variable", "doc": "

\n", "annotation": ": bool"}, "vanna.types.ColumnDefinition.is_foreign_key": {"fullname": "vanna.types.ColumnDefinition.is_foreign_key", "modulename": "vanna.types", "qualname": "ColumnDefinition.is_foreign_key", "kind": "variable", "doc": "

\n", "annotation": ": bool"}, "vanna.types.ColumnDefinition.foreign_key_table": {"fullname": "vanna.types.ColumnDefinition.foreign_key_table", "modulename": "vanna.types", "qualname": "ColumnDefinition.foreign_key_table", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.ColumnDefinition.foreign_key_column": {"fullname": "vanna.types.ColumnDefinition.foreign_key_column", "modulename": "vanna.types", "qualname": "ColumnDefinition.foreign_key_column", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.Diagram": {"fullname": "vanna.types.Diagram", "modulename": "vanna.types", "qualname": "Diagram", "kind": "class", "doc": "

\n"}, "vanna.types.Diagram.__init__": {"fullname": "vanna.types.Diagram.__init__", "modulename": "vanna.types", "qualname": "Diagram.__init__", "kind": "function", "doc": "

\n", "signature": "(raw: str, mermaid_code: str)"}, "vanna.types.Diagram.raw": {"fullname": "vanna.types.Diagram.raw", "modulename": "vanna.types", "qualname": "Diagram.raw", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.Diagram.mermaid_code": {"fullname": "vanna.types.Diagram.mermaid_code", "modulename": "vanna.types", "qualname": "Diagram.mermaid_code", "kind": "variable", "doc": "

\n", "annotation": ": str"}}, "docInfo": {"vanna": {"qualname": 0, "fullname": 1, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 1004}, "vanna.api_key": {"qualname": 2, "fullname": 3, "annotation": 2, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "vanna.set_org": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 30}, "vanna.store_sql": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 48}, "vanna.flag_sql_for_review": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 69, "bases": 0, "doc": 87}, "vanna.remove_sql": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 35}, "vanna.generate_sql": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 57}, "vanna.generate_plotly_code": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 69, "bases": 0, "doc": 87}, "vanna.get_plotly_figure": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 83, "bases": 0, "doc": 64}, "vanna.get_results": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 50, "bases": 0, "doc": 76}, "vanna.generate_explanation": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 116}, "vanna.generate_question": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 116}, "vanna.get_flagged_questions": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 70}, "vanna.get_accuracy_stats": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 81}, "vanna.types": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Status": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Status.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 24, "bases": 0, "doc": 3}, "vanna.types.Status.success": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Status.message": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionList": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionList.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 30, "bases": 0, "doc": 3}, "vanna.types.QuestionList.questions": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.FullQuestionDocument": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.FullQuestionDocument.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 127, "bases": 0, "doc": 3}, "vanna.types.FullQuestionDocument.id": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.FullQuestionDocument.question": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.FullQuestionDocument.answer": {"qualname": 2, "fullname": 4, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.FullQuestionDocument.data": {"qualname": 2, "fullname": 4, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.FullQuestionDocument.plotly": {"qualname": 2, "fullname": 4, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionSQLPair": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionSQLPair.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 24, "bases": 0, "doc": 3}, "vanna.types.QuestionSQLPair.question": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionSQLPair.sql": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Organization": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Organization.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 59, "bases": 0, "doc": 3}, "vanna.types.Organization.name": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Organization.user": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Organization.connection": {"qualname": 2, "fullname": 4, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionId": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionId.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 3}, "vanna.types.QuestionId.id": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Question": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Question.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 3}, "vanna.types.Question.question": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 24, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.question": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.category": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.NO_SQL_GENERATED": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.ASSUMED_CORRECT": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 6, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.AccuracyStats": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.AccuracyStats.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 37, "bases": 0, "doc": 3}, "vanna.types.AccuracyStats.num_questions": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.AccuracyStats.data": {"qualname": 2, "fullname": 4, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Followup": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Followup.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 3}, "vanna.types.Followup.followup": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionEmbedding": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionEmbedding.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 3}, "vanna.types.QuestionEmbedding.question": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionEmbedding.embedding": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Connection": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.SQLAnswer": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.SQLAnswer.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 3}, "vanna.types.SQLAnswer.raw_answer": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.SQLAnswer.prefix": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.SQLAnswer.postfix": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.SQLAnswer.sql": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Explanation": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Explanation.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 3}, "vanna.types.Explanation.explanation": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.DataResult": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.DataResult.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 79, "bases": 0, "doc": 3}, "vanna.types.DataResult.question": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.DataResult.sql": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.DataResult.table_markdown": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.DataResult.error": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.DataResult.correction_attempts": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.PlotlyResult": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.PlotlyResult.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 15, "bases": 0, "doc": 3}, "vanna.types.PlotlyResult.plotly_code": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.WarehouseDefinition": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.WarehouseDefinition.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 3}, "vanna.types.WarehouseDefinition.name": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.WarehouseDefinition.tables": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.TableDefinition": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.TableDefinition.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 72, "bases": 0, "doc": 3}, "vanna.types.TableDefinition.schema_name": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.TableDefinition.table_name": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.TableDefinition.ddl": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.TableDefinition.columns": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.ColumnDefinition": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.ColumnDefinition.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 78, "bases": 0, "doc": 3}, "vanna.types.ColumnDefinition.name": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.ColumnDefinition.type": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.ColumnDefinition.is_primary_key": {"qualname": 4, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.ColumnDefinition.is_foreign_key": {"qualname": 4, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.ColumnDefinition.foreign_key_table": {"qualname": 4, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.ColumnDefinition.foreign_key_column": {"qualname": 4, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Diagram": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Diagram.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 3}, "vanna.types.Diagram.raw": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Diagram.mermaid_code": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}}, "length": 109, "save": true}, "index": {"qualname": {"root": {"docs": {"vanna.types.Status.__init__": {"tf": 1}, "vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1}, "vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.QuestionId.__init__": {"tf": 1}, "vanna.types.Question.__init__": {"tf": 1}, "vanna.types.QuestionCategory.__init__": {"tf": 1}, "vanna.types.AccuracyStats.__init__": {"tf": 1}, "vanna.types.Followup.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 1}, "vanna.types.Explanation.__init__": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 1}, "vanna.types.PlotlyResult.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 1}, "vanna.types.Diagram.__init__": {"tf": 1}}, "df": 19, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"vanna.api_key": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "y": {"docs": {"vanna.get_accuracy_stats": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.AccuracyStats": {"tf": 1}, "vanna.types.AccuracyStats.__init__": {"tf": 1}, "vanna.types.AccuracyStats.num_questions": {"tf": 1}, "vanna.types.AccuracyStats.data": {"tf": 1}}, "df": 4}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.FullQuestionDocument.answer": {"tf": 1}, "vanna.types.SQLAnswer.raw_answer": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 3}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.ASSUMED_CORRECT": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.DataResult.correction_attempts": {"tf": 1}}, "df": 1}}}}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "y": {"docs": {"vanna.api_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}}, "df": 5}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"vanna.set_org": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna.store_sql": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.get_accuracy_stats": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.Status": {"tf": 1}, "vanna.types.Status.__init__": {"tf": 1}, "vanna.types.Status.success": {"tf": 1}, "vanna.types.Status.message": {"tf": 1}}, "df": 4}}}}}, "q": {"docs": {}, "df": 0, "l": {"docs": {"vanna.store_sql": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.types.QuestionSQLPair.sql": {"tf": 1}, "vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}, "vanna.types.SQLAnswer.sql": {"tf": 1}, "vanna.types.DataResult.sql": {"tf": 1}}, "df": 9, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.SQLAnswer": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 1}, "vanna.types.SQLAnswer.raw_answer": {"tf": 1}, "vanna.types.SQLAnswer.prefix": {"tf": 1}, "vanna.types.SQLAnswer.postfix": {"tf": 1}, "vanna.types.SQLAnswer.sql": {"tf": 1}}, "df": 6}}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.Status.success": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"vanna.types.TableDefinition.schema_name": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"vanna.set_org": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.Organization": {"tf": 1}, "vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.Organization.name": {"tf": 1}, "vanna.types.Organization.user": {"tf": 1}, "vanna.types.Organization.connection": {"tf": 1}}, "df": 5}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}}, "df": 1, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.get_flagged_questions": {"tf": 1}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"vanna.types.Followup": {"tf": 1}, "vanna.types.Followup.__init__": {"tf": 1}, "vanna.types.Followup.followup": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna.get_plotly_figure": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.FullQuestionDocument": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.FullQuestionDocument.id": {"tf": 1}, "vanna.types.FullQuestionDocument.question": {"tf": 1}, "vanna.types.FullQuestionDocument.answer": {"tf": 1}, "vanna.types.FullQuestionDocument.data": {"tf": 1}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1}}, "df": 7}}}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 3}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"vanna.remove_sql": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.get_results": {"tf": 1}}, "df": 1}}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "w": {"docs": {"vanna.types.SQLAnswer.raw_answer": {"tf": 1}, "vanna.types.Diagram.raw": {"tf": 1}}, "df": 2}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"vanna.generate_sql": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}}, "df": 4, "d": {"docs": {"vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.get_flagged_questions": {"tf": 1}, "vanna.get_accuracy_stats": {"tf": 1}}, "df": 4}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1}}, "df": 4, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.PlotlyResult": {"tf": 1}, "vanna.types.PlotlyResult.__init__": {"tf": 1}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1}}, "df": 3}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"vanna.types.SQLAnswer.prefix": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"vanna.types.SQLAnswer.postfix": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"vanna.generate_plotly_code": {"tf": 1}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1}, "vanna.types.Diagram.mermaid_code": {"tf": 1}}, "df": 3}}, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.Organization.connection": {"tf": 1}, "vanna.types.Connection": {"tf": 1}}, "df": 2}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.QuestionCategory.ASSUMED_CORRECT": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.DataResult.correction_attempts": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}}, "df": 1, "s": {"docs": {"vanna.types.TableDefinition.columns": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.ColumnDefinition": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.name": {"tf": 1}, "vanna.types.ColumnDefinition.type": {"tf": 1}, "vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}}, "df": 8}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.QuestionCategory.category": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.generate_explanation": {"tf": 1}, "vanna.types.Explanation": {"tf": 1}, "vanna.types.Explanation.__init__": {"tf": 1}, "vanna.types.Explanation.explanation": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.types.QuestionEmbedding.embedding": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.DataResult.error": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.generate_question": {"tf": 1}, "vanna.types.FullQuestionDocument.question": {"tf": 1}, "vanna.types.QuestionSQLPair.question": {"tf": 1}, "vanna.types.Question": {"tf": 1}, "vanna.types.Question.__init__": {"tf": 1}, "vanna.types.Question.question": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.question": {"tf": 1}, "vanna.types.QuestionEmbedding.question": {"tf": 1}, "vanna.types.DataResult.question": {"tf": 1}}, "df": 9, "s": {"docs": {"vanna.get_flagged_questions": {"tf": 1}, "vanna.types.QuestionList.questions": {"tf": 1}, "vanna.types.AccuracyStats.num_questions": {"tf": 1}}, "df": 3, "q": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.QuestionSQLPair": {"tf": 1}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1}, "vanna.types.QuestionSQLPair.question": {"tf": 1}, "vanna.types.QuestionSQLPair.sql": {"tf": 1}}, "df": 4}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.QuestionList": {"tf": 1}, "vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.QuestionList.questions": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionId": {"tf": 1}, "vanna.types.QuestionId.__init__": {"tf": 1}, "vanna.types.QuestionId.id": {"tf": 1}}, "df": 3}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.QuestionCategory": {"tf": 1}, "vanna.types.QuestionCategory.__init__": {"tf": 1}, "vanna.types.QuestionCategory.question": {"tf": 1}, "vanna.types.QuestionCategory.category": {"tf": 1}, "vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}, "vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}, "vanna.types.QuestionCategory.ASSUMED_CORRECT": {"tf": 1}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 12}}}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.types.QuestionEmbedding": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.question": {"tf": 1}, "vanna.types.QuestionEmbedding.embedding": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.Status.__init__": {"tf": 1}, "vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1}, "vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.QuestionId.__init__": {"tf": 1}, "vanna.types.Question.__init__": {"tf": 1}, "vanna.types.QuestionCategory.__init__": {"tf": 1}, "vanna.types.AccuracyStats.__init__": {"tf": 1}, "vanna.types.Followup.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 1}, "vanna.types.Explanation.__init__": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 1}, "vanna.types.PlotlyResult.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 1}, "vanna.types.Diagram.__init__": {"tf": 1}}, "df": 19}}}, "d": {"docs": {"vanna.types.FullQuestionDocument.id": {"tf": 1}, "vanna.types.QuestionId.id": {"tf": 1}}, "df": 2}, "s": {"docs": {"vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}}, "df": 2}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.Status.message": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.Diagram.mermaid_code": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.DataResult.table_markdown": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"vanna.types.FullQuestionDocument.data": {"tf": 1}, "vanna.types.AccuracyStats.data": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.DataResult": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 1}, "vanna.types.DataResult.question": {"tf": 1}, "vanna.types.DataResult.sql": {"tf": 1}, "vanna.types.DataResult.table_markdown": {"tf": 1}, "vanna.types.DataResult.error": {"tf": 1}, "vanna.types.DataResult.correction_attempts": {"tf": 1}}, "df": 7}}}}}}}}}, "d": {"docs": {}, "df": 0, "l": {"docs": {"vanna.types.TableDefinition.ddl": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"vanna.types.Diagram": {"tf": 1}, "vanna.types.Diagram.__init__": {"tf": 1}, "vanna.types.Diagram.raw": {"tf": 1}, "vanna.types.Diagram.mermaid_code": {"tf": 1}}, "df": 4}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.Organization.name": {"tf": 1}, "vanna.types.WarehouseDefinition.name": {"tf": 1}, "vanna.types.TableDefinition.schema_name": {"tf": 1}, "vanna.types.TableDefinition.table_name": {"tf": 1}, "vanna.types.ColumnDefinition.name": {"tf": 1}}, "df": 5}}}, "o": {"docs": {"vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "m": {"docs": {"vanna.types.AccuracyStats.num_questions": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.Organization.user": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {"vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.DataResult.table_markdown": {"tf": 1}, "vanna.types.TableDefinition.table_name": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}}, "df": 3, "s": {"docs": {"vanna.types.WarehouseDefinition.tables": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.TableDefinition": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.schema_name": {"tf": 1}, "vanna.types.TableDefinition.table_name": {"tf": 1}, "vanna.types.TableDefinition.ddl": {"tf": 1}, "vanna.types.TableDefinition.columns": {"tf": 1}}, "df": 6}}}}}}}}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.ColumnDefinition.type": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}}, "df": 1}}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.WarehouseDefinition": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.name": {"tf": 1}, "vanna.types.WarehouseDefinition.tables": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}}}}}, "fullname": {"root": {"docs": {"vanna.types.Status.__init__": {"tf": 1}, "vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1}, "vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.QuestionId.__init__": {"tf": 1}, "vanna.types.Question.__init__": {"tf": 1}, "vanna.types.QuestionCategory.__init__": {"tf": 1}, "vanna.types.AccuracyStats.__init__": {"tf": 1}, "vanna.types.Followup.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 1}, "vanna.types.Explanation.__init__": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 1}, "vanna.types.PlotlyResult.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 1}, "vanna.types.Diagram.__init__": {"tf": 1}}, "df": 19, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {"vanna": {"tf": 1}, "vanna.api_key": {"tf": 1}, "vanna.set_org": {"tf": 1}, "vanna.store_sql": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.get_flagged_questions": {"tf": 1}, "vanna.get_accuracy_stats": {"tf": 1}, "vanna.types": {"tf": 1}, "vanna.types.Status": {"tf": 1}, "vanna.types.Status.__init__": {"tf": 1}, "vanna.types.Status.success": {"tf": 1}, "vanna.types.Status.message": {"tf": 1}, "vanna.types.QuestionList": {"tf": 1}, "vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.QuestionList.questions": {"tf": 1}, "vanna.types.FullQuestionDocument": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.FullQuestionDocument.id": {"tf": 1}, "vanna.types.FullQuestionDocument.question": {"tf": 1}, "vanna.types.FullQuestionDocument.answer": {"tf": 1}, "vanna.types.FullQuestionDocument.data": {"tf": 1}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1}, "vanna.types.QuestionSQLPair": {"tf": 1}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1}, "vanna.types.QuestionSQLPair.question": {"tf": 1}, "vanna.types.QuestionSQLPair.sql": {"tf": 1}, "vanna.types.Organization": {"tf": 1}, "vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.Organization.name": {"tf": 1}, "vanna.types.Organization.user": {"tf": 1}, "vanna.types.Organization.connection": {"tf": 1}, "vanna.types.QuestionId": {"tf": 1}, "vanna.types.QuestionId.__init__": {"tf": 1}, "vanna.types.QuestionId.id": {"tf": 1}, "vanna.types.Question": {"tf": 1}, "vanna.types.Question.__init__": {"tf": 1}, "vanna.types.Question.question": {"tf": 1}, "vanna.types.QuestionCategory": {"tf": 1}, "vanna.types.QuestionCategory.__init__": {"tf": 1}, "vanna.types.QuestionCategory.question": {"tf": 1}, "vanna.types.QuestionCategory.category": {"tf": 1}, "vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}, "vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}, "vanna.types.QuestionCategory.ASSUMED_CORRECT": {"tf": 1}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}, "vanna.types.AccuracyStats": {"tf": 1}, "vanna.types.AccuracyStats.__init__": {"tf": 1}, "vanna.types.AccuracyStats.num_questions": {"tf": 1}, "vanna.types.AccuracyStats.data": {"tf": 1}, "vanna.types.Followup": {"tf": 1}, "vanna.types.Followup.__init__": {"tf": 1}, "vanna.types.Followup.followup": {"tf": 1}, "vanna.types.QuestionEmbedding": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.question": {"tf": 1}, "vanna.types.QuestionEmbedding.embedding": {"tf": 1}, "vanna.types.Connection": {"tf": 1}, "vanna.types.SQLAnswer": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 1}, "vanna.types.SQLAnswer.raw_answer": {"tf": 1}, "vanna.types.SQLAnswer.prefix": {"tf": 1}, "vanna.types.SQLAnswer.postfix": {"tf": 1}, "vanna.types.SQLAnswer.sql": {"tf": 1}, "vanna.types.Explanation": {"tf": 1}, "vanna.types.Explanation.__init__": {"tf": 1}, "vanna.types.Explanation.explanation": {"tf": 1}, "vanna.types.DataResult": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 1}, "vanna.types.DataResult.question": {"tf": 1}, "vanna.types.DataResult.sql": {"tf": 1}, "vanna.types.DataResult.table_markdown": {"tf": 1}, "vanna.types.DataResult.error": {"tf": 1}, "vanna.types.DataResult.correction_attempts": {"tf": 1}, "vanna.types.PlotlyResult": {"tf": 1}, "vanna.types.PlotlyResult.__init__": {"tf": 1}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1}, "vanna.types.WarehouseDefinition": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.name": {"tf": 1}, "vanna.types.WarehouseDefinition.tables": {"tf": 1}, "vanna.types.TableDefinition": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.schema_name": {"tf": 1}, "vanna.types.TableDefinition.table_name": {"tf": 1}, "vanna.types.TableDefinition.ddl": {"tf": 1}, "vanna.types.TableDefinition.columns": {"tf": 1}, "vanna.types.ColumnDefinition": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.name": {"tf": 1}, "vanna.types.ColumnDefinition.type": {"tf": 1}, "vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}, "vanna.types.Diagram": {"tf": 1}, "vanna.types.Diagram.__init__": {"tf": 1}, "vanna.types.Diagram.raw": {"tf": 1}, "vanna.types.Diagram.mermaid_code": {"tf": 1}}, "df": 109}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"vanna.api_key": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "y": {"docs": {"vanna.get_accuracy_stats": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.AccuracyStats": {"tf": 1}, "vanna.types.AccuracyStats.__init__": {"tf": 1}, "vanna.types.AccuracyStats.num_questions": {"tf": 1}, "vanna.types.AccuracyStats.data": {"tf": 1}}, "df": 4}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.FullQuestionDocument.answer": {"tf": 1}, "vanna.types.SQLAnswer.raw_answer": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 3}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.ASSUMED_CORRECT": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.DataResult.correction_attempts": {"tf": 1}}, "df": 1}}}}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "y": {"docs": {"vanna.api_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}}, "df": 5}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"vanna.set_org": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna.store_sql": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.get_accuracy_stats": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.Status": {"tf": 1}, "vanna.types.Status.__init__": {"tf": 1}, "vanna.types.Status.success": {"tf": 1}, "vanna.types.Status.message": {"tf": 1}}, "df": 4}}}}}, "q": {"docs": {}, "df": 0, "l": {"docs": {"vanna.store_sql": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.types.QuestionSQLPair.sql": {"tf": 1}, "vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}, "vanna.types.SQLAnswer.sql": {"tf": 1}, "vanna.types.DataResult.sql": {"tf": 1}}, "df": 9, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.SQLAnswer": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 1}, "vanna.types.SQLAnswer.raw_answer": {"tf": 1}, "vanna.types.SQLAnswer.prefix": {"tf": 1}, "vanna.types.SQLAnswer.postfix": {"tf": 1}, "vanna.types.SQLAnswer.sql": {"tf": 1}}, "df": 6}}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.Status.success": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"vanna.types.TableDefinition.schema_name": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"vanna.set_org": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.Organization": {"tf": 1}, "vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.Organization.name": {"tf": 1}, "vanna.types.Organization.user": {"tf": 1}, "vanna.types.Organization.connection": {"tf": 1}}, "df": 5}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}}, "df": 1, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.get_flagged_questions": {"tf": 1}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"vanna.types.Followup": {"tf": 1}, "vanna.types.Followup.__init__": {"tf": 1}, "vanna.types.Followup.followup": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna.get_plotly_figure": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.FullQuestionDocument": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.FullQuestionDocument.id": {"tf": 1}, "vanna.types.FullQuestionDocument.question": {"tf": 1}, "vanna.types.FullQuestionDocument.answer": {"tf": 1}, "vanna.types.FullQuestionDocument.data": {"tf": 1}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1}}, "df": 7}}}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 3}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"vanna.remove_sql": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.get_results": {"tf": 1}}, "df": 1}}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "w": {"docs": {"vanna.types.SQLAnswer.raw_answer": {"tf": 1}, "vanna.types.Diagram.raw": {"tf": 1}}, "df": 2}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"vanna.generate_sql": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}}, "df": 4, "d": {"docs": {"vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.get_flagged_questions": {"tf": 1}, "vanna.get_accuracy_stats": {"tf": 1}}, "df": 4}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1}}, "df": 4, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.PlotlyResult": {"tf": 1}, "vanna.types.PlotlyResult.__init__": {"tf": 1}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1}}, "df": 3}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"vanna.types.SQLAnswer.prefix": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"vanna.types.SQLAnswer.postfix": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"vanna.generate_plotly_code": {"tf": 1}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1}, "vanna.types.Diagram.mermaid_code": {"tf": 1}}, "df": 3}}, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.Organization.connection": {"tf": 1}, "vanna.types.Connection": {"tf": 1}}, "df": 2}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.QuestionCategory.ASSUMED_CORRECT": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.DataResult.correction_attempts": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}}, "df": 1, "s": {"docs": {"vanna.types.TableDefinition.columns": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.ColumnDefinition": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.name": {"tf": 1}, "vanna.types.ColumnDefinition.type": {"tf": 1}, "vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}}, "df": 8}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.QuestionCategory.category": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.generate_explanation": {"tf": 1}, "vanna.types.Explanation": {"tf": 1}, "vanna.types.Explanation.__init__": {"tf": 1}, "vanna.types.Explanation.explanation": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.types.QuestionEmbedding.embedding": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.DataResult.error": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.generate_question": {"tf": 1}, "vanna.types.FullQuestionDocument.question": {"tf": 1}, "vanna.types.QuestionSQLPair.question": {"tf": 1}, "vanna.types.Question": {"tf": 1}, "vanna.types.Question.__init__": {"tf": 1}, "vanna.types.Question.question": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.question": {"tf": 1}, "vanna.types.QuestionEmbedding.question": {"tf": 1}, "vanna.types.DataResult.question": {"tf": 1}}, "df": 9, "s": {"docs": {"vanna.get_flagged_questions": {"tf": 1}, "vanna.types.QuestionList.questions": {"tf": 1}, "vanna.types.AccuracyStats.num_questions": {"tf": 1}}, "df": 3, "q": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.QuestionSQLPair": {"tf": 1}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1}, "vanna.types.QuestionSQLPair.question": {"tf": 1}, "vanna.types.QuestionSQLPair.sql": {"tf": 1}}, "df": 4}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.QuestionList": {"tf": 1}, "vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.QuestionList.questions": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionId": {"tf": 1}, "vanna.types.QuestionId.__init__": {"tf": 1}, "vanna.types.QuestionId.id": {"tf": 1}}, "df": 3}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.QuestionCategory": {"tf": 1}, "vanna.types.QuestionCategory.__init__": {"tf": 1}, "vanna.types.QuestionCategory.question": {"tf": 1}, "vanna.types.QuestionCategory.category": {"tf": 1}, "vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}, "vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}, "vanna.types.QuestionCategory.ASSUMED_CORRECT": {"tf": 1}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 12}}}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.types.QuestionEmbedding": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.question": {"tf": 1}, "vanna.types.QuestionEmbedding.embedding": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.ColumnDefinition.type": {"tf": 1}}, "df": 1, "s": {"docs": {"vanna.types": {"tf": 1}, "vanna.types.Status": {"tf": 1}, "vanna.types.Status.__init__": {"tf": 1}, "vanna.types.Status.success": {"tf": 1}, "vanna.types.Status.message": {"tf": 1}, "vanna.types.QuestionList": {"tf": 1}, "vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.QuestionList.questions": {"tf": 1}, "vanna.types.FullQuestionDocument": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.FullQuestionDocument.id": {"tf": 1}, "vanna.types.FullQuestionDocument.question": {"tf": 1}, "vanna.types.FullQuestionDocument.answer": {"tf": 1}, "vanna.types.FullQuestionDocument.data": {"tf": 1}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1}, "vanna.types.QuestionSQLPair": {"tf": 1}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1}, "vanna.types.QuestionSQLPair.question": {"tf": 1}, "vanna.types.QuestionSQLPair.sql": {"tf": 1}, "vanna.types.Organization": {"tf": 1}, "vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.Organization.name": {"tf": 1}, "vanna.types.Organization.user": {"tf": 1}, "vanna.types.Organization.connection": {"tf": 1}, "vanna.types.QuestionId": {"tf": 1}, "vanna.types.QuestionId.__init__": {"tf": 1}, "vanna.types.QuestionId.id": {"tf": 1}, "vanna.types.Question": {"tf": 1}, "vanna.types.Question.__init__": {"tf": 1}, "vanna.types.Question.question": {"tf": 1}, "vanna.types.QuestionCategory": {"tf": 1}, "vanna.types.QuestionCategory.__init__": {"tf": 1}, "vanna.types.QuestionCategory.question": {"tf": 1}, "vanna.types.QuestionCategory.category": {"tf": 1}, "vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}, "vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}, "vanna.types.QuestionCategory.ASSUMED_CORRECT": {"tf": 1}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}, "vanna.types.AccuracyStats": {"tf": 1}, "vanna.types.AccuracyStats.__init__": {"tf": 1}, "vanna.types.AccuracyStats.num_questions": {"tf": 1}, "vanna.types.AccuracyStats.data": {"tf": 1}, "vanna.types.Followup": {"tf": 1}, "vanna.types.Followup.__init__": {"tf": 1}, "vanna.types.Followup.followup": {"tf": 1}, "vanna.types.QuestionEmbedding": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.question": {"tf": 1}, "vanna.types.QuestionEmbedding.embedding": {"tf": 1}, "vanna.types.Connection": {"tf": 1}, "vanna.types.SQLAnswer": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 1}, "vanna.types.SQLAnswer.raw_answer": {"tf": 1}, "vanna.types.SQLAnswer.prefix": {"tf": 1}, "vanna.types.SQLAnswer.postfix": {"tf": 1}, "vanna.types.SQLAnswer.sql": {"tf": 1}, "vanna.types.Explanation": {"tf": 1}, "vanna.types.Explanation.__init__": {"tf": 1}, "vanna.types.Explanation.explanation": {"tf": 1}, "vanna.types.DataResult": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 1}, "vanna.types.DataResult.question": {"tf": 1}, "vanna.types.DataResult.sql": {"tf": 1}, "vanna.types.DataResult.table_markdown": {"tf": 1}, "vanna.types.DataResult.error": {"tf": 1}, "vanna.types.DataResult.correction_attempts": {"tf": 1}, "vanna.types.PlotlyResult": {"tf": 1}, "vanna.types.PlotlyResult.__init__": {"tf": 1}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1}, "vanna.types.WarehouseDefinition": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.name": {"tf": 1}, "vanna.types.WarehouseDefinition.tables": {"tf": 1}, "vanna.types.TableDefinition": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.schema_name": {"tf": 1}, "vanna.types.TableDefinition.table_name": {"tf": 1}, "vanna.types.TableDefinition.ddl": {"tf": 1}, "vanna.types.TableDefinition.columns": {"tf": 1}, "vanna.types.ColumnDefinition": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.name": {"tf": 1}, "vanna.types.ColumnDefinition.type": {"tf": 1}, "vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}, "vanna.types.Diagram": {"tf": 1}, "vanna.types.Diagram.__init__": {"tf": 1}, "vanna.types.Diagram.raw": {"tf": 1}, "vanna.types.Diagram.mermaid_code": {"tf": 1}}, "df": 95}}}}, "o": {"docs": {"vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.DataResult.table_markdown": {"tf": 1}, "vanna.types.TableDefinition.table_name": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}}, "df": 3, "s": {"docs": {"vanna.types.WarehouseDefinition.tables": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.TableDefinition": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.schema_name": {"tf": 1}, "vanna.types.TableDefinition.table_name": {"tf": 1}, "vanna.types.TableDefinition.ddl": {"tf": 1}, "vanna.types.TableDefinition.columns": {"tf": 1}}, "df": 6}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.Status.__init__": {"tf": 1}, "vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1}, "vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.QuestionId.__init__": {"tf": 1}, "vanna.types.Question.__init__": {"tf": 1}, "vanna.types.QuestionCategory.__init__": {"tf": 1}, "vanna.types.AccuracyStats.__init__": {"tf": 1}, "vanna.types.Followup.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 1}, "vanna.types.Explanation.__init__": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 1}, "vanna.types.PlotlyResult.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 1}, "vanna.types.Diagram.__init__": {"tf": 1}}, "df": 19}}}, "d": {"docs": {"vanna.types.FullQuestionDocument.id": {"tf": 1}, "vanna.types.QuestionId.id": {"tf": 1}}, "df": 2}, "s": {"docs": {"vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}}, "df": 2}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.Status.message": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.Diagram.mermaid_code": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.DataResult.table_markdown": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"vanna.types.FullQuestionDocument.data": {"tf": 1}, "vanna.types.AccuracyStats.data": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.DataResult": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 1}, "vanna.types.DataResult.question": {"tf": 1}, "vanna.types.DataResult.sql": {"tf": 1}, "vanna.types.DataResult.table_markdown": {"tf": 1}, "vanna.types.DataResult.error": {"tf": 1}, "vanna.types.DataResult.correction_attempts": {"tf": 1}}, "df": 7}}}}}}}}}, "d": {"docs": {}, "df": 0, "l": {"docs": {"vanna.types.TableDefinition.ddl": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"vanna.types.Diagram": {"tf": 1}, "vanna.types.Diagram.__init__": {"tf": 1}, "vanna.types.Diagram.raw": {"tf": 1}, "vanna.types.Diagram.mermaid_code": {"tf": 1}}, "df": 4}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.Organization.name": {"tf": 1}, "vanna.types.WarehouseDefinition.name": {"tf": 1}, "vanna.types.TableDefinition.schema_name": {"tf": 1}, "vanna.types.TableDefinition.table_name": {"tf": 1}, "vanna.types.ColumnDefinition.name": {"tf": 1}}, "df": 5}}}, "o": {"docs": {"vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "m": {"docs": {"vanna.types.AccuracyStats.num_questions": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.Organization.user": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}}, "df": 1}}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.WarehouseDefinition": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.name": {"tf": 1}, "vanna.types.WarehouseDefinition.tables": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}}}}}, "annotation": {"root": {"docs": {"vanna.api_key": {"tf": 1}, "vanna.types.Status.success": {"tf": 1}, "vanna.types.Status.message": {"tf": 1}, "vanna.types.QuestionList.questions": {"tf": 1}, "vanna.types.FullQuestionDocument.id": {"tf": 1}, "vanna.types.FullQuestionDocument.question": {"tf": 1}, "vanna.types.FullQuestionDocument.answer": {"tf": 1.4142135623730951}, "vanna.types.FullQuestionDocument.data": {"tf": 1.4142135623730951}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1.4142135623730951}, "vanna.types.QuestionSQLPair.question": {"tf": 1}, "vanna.types.QuestionSQLPair.sql": {"tf": 1}, "vanna.types.Organization.name": {"tf": 1}, "vanna.types.Organization.user": {"tf": 1.4142135623730951}, "vanna.types.Organization.connection": {"tf": 1.4142135623730951}, "vanna.types.QuestionId.id": {"tf": 1}, "vanna.types.Question.question": {"tf": 1}, "vanna.types.QuestionCategory.question": {"tf": 1}, "vanna.types.QuestionCategory.category": {"tf": 1}, "vanna.types.AccuracyStats.num_questions": {"tf": 1}, "vanna.types.AccuracyStats.data": {"tf": 1}, "vanna.types.Followup.followup": {"tf": 1}, "vanna.types.QuestionEmbedding.question": {"tf": 1}, "vanna.types.QuestionEmbedding.embedding": {"tf": 1}, "vanna.types.SQLAnswer.raw_answer": {"tf": 1}, "vanna.types.SQLAnswer.prefix": {"tf": 1}, "vanna.types.SQLAnswer.postfix": {"tf": 1}, "vanna.types.SQLAnswer.sql": {"tf": 1}, "vanna.types.Explanation.explanation": {"tf": 1}, "vanna.types.DataResult.question": {"tf": 1.4142135623730951}, "vanna.types.DataResult.sql": {"tf": 1.4142135623730951}, "vanna.types.DataResult.table_markdown": {"tf": 1}, "vanna.types.DataResult.error": {"tf": 1.4142135623730951}, "vanna.types.DataResult.correction_attempts": {"tf": 1}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1}, "vanna.types.WarehouseDefinition.name": {"tf": 1}, "vanna.types.WarehouseDefinition.tables": {"tf": 1}, "vanna.types.TableDefinition.schema_name": {"tf": 1}, "vanna.types.TableDefinition.table_name": {"tf": 1}, "vanna.types.TableDefinition.ddl": {"tf": 1.4142135623730951}, "vanna.types.TableDefinition.columns": {"tf": 1}, "vanna.types.ColumnDefinition.name": {"tf": 1}, "vanna.types.ColumnDefinition.type": {"tf": 1}, "vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}, "vanna.types.Diagram.raw": {"tf": 1}, "vanna.types.Diagram.mermaid_code": {"tf": 1}}, "df": 48, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"vanna.api_key": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"vanna.types.Status.success": {"tf": 1}, "vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.Status.message": {"tf": 1}, "vanna.types.QuestionSQLPair.question": {"tf": 1}, "vanna.types.QuestionSQLPair.sql": {"tf": 1}, "vanna.types.Organization.name": {"tf": 1}, "vanna.types.Organization.user": {"tf": 1}, "vanna.types.QuestionId.id": {"tf": 1}, "vanna.types.Question.question": {"tf": 1}, "vanna.types.QuestionCategory.question": {"tf": 1}, "vanna.types.QuestionCategory.category": {"tf": 1}, "vanna.types.Followup.followup": {"tf": 1}, "vanna.types.SQLAnswer.raw_answer": {"tf": 1}, "vanna.types.SQLAnswer.prefix": {"tf": 1}, "vanna.types.SQLAnswer.postfix": {"tf": 1}, "vanna.types.SQLAnswer.sql": {"tf": 1}, "vanna.types.Explanation.explanation": {"tf": 1}, "vanna.types.DataResult.question": {"tf": 1}, "vanna.types.DataResult.sql": {"tf": 1}, "vanna.types.DataResult.table_markdown": {"tf": 1}, "vanna.types.DataResult.error": {"tf": 1}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1}, "vanna.types.WarehouseDefinition.name": {"tf": 1}, "vanna.types.TableDefinition.schema_name": {"tf": 1}, "vanna.types.TableDefinition.table_name": {"tf": 1}, "vanna.types.TableDefinition.ddl": {"tf": 1}, "vanna.types.ColumnDefinition.name": {"tf": 1}, "vanna.types.ColumnDefinition.type": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}, "vanna.types.Diagram.raw": {"tf": 1}, "vanna.types.Diagram.mermaid_code": {"tf": 1}}, "df": 30}}, "q": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.FullQuestionDocument.answer": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {"vanna.types.QuestionList.questions": {"tf": 1}, "vanna.types.WarehouseDefinition.tables": {"tf": 1}, "vanna.types.TableDefinition.columns": {"tf": 1}}, "df": 3}}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.QuestionEmbedding.embedding": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.QuestionList.questions": {"tf": 1}, "vanna.types.FullQuestionDocument.id": {"tf": 1}, "vanna.types.FullQuestionDocument.question": {"tf": 1}, "vanna.types.FullQuestionDocument.answer": {"tf": 1}, "vanna.types.FullQuestionDocument.data": {"tf": 1}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1}, "vanna.types.Organization.connection": {"tf": 1}, "vanna.types.QuestionEmbedding.question": {"tf": 1}, "vanna.types.WarehouseDefinition.tables": {"tf": 1}, "vanna.types.TableDefinition.columns": {"tf": 1}}, "df": 10}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.WarehouseDefinition.tables": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.QuestionList.questions": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {"vanna.types.FullQuestionDocument.id": {"tf": 1}, "vanna.types.FullQuestionDocument.question": {"tf": 1}, "vanna.types.FullQuestionDocument.answer": {"tf": 1}, "vanna.types.FullQuestionDocument.data": {"tf": 1}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1}, "vanna.types.Organization.connection": {"tf": 1}, "vanna.types.QuestionEmbedding.question": {"tf": 1}}, "df": 7}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.FullQuestionDocument.question": {"tf": 1}, "vanna.types.QuestionEmbedding.question": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.FullQuestionDocument.id": {"tf": 1}}, "df": 1}}}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.FullQuestionDocument.answer": {"tf": 1}, "vanna.types.FullQuestionDocument.data": {"tf": 1}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1}, "vanna.types.Organization.user": {"tf": 1}, "vanna.types.Organization.connection": {"tf": 1}, "vanna.types.DataResult.question": {"tf": 1}, "vanna.types.DataResult.sql": {"tf": 1}, "vanna.types.DataResult.error": {"tf": 1}, "vanna.types.TableDefinition.ddl": {"tf": 1}}, "df": 9}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.FullQuestionDocument.data": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.AccuracyStats.data": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.FullQuestionDocument.plotly": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.Organization.connection": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.TableDefinition.columns": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.AccuracyStats.num_questions": {"tf": 1}, "vanna.types.AccuracyStats.data": {"tf": 1}, "vanna.types.DataResult.correction_attempts": {"tf": 1}}, "df": 3}}}}}, "default_value": {"root": {"docs": {"vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.ASSUMED_CORRECT": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1.4142135623730951}}, "df": 8, "n": {"docs": {}, "df": 0, "o": {"docs": {"vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "e": {"docs": {"vanna.api_key": {"tf": 1}}, "df": 1}}}}, "x": {"2": {"7": {"docs": {"vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.ASSUMED_CORRECT": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1.4142135623730951}}, "df": 8}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "l": {"docs": {"vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}}, "df": 2}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {"vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {"vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 3}}}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}}, "df": 1}}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.ASSUMED_CORRECT": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 3}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.QuestionCategory.ASSUMED_CORRECT": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}}, "df": 1}}}}}, "signature": {"root": {"docs": {"vanna.set_org": {"tf": 4}, "vanna.store_sql": {"tf": 4.898979485566356}, "vanna.flag_sql_for_review": {"tf": 7.54983443527075}, "vanna.remove_sql": {"tf": 4}, "vanna.generate_sql": {"tf": 4}, "vanna.generate_plotly_code": {"tf": 7.54983443527075}, "vanna.get_plotly_figure": {"tf": 8.12403840463596}, "vanna.get_results": {"tf": 6.324555320336759}, "vanna.generate_explanation": {"tf": 4}, "vanna.generate_question": {"tf": 4}, "vanna.get_flagged_questions": {"tf": 4.123105625617661}, "vanna.get_accuracy_stats": {"tf": 4.123105625617661}, "vanna.types.Status.__init__": {"tf": 4.47213595499958}, "vanna.types.QuestionList.__init__": {"tf": 5}, "vanna.types.FullQuestionDocument.__init__": {"tf": 10.198039027185569}, "vanna.types.QuestionSQLPair.__init__": {"tf": 4.47213595499958}, "vanna.types.Organization.__init__": {"tf": 7}, "vanna.types.QuestionId.__init__": {"tf": 3.4641016151377544}, "vanna.types.Question.__init__": {"tf": 3.4641016151377544}, "vanna.types.QuestionCategory.__init__": {"tf": 4.47213595499958}, "vanna.types.AccuracyStats.__init__": {"tf": 5.477225575051661}, "vanna.types.Followup.__init__": {"tf": 3.4641016151377544}, "vanna.types.QuestionEmbedding.__init__": {"tf": 5.744562646538029}, "vanna.types.SQLAnswer.__init__": {"tf": 6}, "vanna.types.Explanation.__init__": {"tf": 3.4641016151377544}, "vanna.types.DataResult.__init__": {"tf": 8}, "vanna.types.PlotlyResult.__init__": {"tf": 3.4641016151377544}, "vanna.types.WarehouseDefinition.__init__": {"tf": 5.744562646538029}, "vanna.types.TableDefinition.__init__": {"tf": 7.615773105863909}, "vanna.types.ColumnDefinition.__init__": {"tf": 7.615773105863909}, "vanna.types.Diagram.__init__": {"tf": 4.47213595499958}}, "df": 31, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"vanna.set_org": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"vanna.flag_sql_for_review": {"tf": 1.4142135623730951}, "vanna.generate_plotly_code": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "s": {"docs": {"vanna.get_plotly_figure": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"vanna.set_org": {"tf": 1}, "vanna.store_sql": {"tf": 1.4142135623730951}, "vanna.flag_sql_for_review": {"tf": 1.7320508075688772}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1.4142135623730951}, "vanna.generate_plotly_code": {"tf": 1.7320508075688772}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1.4142135623730951}, "vanna.generate_explanation": {"tf": 1.4142135623730951}, "vanna.generate_question": {"tf": 1.4142135623730951}, "vanna.types.Status.__init__": {"tf": 1}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1.4142135623730951}, "vanna.types.Organization.__init__": {"tf": 1.4142135623730951}, "vanna.types.QuestionId.__init__": {"tf": 1}, "vanna.types.Question.__init__": {"tf": 1}, "vanna.types.QuestionCategory.__init__": {"tf": 1.4142135623730951}, "vanna.types.AccuracyStats.__init__": {"tf": 1}, "vanna.types.Followup.__init__": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 2}, "vanna.types.Explanation.__init__": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 2}, "vanna.types.PlotlyResult.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1.7320508075688772}, "vanna.types.ColumnDefinition.__init__": {"tf": 2}, "vanna.types.Diagram.__init__": {"tf": 1.4142135623730951}}, "df": 26}}, "q": {"docs": {}, "df": 0, "l": {"docs": {"vanna.store_sql": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 1}}, "df": 9, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.FullQuestionDocument.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.Status.__init__": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"vanna.types.TableDefinition.__init__": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"vanna.set_org": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1.4142135623730951}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1.7320508075688772}, "vanna.types.Organization.__init__": {"tf": 1.4142135623730951}, "vanna.types.DataResult.__init__": {"tf": 1.7320508075688772}, "vanna.types.TableDefinition.__init__": {"tf": 1}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1.4142135623730951}, "vanna.types.ColumnDefinition.__init__": {"tf": 1}}, "df": 4}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"vanna.types.AccuracyStats.__init__": {"tf": 1}}, "df": 1}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.store_sql": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1.4142135623730951}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1}, "vanna.types.Question.__init__": {"tf": 1}, "vanna.types.QuestionCategory.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1.4142135623730951}, "vanna.types.DataResult.__init__": {"tf": 1}}, "df": 11, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"vanna.get_flagged_questions": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.AccuracyStats.__init__": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.FullQuestionDocument.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"vanna.store_sql": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.types.Status.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 1.4142135623730951}}, "df": 6}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.types.QuestionEmbedding.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.Explanation.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "g": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"vanna.get_plotly_figure": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.Status.__init__": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.Diagram.__init__": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.DataResult.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.AccuracyStats.__init__": {"tf": 1}}, "df": 2, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}}, "df": 3}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"vanna.get_results": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.FullQuestionDocument.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"vanna.get_plotly_figure": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna.get_results": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.AccuracyStats.__init__": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "l": {"docs": {"vanna.types.TableDefinition.__init__": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"vanna.get_plotly_figure": {"tf": 1.4142135623730951}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.PlotlyResult.__init__": {"tf": 1}}, "df": 3, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.FullQuestionDocument.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"vanna.types.SQLAnswer.__init__": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.ColumnDefinition.__init__": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"vanna.types.SQLAnswer.__init__": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}}, "df": 3}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.DataResult.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"vanna.get_plotly_figure": {"tf": 1}, "vanna.types.PlotlyResult.__init__": {"tf": 1}, "vanna.types.Diagram.__init__": {"tf": 1}}, "df": 3}}, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.Organization.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.ColumnDefinition.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"vanna.types.TableDefinition.__init__": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.TableDefinition.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "s": {"docs": {"vanna.get_results": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.QuestionCategory.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna.get_plotly_figure": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.QuestionList.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"vanna.types.Followup.__init__": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.ColumnDefinition.__init__": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.QuestionEmbedding.__init__": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"vanna.get_plotly_figure": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.ColumnDefinition.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"vanna.get_flagged_questions": {"tf": 1}, "vanna.get_accuracy_stats": {"tf": 1}, "vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 2.23606797749979}, "vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}}, "df": 8}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.DataResult.__init__": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 1}}, "df": 3, "s": {"docs": {"vanna.types.WarehouseDefinition.__init__": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.WarehouseDefinition.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {"vanna.get_plotly_figure": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {"vanna.get_flagged_questions": {"tf": 1}, "vanna.get_accuracy_stats": {"tf": 1}, "vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 2.23606797749979}, "vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}}, "df": 8}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.get_accuracy_stats": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.DataResult.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}}, "df": 4}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.QuestionId.__init__": {"tf": 1}}, "df": 2}, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.AccuracyStats.__init__": {"tf": 1.4142135623730951}, "vanna.types.DataResult.__init__": {"tf": 1}}, "df": 2}}, "s": {"docs": {"vanna.types.ColumnDefinition.__init__": {"tf": 1.4142135623730951}}, "df": 1}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.Organization.__init__": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "w": {"docs": {"vanna.types.SQLAnswer.__init__": {"tf": 1}, "vanna.types.Diagram.__init__": {"tf": 1}}, "df": 2}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.ColumnDefinition.__init__": {"tf": 2}}, "df": 1}}}}}, "bases": {"root": {"docs": {}, "df": 0}}, "doc": {"root": {"0": {"docs": {"vanna.get_accuracy_stats": {"tf": 2}}, "df": 1}, "1": {"0": {"docs": {"vanna": {"tf": 2.449489742783178}}, "df": 1}, "docs": {}, "df": 0}, "3": {"9": {"docs": {"vanna": {"tf": 4.69041575982343}, "vanna.generate_explanation": {"tf": 2}, "vanna.generate_question": {"tf": 2}, "vanna.get_accuracy_stats": {"tf": 2.449489742783178}}, "df": 4}, "docs": {}, "df": 0}, "docs": {"vanna": {"tf": 23.811761799581316}, "vanna.api_key": {"tf": 1.7320508075688772}, "vanna.set_org": {"tf": 3.872983346207417}, "vanna.store_sql": {"tf": 4.58257569495584}, "vanna.flag_sql_for_review": {"tf": 6}, "vanna.remove_sql": {"tf": 3.872983346207417}, "vanna.generate_sql": {"tf": 4.898979485566356}, "vanna.generate_plotly_code": {"tf": 6}, "vanna.get_plotly_figure": {"tf": 5.477225575051661}, "vanna.get_results": {"tf": 5.916079783099616}, "vanna.generate_explanation": {"tf": 7.810249675906654}, "vanna.generate_question": {"tf": 7.810249675906654}, "vanna.get_flagged_questions": {"tf": 6.164414002968976}, "vanna.get_accuracy_stats": {"tf": 6.4031242374328485}, "vanna.types": {"tf": 1.7320508075688772}, "vanna.types.Status": {"tf": 1.7320508075688772}, "vanna.types.Status.__init__": {"tf": 1.7320508075688772}, "vanna.types.Status.success": {"tf": 1.7320508075688772}, "vanna.types.Status.message": {"tf": 1.7320508075688772}, "vanna.types.QuestionList": {"tf": 1.7320508075688772}, "vanna.types.QuestionList.__init__": {"tf": 1.7320508075688772}, "vanna.types.QuestionList.questions": {"tf": 1.7320508075688772}, "vanna.types.FullQuestionDocument": {"tf": 1.7320508075688772}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1.7320508075688772}, "vanna.types.FullQuestionDocument.id": {"tf": 1.7320508075688772}, "vanna.types.FullQuestionDocument.question": {"tf": 1.7320508075688772}, "vanna.types.FullQuestionDocument.answer": {"tf": 1.7320508075688772}, "vanna.types.FullQuestionDocument.data": {"tf": 1.7320508075688772}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1.7320508075688772}, "vanna.types.QuestionSQLPair": {"tf": 1.7320508075688772}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1.7320508075688772}, "vanna.types.QuestionSQLPair.question": {"tf": 1.7320508075688772}, "vanna.types.QuestionSQLPair.sql": {"tf": 1.7320508075688772}, "vanna.types.Organization": {"tf": 1.7320508075688772}, "vanna.types.Organization.__init__": {"tf": 1.7320508075688772}, "vanna.types.Organization.name": {"tf": 1.7320508075688772}, "vanna.types.Organization.user": {"tf": 1.7320508075688772}, "vanna.types.Organization.connection": {"tf": 1.7320508075688772}, "vanna.types.QuestionId": {"tf": 1.7320508075688772}, "vanna.types.QuestionId.__init__": {"tf": 1.7320508075688772}, "vanna.types.QuestionId.id": {"tf": 1.7320508075688772}, "vanna.types.Question": {"tf": 1.7320508075688772}, "vanna.types.Question.__init__": {"tf": 1.7320508075688772}, "vanna.types.Question.question": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.__init__": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.question": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.category": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.ASSUMED_CORRECT": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1.7320508075688772}, "vanna.types.AccuracyStats": {"tf": 1.7320508075688772}, "vanna.types.AccuracyStats.__init__": {"tf": 1.7320508075688772}, "vanna.types.AccuracyStats.num_questions": {"tf": 1.7320508075688772}, "vanna.types.AccuracyStats.data": {"tf": 1.7320508075688772}, "vanna.types.Followup": {"tf": 1.7320508075688772}, "vanna.types.Followup.__init__": {"tf": 1.7320508075688772}, "vanna.types.Followup.followup": {"tf": 1.7320508075688772}, "vanna.types.QuestionEmbedding": {"tf": 1.7320508075688772}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1.7320508075688772}, "vanna.types.QuestionEmbedding.question": {"tf": 1.7320508075688772}, "vanna.types.QuestionEmbedding.embedding": {"tf": 1.7320508075688772}, "vanna.types.Connection": {"tf": 1.7320508075688772}, "vanna.types.SQLAnswer": {"tf": 1.7320508075688772}, "vanna.types.SQLAnswer.__init__": {"tf": 1.7320508075688772}, "vanna.types.SQLAnswer.raw_answer": {"tf": 1.7320508075688772}, "vanna.types.SQLAnswer.prefix": {"tf": 1.7320508075688772}, "vanna.types.SQLAnswer.postfix": {"tf": 1.7320508075688772}, "vanna.types.SQLAnswer.sql": {"tf": 1.7320508075688772}, "vanna.types.Explanation": {"tf": 1.7320508075688772}, "vanna.types.Explanation.__init__": {"tf": 1.7320508075688772}, "vanna.types.Explanation.explanation": {"tf": 1.7320508075688772}, "vanna.types.DataResult": {"tf": 1.7320508075688772}, "vanna.types.DataResult.__init__": {"tf": 1.7320508075688772}, "vanna.types.DataResult.question": {"tf": 1.7320508075688772}, "vanna.types.DataResult.sql": {"tf": 1.7320508075688772}, "vanna.types.DataResult.table_markdown": {"tf": 1.7320508075688772}, "vanna.types.DataResult.error": {"tf": 1.7320508075688772}, "vanna.types.DataResult.correction_attempts": {"tf": 1.7320508075688772}, "vanna.types.PlotlyResult": {"tf": 1.7320508075688772}, "vanna.types.PlotlyResult.__init__": {"tf": 1.7320508075688772}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1.7320508075688772}, "vanna.types.WarehouseDefinition": {"tf": 1.7320508075688772}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1.7320508075688772}, "vanna.types.WarehouseDefinition.name": {"tf": 1.7320508075688772}, "vanna.types.WarehouseDefinition.tables": {"tf": 1.7320508075688772}, "vanna.types.TableDefinition": {"tf": 1.7320508075688772}, "vanna.types.TableDefinition.__init__": {"tf": 1.7320508075688772}, "vanna.types.TableDefinition.schema_name": {"tf": 1.7320508075688772}, "vanna.types.TableDefinition.table_name": {"tf": 1.7320508075688772}, "vanna.types.TableDefinition.ddl": {"tf": 1.7320508075688772}, "vanna.types.TableDefinition.columns": {"tf": 1.7320508075688772}, "vanna.types.ColumnDefinition": {"tf": 1.7320508075688772}, "vanna.types.ColumnDefinition.__init__": {"tf": 1.7320508075688772}, "vanna.types.ColumnDefinition.name": {"tf": 1.7320508075688772}, "vanna.types.ColumnDefinition.type": {"tf": 1.7320508075688772}, "vanna.types.ColumnDefinition.is_primary_key": {"tf": 1.7320508075688772}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1.7320508075688772}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1.7320508075688772}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1.7320508075688772}, "vanna.types.Diagram": {"tf": 1.7320508075688772}, "vanna.types.Diagram.__init__": {"tf": 1.7320508075688772}, "vanna.types.Diagram.raw": {"tf": 1.7320508075688772}, "vanna.types.Diagram.mermaid_code": {"tf": 1.7320508075688772}}, "df": 109, "w": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1.7320508075688772}}, "df": 1}}, "o": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"vanna": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {"vanna": {"tf": 2.449489742783178}}, "df": 1, "s": {"docs": {"vanna": {"tf": 1.7320508075688772}}, "df": 1}, "n": {"docs": {"vanna": {"tf": 1}, "vanna.store_sql": {"tf": 1}}, "df": 2}, "t": {"docs": {"vanna": {"tf": 1}}, "df": 1, "s": {"docs": {"vanna.store_sql": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}}, "df": 3}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 2}}, "df": 1}}}}}, "f": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.get_flagged_questions": {"tf": 1}, "vanna.get_accuracy_stats": {"tf": 1}}, "df": 7}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {"vanna": {"tf": 3.605551275463989}, "vanna.set_org": {"tf": 1}, "vanna.store_sql": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.get_flagged_questions": {"tf": 1}, "vanna.get_accuracy_stats": {"tf": 1}}, "df": 11}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "n": {"docs": {"vanna": {"tf": 3.605551275463989}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.get_flagged_questions": {"tf": 1}, "vanna.get_accuracy_stats": {"tf": 1}}, "df": 5}}, "a": {"docs": {"vanna": {"tf": 1}, "vanna.store_sql": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1.4142135623730951}, "vanna.get_results": {"tf": 1}, "vanna.generate_question": {"tf": 1.4142135623730951}, "vanna.get_flagged_questions": {"tf": 1}}, "df": 8, "i": {"docs": {"vanna": {"tf": 3.1622776601683795}, "vanna.set_org": {"tf": 1}, "vanna.store_sql": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.generate_explanation": {"tf": 1.4142135623730951}, "vanna.generate_question": {"tf": 1.4142135623730951}, "vanna.get_flagged_questions": {"tf": 1}, "vanna.get_accuracy_stats": {"tf": 1}}, "df": 11}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.get_results": {"tf": 1}}, "df": 2, "k": {"docs": {"vanna": {"tf": 2}}, "df": 1}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 2.23606797749979}}, "df": 1}}}, "c": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {"vanna": {"tf": 1}, "vanna.generate_sql": {"tf": 1.7320508075688772}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.generate_explanation": {"tf": 2}, "vanna.generate_question": {"tf": 1.4142135623730951}, "vanna.get_flagged_questions": {"tf": 1}, "vanna.get_accuracy_stats": {"tf": 1}}, "df": 7, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1.7320508075688772}}, "df": 1, "[": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"vanna": {"tf": 1}, "vanna.store_sql": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1.4142135623730951}, "vanna.remove_sql": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}}, "df": 6}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"vanna": {"tf": 2.449489742783178}, "vanna.set_org": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.get_flagged_questions": {"tf": 1}, "vanna.get_accuracy_stats": {"tf": 1}}, "df": 8}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 2}}, "df": 1}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.set_org": {"tf": 1}, "vanna.store_sql": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}}, "df": 10}}}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "y": {"docs": {"vanna.get_accuracy_stats": {"tf": 2}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"vanna": {"tf": 2.6457513110645907}, "vanna.generate_plotly_code": {"tf": 2.23606797749979}, "vanna.get_plotly_figure": {"tf": 2.449489742783178}}, "df": 3}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"vanna.get_results": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {"vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}, "e": {"docs": {"vanna": {"tf": 2.8284271247461903}, "vanna.set_org": {"tf": 1.7320508075688772}, "vanna.store_sql": {"tf": 1.7320508075688772}, "vanna.flag_sql_for_review": {"tf": 2.23606797749979}, "vanna.remove_sql": {"tf": 1.4142135623730951}, "vanna.generate_sql": {"tf": 1.7320508075688772}, "vanna.generate_plotly_code": {"tf": 2.23606797749979}, "vanna.get_plotly_figure": {"tf": 1.7320508075688772}, "vanna.get_results": {"tf": 2.449489742783178}, "vanna.generate_explanation": {"tf": 1.7320508075688772}, "vanna.generate_question": {"tf": 1.7320508075688772}, "vanna.get_flagged_questions": {"tf": 1.4142135623730951}, "vanna.get_accuracy_stats": {"tf": 1.7320508075688772}}, "df": 13}}, "o": {"docs": {"vanna": {"tf": 2}, "vanna.store_sql": {"tf": 1.4142135623730951}, "vanna.flag_sql_for_review": {"tf": 1.7320508075688772}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1.7320508075688772}, "vanna.get_plotly_figure": {"tf": 1.4142135623730951}, "vanna.get_results": {"tf": 1.4142135623730951}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}}, "df": 10, "p": {"docs": {"vanna": {"tf": 2}}, "df": 1}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"vanna.get_accuracy_stats": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 1.7320508075688772}}, "df": 1}}}, "y": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1, "[": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}}, "df": 1}}}, "d": {"docs": {"vanna": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {"vanna": {"tf": 1}}, "df": 1, "r": {"docs": {"vanna": {"tf": 3.3166247903554}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 3.7416573867739413}, "vanna.store_sql": {"tf": 1.7320508075688772}, "vanna.flag_sql_for_review": {"tf": 2}, "vanna.remove_sql": {"tf": 1.7320508075688772}, "vanna.generate_sql": {"tf": 1.4142135623730951}, "vanna.generate_plotly_code": {"tf": 1.4142135623730951}, "vanna.generate_question": {"tf": 2}}, "df": 7, "s": {"docs": {"vanna": {"tf": 2.449489742783178}, "vanna.get_flagged_questions": {"tf": 1.7320508075688772}}, "df": 2}, "[": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.store_sql": {"tf": 1.4142135623730951}, "vanna.flag_sql_for_review": {"tf": 1.7320508075688772}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1.7320508075688772}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_results": {"tf": 1.7320508075688772}, "vanna.generate_explanation": {"tf": 1.4142135623730951}, "vanna.generate_question": {"tf": 1.4142135623730951}}, "df": 8}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 2.8284271247461903}, "vanna.generate_explanation": {"tf": 1.4142135623730951}, "vanna.generate_question": {"tf": 1.4142135623730951}}, "df": 3}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"vanna": {"tf": 3}}, "df": 1, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1.7320508075688772}, "vanna.store_sql": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.get_results": {"tf": 1.4142135623730951}}, "df": 4}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"vanna.generate_plotly_code": {"tf": 1.4142135623730951}, "vanna.get_plotly_figure": {"tf": 1.7320508075688772}, "vanna.get_results": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}, "o": {"docs": {"vanna": {"tf": 2.6457513110645907}}, "df": 1, "e": {"docs": {"vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}}, "df": 2, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}, "b": {"docs": {"vanna": {"tf": 2.449489742783178}}, "df": 1}, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.get_results": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "f": {"docs": {"vanna": {"tf": 2.23606797749979}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"vanna.get_accuracy_stats": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.get_flagged_questions": {"tf": 1}, "vanna.get_accuracy_stats": {"tf": 1}}, "df": 5, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"vanna.get_results": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.generate_explanation": {"tf": 2}}, "df": 1}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.flag_sql_for_review": {"tf": 1.4142135623730951}, "vanna.generate_sql": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.get_flagged_questions": {"tf": 1}, "vanna.get_accuracy_stats": {"tf": 1}}, "df": 8}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.get_accuracy_stats": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.store_sql": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}}, "df": 3}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.get_results": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 2.23606797749979}, "vanna.generate_plotly_code": {"tf": 2.23606797749979}, "vanna.get_plotly_figure": {"tf": 1.7320508075688772}}, "df": 3}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"vanna": {"tf": 1.7320508075688772}}, "df": 1, "{": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"vanna": {"tf": 2}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna": {"tf": 1}, "vanna.get_results": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {"vanna": {"tf": 1.7320508075688772}, "vanna.get_results": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 3}, "vanna.generate_sql": {"tf": 1.4142135623730951}, "vanna.generate_plotly_code": {"tf": 2}, "vanna.generate_explanation": {"tf": 1.7320508075688772}, "vanna.generate_question": {"tf": 1.7320508075688772}}, "df": 5, "[": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "t": {"docs": {"vanna": {"tf": 2}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_flagged_questions": {"tf": 1.4142135623730951}, "vanna.get_accuracy_stats": {"tf": 1.4142135623730951}}, "df": 4, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {"vanna": {"tf": 3.1622776601683795}}, "df": 1}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {"vanna.get_plotly_figure": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "l": {"docs": {"vanna": {"tf": 4.69041575982343}, "vanna.store_sql": {"tf": 1.7320508075688772}, "vanna.flag_sql_for_review": {"tf": 2}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1.7320508075688772}, "vanna.generate_plotly_code": {"tf": 1.4142135623730951}, "vanna.get_results": {"tf": 2}, "vanna.generate_explanation": {"tf": 2}, "vanna.generate_question": {"tf": 2}}, "df": 9}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 2.8284271247461903}, "vanna.set_org": {"tf": 1}}, "df": 2}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1.7320508075688772}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.get_accuracy_stats": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"vanna.get_accuracy_stats": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.store_sql": {"tf": 1.7320508075688772}}, "df": 2}}}, "r": {"docs": {"vanna.set_org": {"tf": 1}, "vanna.store_sql": {"tf": 1.4142135623730951}, "vanna.flag_sql_for_review": {"tf": 1.7320508075688772}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1.4142135623730951}, "vanna.generate_plotly_code": {"tf": 1.7320508075688772}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1.4142135623730951}, "vanna.generate_explanation": {"tf": 1.4142135623730951}, "vanna.generate_question": {"tf": 1.4142135623730951}}, "df": 10}, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"vanna": {"tf": 2.449489742783178}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}, "vanna.get_results": {"tf": 1}}, "df": 2}}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"vanna": {"tf": 2.6457513110645907}}, "df": 1}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1.7320508075688772}, "vanna.get_plotly_figure": {"tf": 1.4142135623730951}, "vanna.get_results": {"tf": 1}}, "df": 3, "r": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.generate_sql": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}}, "df": 4}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"vanna.get_flagged_questions": {"tf": 1.4142135623730951}}, "df": 1, "[": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.get_flagged_questions": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "y": {"docs": {"vanna": {"tf": 2.6457513110645907}}, "df": 1}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.generate_sql": {"tf": 1.4142135623730951}, "vanna.generate_plotly_code": {"tf": 1.4142135623730951}, "vanna.generate_explanation": {"tf": 1.4142135623730951}, "vanna.generate_question": {"tf": 1.4142135623730951}, "vanna.get_flagged_questions": {"tf": 1.4142135623730951}, "vanna.get_accuracy_stats": {"tf": 1.4142135623730951}}, "df": 6, "g": {"docs": {"vanna": {"tf": 1.7320508075688772}, "vanna.set_org": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 1.7320508075688772}, "vanna.set_org": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}}}, "n": {"docs": {"vanna": {"tf": 1.7320508075688772}}, "df": 1}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.generate_sql": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.get_flagged_questions": {"tf": 1}, "vanna.get_accuracy_stats": {"tf": 1}}, "df": 6}}}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "s": {"docs": {"vanna.get_plotly_figure": {"tf": 1}}, "df": 1}}}, "f": {"docs": {"vanna.get_results": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.get_flagged_questions": {"tf": 1.4142135623730951}}, "df": 3}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 2.6457513110645907}, "vanna.set_org": {"tf": 1.4142135623730951}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}}, "df": 4}}}, "o": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1, "n": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.generate_sql": {"tf": 1.4142135623730951}, "vanna.generate_plotly_code": {"tf": 1.4142135623730951}, "vanna.generate_explanation": {"tf": 1.4142135623730951}, "vanna.generate_question": {"tf": 1.4142135623730951}, "vanna.get_flagged_questions": {"tf": 1.4142135623730951}, "vanna.get_accuracy_stats": {"tf": 1.4142135623730951}}, "df": 7}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"vanna.flag_sql_for_review": {"tf": 2}}, "df": 1, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}, "vanna.get_flagged_questions": {"tf": 1.7320508075688772}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"vanna": {"tf": 1.7320508075688772}}, "df": 1, "{": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}}}, "g": {"docs": {"vanna": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.get_plotly_figure": {"tf": 1.7320508075688772}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"vanna": {"tf": 1.7320508075688772}, "vanna.remove_sql": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1.4142135623730951}, "vanna.get_flagged_questions": {"tf": 1}, "vanna.get_accuracy_stats": {"tf": 1}}, "df": 7}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"vanna": {"tf": 1}}, "df": 1, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.get_flagged_questions": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.set_org": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1.7320508075688772}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}}, "df": 6}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}}}}, "y": {"docs": {"vanna": {"tf": 3.872983346207417}}, "df": 1}, "s": {"docs": {}, "df": 0, "g": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.flag_sql_for_review": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "y": {"docs": {"vanna": {"tf": 2.449489742783178}, "vanna.flag_sql_for_review": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "z": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.get_results": {"tf": 1.4142135623730951}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}}, "df": 2}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"vanna.get_results": {"tf": 1}}, "df": 1, "s": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.get_flagged_questions": {"tf": 1}, "vanna.get_accuracy_stats": {"tf": 1}}, "df": 9}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"vanna.remove_sql": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"vanna.get_results": {"tf": 1}}, "df": 1}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "n": {"docs": {"vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}}, "df": 2}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; + + // mirrored in build-search-index.js (part 1) + // Also split on html tags. this is a cheap heuristic, but good enough. + elasticlunr.tokenizer.setSeperator(/[\s\-.;&_'"=,()]+|<[^>]*>/); + + let searchIndex; + if (docs._isPrebuiltIndex) { + console.info("using precompiled search index"); + searchIndex = elasticlunr.Index.load(docs); + } else { + console.time("building search index"); + // mirrored in build-search-index.js (part 2) + searchIndex = elasticlunr(function () { + this.pipeline.remove(elasticlunr.stemmer); + this.pipeline.remove(elasticlunr.stopWordFilter); + this.addField("qualname"); + this.addField("fullname"); + this.addField("annotation"); + this.addField("default_value"); + this.addField("signature"); + this.addField("bases"); + this.addField("doc"); + this.setRef("fullname"); + }); + for (let doc of docs) { + searchIndex.addDoc(doc); + } + console.timeEnd("building search index"); + } + + return (term) => searchIndex.search(term, { + fields: { + qualname: {boost: 4}, + fullname: {boost: 2}, + annotation: {boost: 2}, + default_value: {boost: 2}, + signature: {boost: 2}, + bases: {boost: 2}, + doc: {boost: 1}, + }, + expand: true + }); +})(); \ No newline at end of file diff --git a/sidebar.py b/sidebar.py new file mode 100644 index 000000000..367d962e1 --- /dev/null +++ b/sidebar.py @@ -0,0 +1,77 @@ +import yaml +import sys +import nbformat +from nbconvert import HTMLExporter + +# Get the yaml file path from the command line +file_path = sys.argv[1] + +# Get the directory to search for the .ipynb files from the command line +notebook_dir = sys.argv[2] + + +def generate_html(sidebar_data, current_path: str): + html = '
    \n' + for entry in sidebar_data: + html += '
  • \n' + if 'sub_entries' in entry: + # Dropdown menu with sub-entries + html += f'\n' + html += f'\n' + else: + # Regular sidebar entry without sub-entries + highlighted = 'bg-indigo-100 dark:bg-indigo-700' if entry['link'] == current_path else '' + html += f'\n' + html += f'{entry["svg_text"]}\n' + html += f'{entry["title"]}\n' + html += '\n' + html += '
  • \n' + html += '
' + return html + +# Read YAML data from a file +def read_yaml_file(file_path): + with open(file_path, 'r') as file: + yaml_data = file.read() + return yaml_data + +yaml_data = read_yaml_file(file_path) + +# Parse YAML data +sidebar_data = yaml.safe_load(yaml_data) + +# Get a list of all .ipynb files in the directory +import os +notebook_files = [file for file in os.listdir(notebook_dir) if file.endswith('.ipynb')] + +for notebook_file in notebook_files: + # Get just the file name without the extension + notebook_name = os.path.splitext(notebook_file)[0] + + # Get the full path to the notebook + notebook_file_path = os.path.join(notebook_dir, notebook_file) + + # Generate HTML code + html_code = generate_html(sidebar_data, f'{notebook_name}.html') + + # Read notebook file + current_notebook = nbformat.read(notebook_file_path, as_version=4) + + html_exporter = HTMLExporter(template_name='nb-theme') + + (body, resources) = html_exporter.from_notebook_node(current_notebook) + + # Write body to file + with open(os.path.join(notebook_dir, f'{notebook_name}.html'), 'w') as file: + file.write(body.replace('', html_code)) + diff --git a/sidebar.yaml b/sidebar.yaml new file mode 100644 index 000000000..9cbbcf84a --- /dev/null +++ b/sidebar.yaml @@ -0,0 +1,67 @@ +- title: How It Works + link: /how + svg_text: |- + + +- title: Ask Vanna + link: vn-ask.html + svg_text: |- + + +- title: Train Vanna + svg_text: |- + + sub_entries: + - title: Train 1 + link: /services/train-1 + svg_text: |- + + + - title: Train 2 + link: /services/train-2 + svg_text: |- + + +- title: User Interfaces + svg_text: |- + + sub_entries: + - title: Streamlit + link: streamlit.html + svg_text: |- + + + - title: Slack + link: slack.html + svg_text: |- + + +- title: Databases + link: databases.html + svg_text: |- + + +- title: API Reference + link: reference.html + svg_text: |- + diff --git a/slides.html b/slides.html new file mode 100644 index 000000000..ee93ea1d7 --- /dev/null +++ b/slides.html @@ -0,0 +1,63 @@ +
+
Updated: 2023-05-22
+ +

Vanna.AI

+

Python Package

+

For Natural Language to SQL
+(and associated functionality)

+

support@vanna.ai

+
+
+
Updated: 2023-05-22
+

What can you do with Vanna.AI?

+

Vanna.AI has a Python package that allows you to convert natural language to SQL.

+
import vanna as vn
+
+vn.api_key = 'vanna-key-...' # Set your API key
+vn.set_org('') # Set your organization name
+
+my_question = 'What are the top 10 ABC by XYZ?'
+
+sql = vn.generate_sql(question=my_question, error_msg=None) 
+# SELECT * FROM table_name WHERE column_name = 'value'
+
+(my_df, error_msg) = vn.run_sql(cs: snowflake.Cursor, sql=sql)
+
+vn.generate_plotly_code(question=my_question, df=my_df)
+# fig = px.bar(df, x='column_name', y='column_name')
+
+vn.run_plotly_code(plotly_code=fig, df=my_df)
+
+
+
+
+
Updated: 2023-05-22
+

Installation

+

Global Installation

+
pip install vanna
+
+

or

+
pip3 install vanna
+
+

Use a Virtual Environment

+
python3 -m venv venv
+source venv/bin/activate
+pip install vanna
+
+
+
+
Updated: 2023-05-22
+
+
\ No newline at end of file diff --git a/streamlit.md b/streamlit.md new file mode 100644 index 000000000..2b80b17a2 --- /dev/null +++ b/streamlit.md @@ -0,0 +1,13 @@ +# Use **Vanna.AI** with Streamlit + +## App + + +## Code +[https://github.com/vanna-ai/vanna-streamlit](https://github.com/vanna-ai/vanna-streamlit) + + \ No newline at end of file diff --git a/support.md b/support.md new file mode 100644 index 000000000..465992464 --- /dev/null +++ b/support.md @@ -0,0 +1,5 @@ +# Getting Support + +E-mail us at [support@vanna.ai](mailto:support@vanna.ai) + +[Join our Slack](https://join.slack.com/t/vanna-ai/shared_invite/zt-1unu0ipog-iE33QCoimQiBDxf2o7h97w) \ No newline at end of file diff --git a/vanna.html b/vanna.html new file mode 100644 index 000000000..d5d7534b0 --- /dev/null +++ b/vanna.html @@ -0,0 +1,786 @@ + + + + + + + vanna API documentation + + + + + + + + + + +
+
+

+vanna

+ +

What is Vanna.AI?

+ +

Vanna.AI is a platform that allows you to ask questions about your data in plain English. It is an AI-powered data analyst that can answer questions about your data, generate SQL, and create visualizations.

+ +

How do I use Vanna.AI?

+ +
    +
  • Import the Vanna.AI library
  • +
  • Set your API key
  • +
  • Set your organization name
  • +
  • Train Vanna.AI on your data
  • +
  • Ask questions about your data
  • +
+ +

How does Vanna.AI work?

+ +
flowchart TD + DB[(Known Correct Question-SQL)] + Try[Try to Use DDL/Documentation] + SQL(SQL) + Check{Is the SQL correct?} + Generate[fa:fa-circle-question Use Examples to Generate] + DB --> Find + Question[fa:fa-circle-question Question] --> Find{fa:fa-magnifying-glass Do we have similar questions?} + Find -- Yes --> Generate + Find -- No --> Try + Generate --> SQL + Try --> SQL + SQL --> Check + Check -- Yes --> DB + Check -- No --> Analyst[fa:fa-glasses Analyst Writes the SQL] + Analyst -- Adds --> DB +
+ +

Getting Started

+ +

How do I import the Vanna.AI library?

+ +
+
import vanna as vn
+
+
+ +

How do I set my API key?

+ +
+
vn.api_key = 'vanna-key-...'
+
+
+ +

How do I set my organization name?

+ +
+
vn.set_org('my_org')
+
+
+ +

How do I train Vanna.AI on my data?

+ +
+
vn.store_sql(
+    question="Who are the top 10 customers by Sales?", 
+    sql="SELECT customer_name, sales FROM customers ORDER BY sales DESC LIMIT 10"
+)
+
+
+ +

How do I ask questions about my data?

+ +
+
my_question = 'What are the top 10 ABC by XYZ?'
+
+sql = vn.generate_sql(question=my_question, error_msg=None)
+# SELECT * FROM table_name WHERE column_name = 'value'
+
+
+ +

Full Example

+ +
+
import vanna as vn
+
+vn.api_key = 'vanna-key-...' # Set your API key
+vn.set_org('') # Set your organization name
+
+# Train Vanna.AI on your data
+vn.store_sql(
+    question="Who are the top 10 customers by Sales?", 
+    sql="SELECT customer_name, sales FROM customers ORDER BY sales DESC LIMIT 10"
+)
+
+# Ask questions about your data
+my_question = 'What are the top 10 ABC by XYZ?'
+
+# Generate SQL
+sql = vn.generate_sql(question=my_question, error_msg=None) 
+
+# Connect to your database
+conn = snowflake.connector.connect(
+        user='my_user',
+        password='my_password',
+        account='my_account',
+        database='my_database',
+    )
+
+cs = conn.cursor()
+
+# Get results
+df = vn.get_results(
+    cs=cs, 
+    default_db=my_default_db, 
+    sql=sql
+    )
+
+# Generate Plotly code
+plotly_code = vn.generate_plotly_code(
+    question=my_question, 
+    sql=sql, 
+    df=df
+    )
+
+# Get Plotly figure
+fig = vn.get_plotly_figure(
+    plotly_code=plotly_code, 
+    df=df
+    )
+
+
+ +

API Reference

+
+ + + + +
+
+
+ api_key: Optional[str] = +None + + +
+ + + + +
+
+
+ + def + set_org(org: str) -> None: + + +
+ + +

Set the organization name for the Vanna.AI API.

+ +
Arguments:
+ +
    +
  • org (str): The organization name.
  • +
+
+ + +
+
+
+ + def + store_sql(question: str, sql: str) -> bool: + + +
+ + +

Store a question and its corresponding SQL query in the Vanna.AI database.

+ +
Arguments:
+ +
    +
  • question (str): The question to store.
  • +
  • sql (str): The SQL query to store.
  • +
+
+ + +
+
+
+ + def + flag_sql_for_review( question: str, sql: Optional[str] = None, error_msg: Optional[str] = None) -> bool: + + +
+ + +

Flag a question and its corresponding SQL query for review by the Vanna.AI team.

+ +
Arguments:
+ +
    +
  • question (str): The question to flag.
  • +
  • sql (str): The SQL query to flag.
  • +
  • error_msg (str): The error message to flag.
  • +
+ +
Returns:
+ +
+

bool: True if the question and SQL query were flagged successfully, False otherwise.

+
+
+ + +
+
+
+ + def + remove_sql(question: str) -> bool: + + +
+ + +

Remove a question and its corresponding SQL query from the Vanna.AI database.

+ +
Arguments:
+ +
    +
  • question (str): The question to remove.
  • +
+
+ + +
+
+
+ + def + generate_sql(question: str) -> str: + + +
+ + +

Generate an SQL query using the Vanna.AI API.

+ +
Arguments:
+ +
    +
  • question (str): The question to generate an SQL query for.
  • +
+ +
Returns:
+ +
+

str or None: The SQL query, or None if an error occurred.

+
+
+ + +
+
+
+ + def + generate_plotly_code( question: Optional[str], sql: Optional[str], df: pandas.core.frame.DataFrame) -> str: + + +
+ + +

Generate Plotly code using the Vanna.AI API.

+ +
Arguments:
+ +
    +
  • question (str): The question to generate Plotly code for.
  • +
  • sql (str): The SQL query to generate Plotly code for.
  • +
  • df (pd.DataFrame): The dataframe to generate Plotly code for.
  • +
+ +
Returns:
+ +
+

str or None: The Plotly code, or None if an error occurred.

+
+
+ + +
+
+
+ + def + get_plotly_figure( plotly_code: str, df: pandas.core.frame.DataFrame, dark_mode: bool = True) -> plotly.graph_objs._figure.Figure: + + +
+ + +

Get a Plotly figure from a dataframe and Plotly code.

+ +
Arguments:
+ +
    +
  • df (pd.DataFrame): The dataframe to use.
  • +
  • plotly_code (str): The Plotly code to use.
  • +
+ +
Returns:
+ +
+

plotly.graph_objs.Figure: The Plotly figure.

+
+
+ + +
+
+
+ + def + get_results(cs, default_database: str, sql: str) -> pandas.core.frame.DataFrame: + + +
+ + +

Run the SQL query and return the results as a pandas dataframe.

+ +
Arguments:
+ +
    +
  • cs: Snowflake connection cursor.
  • +
  • default_database (str): The default database to use.
  • +
  • sql (str): The SQL query to execute.
  • +
+ +
Returns:
+ +
+

pd.DataFrame: The results of the SQL query.

+
+
+ + +
+
+
+ + def + generate_explanation(sql: str) -> str: + + +
+ + +

Example

+ +
+
vn.generate_explanation(sql="SELECT * FROM students WHERE name = 'John Doe'")
+# 'AI Response'
+
+
+ +

Generate an explanation of an SQL query using the Vanna.AI API.

+ +
Arguments:
+ +
    +
  • sql (str): The SQL query to generate an explanation for.
  • +
+ +
Returns:
+ +
+

str or None: The explanation, or None if an error occurred.

+
+
+ + +
+
+
+ + def + generate_question(sql: str) -> str: + + +
+ + +

Example

+ +
+
vn.generate_question(sql="SELECT * FROM students WHERE name = 'John Doe'")
+# 'AI Response'
+
+
+ +

Generate a question from an SQL query using the Vanna.AI API.

+ +
Arguments:
+ +
    +
  • sql (str): The SQL query to generate a question for.
  • +
+ +
Returns:
+ +
+

str or None: The question, or None if an error occurred.

+
+
+ + +
+
+
+ + def + get_flagged_questions() -> vanna.types.QuestionList: + + +
+ + +

Example

+ +
+
vn.get_flagged_questions()
+# [FullQuestionDocument(...), ...]
+
+
+ +

Get a list of flagged questions from the Vanna.AI API.

+ +
Returns:
+ +
+

List[FullQuestionDocument] or None: The list of flagged questions, or None if an error occurred.

+
+
+ + +
+
+
+ + def + get_accuracy_stats() -> vanna.types.AccuracyStats: + + +
+ + +

Example

+ +
+
vn.get_accuracy_stats()
+# {'accuracy': 0.0, 'total': 0, 'correct': 0}
+
+
+ +

Get the accuracy statistics from the Vanna.AI API.

+ +
Returns:
+ +
+

dict or None: The accuracy statistics, or None if an error occurred.

+
+
+ + +
+
+ + \ No newline at end of file diff --git a/vanna/types.html b/vanna/types.html new file mode 100644 index 000000000..e67727804 --- /dev/null +++ b/vanna/types.html @@ -0,0 +1,1717 @@ + + + + + + + vanna.types API documentation + + + + + + + + + + +
+
+

+vanna.types

+ + + + + +
+
+
+
@dataclass
+ + class + Status: + + +
+ + + + +
+
+ + Status(success: bool, message: str) + + +
+ + + + +
+
+
+ success: bool + + +
+ + + + +
+
+
+ message: str + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + QuestionList: + + +
+ + + + +
+
+ + QuestionList(questions: List[vanna.types.FullQuestionDocument]) + + +
+ + + + +
+
+
+ questions: List[vanna.types.FullQuestionDocument] + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + FullQuestionDocument: + + +
+ + + + +
+
+ + FullQuestionDocument( id: vanna.types.QuestionId, question: vanna.types.Question, answer: vanna.types.SQLAnswer | None, data: vanna.types.DataResult | None, plotly: vanna.types.PlotlyResult | None) + + +
+ + + + +
+
+ + + + + +
+
+
+ question: vanna.types.Question + + +
+ + + + +
+
+
+ answer: vanna.types.SQLAnswer | None + + +
+ + + + +
+
+
+ data: vanna.types.DataResult | None + + +
+ + + + +
+
+
+ plotly: vanna.types.PlotlyResult | None + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + QuestionSQLPair: + + +
+ + + + +
+
+ + QuestionSQLPair(question: str, sql: str) + + +
+ + + + +
+
+
+ question: str + + +
+ + + + +
+
+
+ sql: str + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + Organization: + + +
+ + + + +
+
+ + Organization( name: str, user: str | None, connection: vanna.types.Connection | None) + + +
+ + + + +
+
+
+ name: str + + +
+ + + + +
+
+
+ user: str | None + + +
+ + + + +
+
+
+ connection: vanna.types.Connection | None + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + QuestionId: + + +
+ + + + +
+
+ + QuestionId(id: str) + + +
+ + + + +
+
+
+ id: str + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + Question: + + +
+ + + + +
+
+ + Question(question: str) + + +
+ + + + +
+
+
+ question: str + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + QuestionCategory: + + +
+ + + + +
+
+ + QuestionCategory(question: str, category: str) + + +
+ + + + +
+
+
+ question: str + + +
+ + + + +
+
+
+ category: str + + +
+ + + + +
+
+
+ NO_SQL_GENERATED = +'No SQL Generated' + + +
+ + + + +
+
+
+ SQL_UNABLE_TO_RUN = +'SQL Unable to Run' + + +
+ + + + +
+
+
+ BOOTSTRAP_TRAINING_QUERY = +'Bootstrap Training Query' + + +
+ + + + +
+
+
+ ASSUMED_CORRECT = +'Assumed Correct' + + +
+ + + + +
+
+
+ FLAGGED_FOR_REVIEW = +'Flagged for Review' + + +
+ + + + +
+
+
+ REVIEWED_AND_APPROVED = +'Reviewed and Approved' + + +
+ + + + +
+
+
+ REVIEWED_AND_REJECTED = +'Reviewed and Rejected' + + +
+ + + + +
+
+
+ REVIEWED_AND_UPDATED = +'Reviewed and Updated' + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + AccuracyStats: + + +
+ + + + +
+
+ + AccuracyStats(num_questions: int, data: Dict[str, int]) + + +
+ + + + +
+
+
+ num_questions: int + + +
+ + + + +
+
+
+ data: Dict[str, int] + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + Followup: + + +
+ + + + +
+
+ + Followup(followup: str) + + +
+ + + + +
+
+
+ followup: str + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + QuestionEmbedding: + + +
+ + + + +
+
+ + QuestionEmbedding(question: vanna.types.Question, embedding: List[float]) + + +
+ + + + +
+
+
+ question: vanna.types.Question + + +
+ + + + +
+
+
+ embedding: List[float] + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + Connection: + + +
+ + + + +
+
+
+
@dataclass
+ + class + SQLAnswer: + + +
+ + + + +
+
+ + SQLAnswer(raw_answer: str, prefix: str, postfix: str, sql: str) + + +
+ + + + +
+
+
+ raw_answer: str + + +
+ + + + +
+
+
+ prefix: str + + +
+ + + + +
+
+
+ postfix: str + + +
+ + + + +
+
+
+ sql: str + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + Explanation: + + +
+ + + + +
+
+ + Explanation(explanation: str) + + +
+ + + + +
+
+
+ explanation: str + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + DataResult: + + +
+ + + + +
+
+ + DataResult( question: str | None, sql: str | None, table_markdown: str, error: str | None, correction_attempts: int) + + +
+ + + + +
+
+
+ question: str | None + + +
+ + + + +
+
+
+ sql: str | None + + +
+ + + + +
+
+
+ table_markdown: str + + +
+ + + + +
+
+
+ error: str | None + + +
+ + + + +
+
+
+ correction_attempts: int + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + PlotlyResult: + + +
+ + + + +
+
+ + PlotlyResult(plotly_code: str) + + +
+ + + + +
+
+
+ plotly_code: str + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + WarehouseDefinition: + + +
+ + + + +
+
+ + WarehouseDefinition(name: str, tables: List[vanna.types.TableDefinition]) + + +
+ + + + +
+
+
+ name: str + + +
+ + + + +
+
+
+ tables: List[vanna.types.TableDefinition] + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + TableDefinition: + + +
+ + + + +
+
+ + TableDefinition( schema_name: str, table_name: str, ddl: str | None, columns: List[vanna.types.ColumnDefinition]) + + +
+ + + + +
+
+
+ schema_name: str + + +
+ + + + +
+
+
+ table_name: str + + +
+ + + + +
+
+
+ ddl: str | None + + +
+ + + + +
+
+
+ columns: List[vanna.types.ColumnDefinition] + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + ColumnDefinition: + + +
+ + + + +
+
+ + ColumnDefinition( name: str, type: str, is_primary_key: bool, is_foreign_key: bool, foreign_key_table: str, foreign_key_column: str) + + +
+ + + + +
+
+
+ name: str + + +
+ + + + +
+
+
+ type: str + + +
+ + + + +
+
+
+ is_primary_key: bool + + +
+ + + + +
+
+
+ is_foreign_key: bool + + +
+ + + + +
+
+
+ foreign_key_table: str + + +
+ + + + +
+
+
+ foreign_key_column: str + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + Diagram: + + +
+ + + + +
+
+ + Diagram(raw: str, mermaid_code: str) + + +
+ + + + +
+
+
+ raw: str + + +
+ + + + +
+
+
+ mermaid_code: str + + +
+ + + + +
+
+
+ + \ No newline at end of file diff --git a/vn-ask.html b/vn-ask.html new file mode 100644 index 000000000..fc7ec28bd --- /dev/null +++ b/vn-ask.html @@ -0,0 +1,7959 @@ + + + + + + + + + + + +Notebook + + + + + + + + + + + + + + + +
+ + + + + + +
+ + diff --git a/vn-ask.ipynb b/vn-ask.ipynb new file mode 100644 index 000000000..618aa3b66 --- /dev/null +++ b/vn-ask.ipynb @@ -0,0 +1,572 @@ +{ + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![Vanna AI](https://img.vanna.ai/vanna-ask.svg)\n", + "\n", + "The following notebook goes through the process of asking questions from your data using Vanna AI. Here we use a demo model that is pre-trained on the [TPC-H dataset](https://docs.snowflake.com/en/user-guide/sample-data-tpch.html) that is available in Snowflake.\n", + "\n", + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vanna-ai/vanna-py/blob/main/notebooks/vn-ask.ipynb)\n", + "\n", + "[![Open in GitHub](https://img.vanna.ai/github.svg)](https://github.com/vanna-ai/vanna-py/blob/main/notebooks/vn-ask.ipynb)\n", + "\n", + "# Install Vanna\n", + "First we install Vanna from [PyPI](https://pypi.org/project/vanna/) and import it.\n", + "Here, we'll also install the Snowflake connector. If you're using a different database, you'll need to install the appropriate connector." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%pip install vanna\n", + "%pip install snowflake-connector-python" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import vanna as vn\n", + "import snowflake.connector" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Login\n", + "Creating a login and getting an API key is as easy as entering your email (after you run this cell) and entering the code we send to you. Check your Spam folder if you don't see the code." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "api_key = vn.get_api_key('my-email@example.com')\n", + "vn.set_api_key(api_key)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Set your Model\n", + "You need to choose a globally unique model name. Try using your company name or another unique string. All data from models are isolated - there's no leakage." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "vn.set_model('tpc') # Enter your model name here. This is a globally unique identifier for your model." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Set Database Connection\n", + "These details are only referenced within your notebook. These database credentials are never sent to Vanna's severs." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "vn.connect_to_snowflake(account='my-account', username='my-username', password='my-password', database='my-database')" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Get Results\n", + "This gets the SQL, gets the dataframe, and prints them both. Note that we use your connection string to execute the SQL on your warehouse from your local instance. Your connection nor your data gets sent to Vanna's servers. For more info on how Vanna works, [see this post](https://medium.com/vanna-ai/how-vanna-works-how-to-train-it-data-security-8d8f2008042)." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SELECT c.c_name as customer_name,\n", + " sum(l.l_extendedprice * (1 - l.l_discount)) as total_sales\n", + "FROM snowflake_sample_data.tpch_sf1.lineitem l join snowflake_sample_data.tpch_sf1.orders o\n", + " ON l.l_orderkey = o.o_orderkey join snowflake_sample_data.tpch_sf1.customer c\n", + " ON o.o_custkey = c.c_custkey\n", + "GROUP BY customer_name\n", + "ORDER BY total_sales desc limit 10;\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CUSTOMER_NAMETOTAL_SALES
0Customer#0001435006757566.0218
1Customer#0000952576294115.3340
2Customer#0000871156184649.5176
3Customer#0001311136080943.8305
4Customer#0001343806075141.9635
5Customer#0001038346059770.3232
6Customer#0000696826057779.0348
7Customer#0001020226039653.6335
8Customer#0000985876027021.5855
9Customer#0000646605905659.6159
\n", + "
" + ], + "text/plain": [ + " CUSTOMER_NAME TOTAL_SALES\n", + "0 Customer#000143500 6757566.0218\n", + "1 Customer#000095257 6294115.3340\n", + "2 Customer#000087115 6184649.5176\n", + "3 Customer#000131113 6080943.8305\n", + "4 Customer#000134380 6075141.9635\n", + "5 Customer#000103834 6059770.3232\n", + "6 Customer#000069682 6057779.0348\n", + "7 Customer#000102022 6039653.6335\n", + "8 Customer#000098587 6027021.5855\n", + "9 Customer#000064660 5905659.6159" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABXgAAAPoCAYAAABkvZZOAAAgAElEQVR4XuzdCbhdZXU38PeGhCkBjFQwhEEkYDDMkwIODIKzMn1O/epsxaEtKKKCUkBwaPtZAcU64QBUxRapiopigCLzDEUjg4wqSqGEECQkJN9zjuVK4ObeG961cve++5fn6fPQe/f5n3f/1sblWj09GZg6deqS4g8BAgQIECBAgAABAgQIECBAgAABAgQItE5gwIK3dTVzYAIECBAgQIAAAQIECBAgQIAAAQIECPQFLHg9CAQIECBAgAABAgQIECBAgAABAgQIEGipgAVvSwvn2AQIECBAgAABAgQIECBAgAABAgQIELDg9QwQIECAAAECBAgQIECAAAECBAgQIECgpQIWvC0tnGMTIECAAAECBAgQIECAAAECBAgQIEDAgtczQIAAAQIECBAgQIAAAQIECBAgQIAAgZYKWPC2tHCOTYAAAQIECBAgQIAAAQIECBAgQIAAAQtezwABAgQIECBAgAABAgQIECBAgAABAgRaKmDB29LCOTYBAgQIECBAgAABAgQIECBAgAABAgQseD0DBAgQIECAAAECBAgQIECAAAECBAgQaKmABW9LC+fYBAgQIECAAAECBAgQIECAAAECBAgQsOD1DBAgQIAAAQIECBAgQIAAAQIECBAgQKClAha8LS2cYxMgQIAAAQIECBAgQIAAAQIECBAgQMCC1zNAgAABAgQIECBAgAABAgQIECBAgACBlgpY8La0cI5NgAABAgQIECBAgAABAgQIECBAgAABC17PAAECBAgQIECAAAECBAgQIECAAAECBFoqYMHb0sI5NgECBAgQIECAAAECBAgQIECAAAECBCx4PQMECBAgQIAAAQIECBAgQIAAAQIECBBoqYAFb0sL59gECBAgQIAAAQIECBAgQIAAAQIECBCw4PUMECBAgAABAgQIECBAgAABAgQIECBAoKUCFrwtLZxjEyBAgAABAgQIECBAgAABAgQIECBAwILXM0CAAAECBAgQIECAAAECBAgQIECAAIGWCljwtrRwjk2AAAECBAgQIECAAAECBAgQIECAAAELXs8AAQIECBAgQIAAAQIECBAgQIAAAQIEWipgwdvSwjk2AQIECBAgQIAAAQIECBAgQIAAAQIELHg9AwQIECBAgAABAgQIECBAgAABAgQIEGipgAVvSwvn2AQIECBAgAABAgQIECBAgAABAgQIELDg9QwQIECAAAECBAgQIECAAAECBAgQIECgpQIWvC0tnGMTIECAAAECBAgQIECAAAECBAgQIEDAgtczQIAAAQIECBAgQIAAAQIECBAgQIAAgZYKWPC2tHCOTYAAAQIECBAgQIAAAQIECBAgQIAAAQtezwABAgQIECBAgAABAgQIECBAgAABAgRaKmDB29LCOTYBAgQIECBAgAABAgQIECBAgAABAgQseD0DBAgQIECAAAECBAgQIECAAAECBAgQaKmABW9LC+fYBAgQIECAAAECBAgQIECAAAECBAgQsOD1DBAgQIAAAQIECBAgQIAAAQIECBAgQKClAha8LS2cYxMgQIAAAQIECBAgQIAAAQIECBAgQMCC1zNAgAABAgQIECBAgAABAgQIECBAgACBlgpY8La0cI5NgAABAgQIECBAgAABAgQIECBAgAABC17PAAECBAgQIECAAAECBAgQIECAAAECBFoqYMHb0sI5NgECBAgQIECAAAECBAgQIECAAAECBCx4PQMECBAgQIAAAQIECBAgQIAAAQIECBBoqYAFb0sL59gECBAgQIAAAQIECBAgQIAAAQIECBCw4PUMECBAgAABAgQIECBAgAABAgQIECBAoKUCFrwtLZxjEyBAgAABAgQIECBAgAABAgQIECBAwILXM0CAAAECBAgQIECAAAECBAgQIECAAIGWCljwtrRwjk2AAAECBAgQIECAAAECBAgQIECAAAELXs8AAQIECBAgQIAAAQIECBAgQIAAAQIEWipgwdvSwjk2AQIECBAgQIAAAQIECBAgQIAAAQIELHg9AwQIECBAgAABAgQIECBAgAABAgQIEGipgAVvSwvn2AQIECBAgAABAgQIECBAgAABAgQIELDg9QwQIECAAAECBAgQIECAAAECBAgQIECgpQIWvC0tnGMTIECAAAECBAgQIECAAAECBAgQIEDAgtczQIAAAQIECBAgQIAAAQIECBAgQIAAgZYKWPC2tHCOTYAAAQIECBAgQIAAAQIECBAgQIAAAQtezwABAgQIECBAgAABAgQIECBAgAABAgRaKmDB29LCOTYBAgQIECBAgAABAgQIECBAgAABAgQseD0DBAgQIECAAAECBAgQIECAAAECBAgQaKmABW9LC+fYBAgQIECAAAECBAgQIECAAAECBAgQsOD1DBAgQIAAAQIECBAgQIAAAQIECBAgQKClAha8LS2cYxMgQIAAAQIECBAgQIAAAQIECBAgQMCC1zNAgAABAgQIECBAgAABAgQIECBAgACBlgpY8La0cI5NgAABAgQIECBAgAABAgQIECBAgAABC17PAAECBAgQIECAAAECBAgQIECAAAECBFoqYMHb0sI5NgECBAgQIECAAAECBAgQIECAAAECBCx4PQMECBAgQIAAAQIECBAgQIAAAQIECBBoqYAFb0sL59gECBAgQIAAAQIECBAgQIAAAQIECBCw4PUMECBAgAABAgQIECBAgAABAgQIECBAoKUCFrwtLZxjEyBAgAABAgQIECBAgAABAgQIECBAwILXM0CAAAECBAgQIECAAAECBAgQIECAAIGWCljwtrRwjk2AAAECBAgQIECAAAECBAgQIECAAAELXs8AAQIECBAgQIAAAQIECBAgQIAAAQIEWipgwdvSwjk2AQIECBAgQIAAAQIECBAgQIAAAQIELHg9AwQIECBAgAABAgQIECBAgAABAgQIEGipgAVvSwvn2AQIECBAgAABAgQIECBAgAABAgQIELDg9QwQIECAAAECBAgQIECAAAECBAgQIECgpQIWvC0tnGMTIECAAAECBAgQIECAAAECBAgQIEDAgtczQIAAAQIECBAgQIAAAQIECBAgQIAAgZYKWPC2tHCOTYAAAQIECBAgQIAAAQIECBAgQIAAAQtezwABAgQIECBAgAABAgQIECBAgAABAgRaKmDB29LCOTYBAgQIECBAgAABAgQIECBAgAABAgQseD0DBAgQIECAAAECBAgQIECAAAECBAgQaKmABW9LC+fYBAgQIECAAAECBAgQIECAAAECBAgQsOD1DBAgQIAAAQIECBAgQIAAAQIECBAgQKClAha8LS2cYxMgQIAAAQIECBAgQIAAAQIECBAgQMCC1zNAgAABAgQIECBAgAABAgQIECBAgACBlgpY8La0cI5NgAABAgQIECBAgAABAgQIECBAgAABC17PAAECBAgQIECAAAECBAgQIECAAAECBFoqYMHb0sI5NgECBAgQIECAAAECBAgQIECAAAECBCx4PQMECBAgQIAAAQIECBAgQIAAAQIECBBoqYAFb0sL59gECBAgQIAAAQIECBAgQIAAAQIECBCw4PUMECBAgAABAgQIECBAgAABAgQIECBAoKUCFrwtLZxjEyBAgAABAgQIECBAgAABAgQIECBAwILXM0CAAAECBAgQIECAAAECBAgQIECAAIGWCljwtrRwjk2AAAECBAgQIECAAAECBAgQIECAAAELXs8AAQIECBAgQIAAAQIECBAgQIAAAQIEWipgwdvSwjk2AQIECBAgQIAAAQIECBAgQIAAAQIELHg9AwQIECBAgAABAgQIECBAgAABAgQIEGipgAVvSwvn2AQIECBAgAABAgQIECBAgAABAgQIELDg9QwQIECAAAECBAgQIECAAAECBAgQIECgpQIWvC0tnGMTIECAAAECBAgQIECAAAECBAgQIEDAgtczQIAAAQIECBAgQIAAAQIECBAgQIAAgZYKWPC2tHCOTYAAAQIECBAgQIAAAQIECBAgQIAAAQtezwABAgQIECBAgAABAgQIECBAgAABAgRaKmDB29LCOTYBAgQIECBAgAABAgQIECBAgAABAgQseD0DBAgQIECAAAECBAgQIECAAAECBAgQaKmABW9LC+fYBAgQIECAAAECBAgQIECAAAECBAgQsOD1DBAgQIAAAQIECBAgQIAAAQIECBAgQKClAha8LS2cYxMgQIAAAQIECBAgQIAAAQIECBAgQMCC1zNAgAABAgQIECBAgAABAgQIECBAgACBlgpY8La0cI5NgAABAgQIECBAgAABAgQIECBAgAABC17PAAECBAgQIECAAAECBAgQIECAAAECBFoqYMHb0sI5NgECBAgQIECAAAECBAgQIECAAAECBCx4PQMECBAgQIAAAQIECBAgQIAAAQIECBBoqYAFb0sL59gECBAgQIAAAQIECBAgQIAAAQIECBCw4PUMECBAgAABAgQIECBAgAABAgQIECBAoKUCFrwtLZxjEyBAgAABAgQIECBAgAABAgQIECBAwILXM0CAAAECBAgQIECAAAECBAgQIECAAIGWCljwtrRwjk2AAAECBAgQIECAAAECBAgQIECAAAELXs8AAQIECBAgQIAAAQIECBAgQIAAAQIEWipgwdvSwj3ZY//wrJ+VdZ62zqhffsLx/1y+/rWT+tdPnjy5nHf+xYOvnT377HLoIQcvM2tgYKCcc94FZcqUNfrX3HrrLeWA/V416vd2IQECBAgQIECAAAECBAgQIECAAAECwwtY8HbsCfnVTbeVVVddddR3/bWvfqX8/UcP61//lKlTyzXXzRl87ZIlS8p228wq995zz5B57zzwPeWwjxwx+Lu5c+eWrWZtNur3diEBAgQIECBAgAABAgQIECBAgAABAha8noHHCHz166eUdZ8+bViTNdZYo2y44Ub9a4Zb8PZ+f+YPvlfefeA7hsy7+ro5ZerUqRa8nkACBAgQIECAAAECBAgQIECAAAECSQI+wZsE2+bYb3/nu+W5O+/Sv4V3vuOt5cc/OrP/z4//BG/vZ4sXL+5/KnfevHlL3fI+++5Xjjvh80v9zCd42/xUODsBAgQIECBAgAABAgQIECBAgEATBSx4m1iVMTzTrFlblN739Pb+3HHH7eV5O+84eJrHLnivvOLyst32O/R/d9q3v1k+8P6Dljr1hZdcUaZPX7/c/Yc/lMlTppTVV1+9WPCOYWG9NQECBAgQIECAAAECBAgQIECAwLgUsOAdl2V98jd19uz/LJtu9qx+wGsO2KdccvFFQy54Tzn562X3PfbsL3EXLlxYZs3cpCxYsKB/7c677Fq+ddrp/X/u/SVsRx59rAXvky+JVxIgQIAAAQIECBAgQIAAAQIECBBYpoAFr4djUGCPPfcqve/o7f355S9+UV6y9+5L6Tz2E7y9Be/FF11QPnviF/vXfPWkL5cjjzi8/89n/fTcMnPzzQc/sfvLG26x4PWcESBAgAABAgQIECBAgAABAgQIEEgQsOBNQG1r5GVXXlvWWWfd/vFf/KLdypw5vxx2wXv4hw8tV13zi/LUtdfuf3p35qbPKJvMmFHOnn1+/3Wf/Pgx5fMnnlAseNv6RDg3AQIECBAgQIAAAQIECBAgQIBA0wUseJteoRV0vje+6S3lY8d+sv9ul15ycfk/+7/6Ce/8+E/w9ha8b3rzW8vRx3yif+3xx3267LTTc/t/QduDDz5Ynv2sZ5YlS5YMu+Cdut6MFXSH3oYAAQIECBAgQIAAAQIECBAYK4H/+e1NY/XW3pfAuBew4B33JR75BgcGBsr1c24ukydP7i9kd33uDuU3v7lzVAve3kW9106ZMqX/XbwTJ04svbwTP3d8+dQnju1nDPcJ3nU32XbkA7qCAAECBAgQIECAAAECBAgQaLXA72++qtXnd3gCTRaw4G1ydVbQ2T58+EfLge96b//dfnLWj8o73vbmId95qE/w9i486H2HlIPf94HB1zz88MNl8802LosWLRpxwbvyalNW0F16GwIECBAgQIAAAQIECBAgQGCsBB7+4wNj9dbel8C4F7DgHfclHv4Ge5/avea/flUmTZpUFi9eXLbZcmb/L0cb6s+yFrwTJkwoc268tayyyir9l516yjfKYR/688LXd/B2/CFz+wQIECBAgAABAgQIECBAgAABAmkCFrxptO0IPuFzXyivevU+/cN++1v/Wg495OBlHnxZC97eC3rf39v7Ht/ekniLzWeU+fPnD+ZY8LbjWXBKAgQIECBAgAABAgQIECBAgACB9glY8LavZmEnnjZtvXLRpVf2vzO397UKvcXsggULntSCt/fp3Rfutke563e/Lddee81SGRa8YSUTRIAAAQIECBAgQIAAAQIECBAgQGApAQveDj8Q3/7Od8tzd96lL/DYvxRtWSTDfYJ3OEYL3g4/ZG6dAAECBAgQIECAAAECBAgQIEAgVcCCN5W3ueGzZm1RfnjWz/oH7H2dwqyZm5QlS5YMe2AL3ubW08kIECBAgAABAgQIECBAgAABAgS6KWDB2826l5+dc36Zselm/bs/+qgjyle+9IURJSx4RyRyAQECBAgQIECAAAECBAgQIECAAIEVKmDBu0K5m/FmO+70nPJvp3+vf5j/uffess1Wm4/qYGuttVa59vob+tee/I2vlY8c9sFRve7Rr2i47777ytZbPGtUr3ERAQIECBAgQIAAAQIECBAgQIAAAQIjC1jwjmzkCgIECBAgQIAAAQIECBAgQIAAAQIECDRSwIK3kWVxKAIECBAgQIAAAQIECBAgQIAAAQIECIwsYME7spErCBAgQIAAAQIECBAgQIAAAQIECBAg0EgBC95GlsWhCBAgQIAAAQIECBAgQIAAAQIECBAgMLKABe/IRq4gQIAAAQIECBAgQIAAAQIECBAgQIBAIwUseBtZFociQIAAAQIECBAgQIAAAQIECBAgQIDAyAIWvCMbuYIAAQIECBAgQIAAAQIECBAgQIAAAQKNFLDgbWRZHIoAAQIECBAgQIAAAQIECBAgQIAAAQIjC1jwjmzkCgIECBAgQIAAAQIECBAgQIAAAQIECDRSwIK3kWVxKAIECBAgQIAAAQIECBAgQIAAAQIECIwsYME7spErCBAgQIAAAQIECBAgQIAAAQIECBAg0EgBC95GlsWhCBAgQIAAAQIECBAgQIAAAQIECBAgMLKABe/IRq5oiMCSJUsacpL2HmNgYKC9h3dyAgQIECBAgAABAgQIECBAgACBJwhY8HooWiEwecozyjrTXtCKszb1kPMfuKPcc/fl5ZFF85p6ROciQIAAAQIECBAgQIAAAQIECBBYTgEL3uUEc/mKF+h9cnfq2tuUPV7+kxX/5uPoHe+45Yxy5cXvL48semAc3ZVbIUCAAAECBAgQIECAAAECBAh0W8CCt9v1b8XdW/DGlMmCN8ZRCgECBAgQIECAAAECBAgQIECgSQIWvE2qhrMMKWDBG/NgWPDGOEohQIAAAQIECBAgQIAAAQIECDRJwIK3SdVwFgvexGfAgjcRVzQBAgQIECBAgAABAgQIECBAYIwELHjHCN7bjl7AJ3hHbzXclRa8MY5SCBAgQIAAAQIECBAgQIAAAQJNErDgbVI1nGVIAQvemAfDgjfGUQoBAgQIECBAgAABAgQIECBAoEkCFrxNqoazWPAmPgMWvIm4ogkQIECAAAECBAgQIECAAAECYyRgwTtG8N529AI+wTt6q+GutOCNcZRCgAABAgQIECBAgAABAgQIEGiSgAVvk6rhLEMKWPDGPBgWvDGOUggQIECAAAECBAgQIECAAAECTRKw4G1SNZzFgjfxGbDgTcQVTYAAAQIECBAgQIAAAQIECBAYIwEL3jGC97ajF/AJ3tFbDXelBW+MoxQCBAgQIECAAAECBAgQIECAQJMELHibVA1nGVLAgjfmwbDgjXGUQoAAAQIECBAgQIAAAQIECBBokoAFb5Oq4SwWvInPgAVvIq5oAgQIECBAgAABAgQIECBAgMAYCVjwjhG8tx29gE/wjt5quCsteGMcpRAgQIAAAQIECBAgQIAAAQIEmiRgwdukajjLkAIWvDEPhgVvjKMUAgQIECBAgAABAgQIECBAgECTBCx4m1QNZ7HgTXwGLHgTcUUTIECAAAECBAgQIECAAAECBMZIwIJ3jOC97egFfIJ39FbDXWnBG+MohQABAgQIECBAgAABAgQIECDQJAEL3iZVw1mGFLDgjXkwLHhjHKUQIECAAAECBAgQIECAAAECBJokYMHbpGo4iwVv4jNgwZuIK5oAAQIECBAgQIAAAQIECBAgMEYCFrxjBO9tRy/gE7yjtxruSgveGEcpBAgQIECAAAECBAgQIECAAIEmCVjwNqkazjKkgAVvzINhwRvjKIUAAQIECBAgQIAAAQIECBAg0CQBC94mVcNZLHgTnwEL3kRc0QQIECBAgAABAgQIECBAgACBMRKw4B0jeG87egGf4B291XBXWvDGOEohQIAAAQIECBAgQIAAAQIECDRJwIK3SdVwliEFLHhjHgwL3hhHKQQIECBAgAABAgQIECBAgACBJglY8DapGs5iwZv4DFjwJuKKJkCAAAECBAgQIECAAAECBAiMkYAF7xjBe9vRC/gE7+ithrvSgjfGUQoBAgQIECBAgAABAgQIECBAoEkCFrxNqoazDClgwRvzYFjwxjhKIUCAAAECBAgQIECAAAECBAg0ScCCt0nVcBYL3sRnwII3EVc0AQIECBAgQIAAAQIECBAgQGCMBCx4xwje245ewCd4R2813JUWvDGOUggQIECAAAECBAgQIECAAAECTRKw4G1SNZxlSAEL3pgHw4I3xlEKAQIECBAgQIAAAQIECBAgQKBJAha8TaqGs1jwJj4DFryJuKIJECBAgAABAgQIECBAgAABAmMkYME7RvDedvQCPsE7eqvhrrTgjXGUQoAAAQIECBAgQIAAAQIECBBokoAFb5Oq4SxDCljwxjwYFrwxjlIIECBAgAABAgQIECBAgAABAk0SsOBtUjWcxYI38Rmw4E3EFU2AAAECBAgQIECAAAECBAgQGCMBC94xgve2oxfwCd7RWw13pQVvjKMUAgQIECBAgAABAgQIECBAgECTBCx4m1QNZxlSwII35sGw4I1xlEKAAAECBAgQIECAAAECBAgQaJKABW+TquEsFryJz4AFbyKuaAIECBAgQIAAAQIECBAgQIDAGAlY8I4RvLcdvYBP8I7eargrLXhjHKUQIECAAAECBAgQIECAAAECBJokYMHbpGo4y5ACFrwxD4YFb4yjFAIECBAgQIAAAQIECBAgQIBAkwQseJtUDWex4E18Bix4E3FFEyBAgAABAgQIECBAgAABAgTGSMCCd4zgve3oBXyCd/RWw12ZseDt1WZgYCDmgFIIECBAgAABAgQIECBAgAABAgSWW8CCd7nJvGBFC1jwxohnLHgHJqxaZm55UFlllakxh+xoyjWXHV4WL15oWd7R+rttAgQIECBAgAABAgQIECBQI2DBW6PntStEwII3hjljwTthpdXLXq86r0yesmHMITuacsap65dHHnnYgrej9XfbBAgQIECAAAECBAgQIECgRsCCt0bPa1eIgAVvDLMFb4xjRooFb4aqTAIECBAgQIAAAQIECBAg0A0BC95u1LnVd2nBG1M+C94Yx4wUC94MVZkECBAgQIAAAQIECBAgQKAbAha83ahzq+/SgjemfBa8MY4ZKRa8GaoyCRAgQIAAAQIECBAgQIBANwQseLtR51bfpQVvTPkseGMcM1IseDNUZRIgQIAAAQIECBAgQIAAgW4IWPB2o86tvksL3pjyWfDGOGakWPBmqMokQIAAAQIECBAgQIAAAQLdELDg7UadW32XFrwx5bPgjXHMSLHgzVCVSYAAAQIECBAgQIAAAQIEuiFgwduNOrf6Li14Y8pnwRvjmJFiwZuhKpMAAQIECBAgQIAAAQIECHRDwIK3G3Vu9V1a8MaUz4I3xjEjJXrB2/t3ZuWVn1LKwISM43Ymc8mSxWXhw/eVgYGBztyzGyVAgAABAgQIECBAgACB9glY8LavZp07sQVvTMkteGMcM1IyFrzrbfCysvGmf5lx3M5k/vqGk8vv7vyxBW9nKu5GCRAgQIAAAQIECBAg0E4BC9521q1Tp7bgjSm3BW+MY0ZKxoJ302e/q2y1w1EZx+1M5tWXHlZunvNlC97OVNyNEiBAgAABAgQIECBAoJ0CFrztrFunTm3BG1NuC94Yx4wUC94M1fpMC956QwkECBAgQIAAAQIECBAgkC9gwZtv7B0qBSx4KwH/9+UWvDGOGSkWvBmq9ZkWvPWGEggQIECAAAECBAgQIEAgX8CCN9/YO1QKWPBWAlrwxgAmpljwJuJWRFvwVuB5KQECBAgQIECAAAECBAisMAEL3hVG7Y2erIAF75OVW/p1PsEb45iRYsGboVqfacFbbyiBAAECBAgQIECAAAECBPIFLHjzjVv1DmussUZZvHhxmT9/fmPObcEbUwoL3hjHjBQL3gzV+kwL3npDCQQIECBAgAABAgQIECCQL2DBm2/c6HfYZdfnlb9645vLrC22LNOmrVdWXnnl/nnnzZtXtth8xlJnnzx5cjnv/IsHfzZ79tnl0EMOXub9DQwMlHPOu6BMmbJG/5pbb72lHLDfq5bbw4J3ucmGfIEFb4xjRooFb4ZqfaYFb72hBAIECBAgQIAAAQIECBDIF7DgzTdu7Dt89Iijytv/+sAhz7do0aKyyTOmL/W7p0ydWq65bs7gz3qL1+22mVXuveeeITPeeeB7ymEfOWLwd3Pnzi1bzdpsuT0seJebzII3hmyFpVjwrjDq5XqjrAVv7z/T/KkT6P0fEP0hQIAAAQIECBAgQIAAgT8JWPB28EnoDcbf/+FPypZbbtW/+96y4brrri3XXnN1uf2228qMTXaw0tIAACAASURBVDctW2y5VXnp3nsspfP4BW/vl2f+4Hvl3Qe+Y0jFq6+bU6ZOnTr4OwvesX3YfIJ3bP2He3cL3mbWJnrB2/vP2kmT1ihT1966mTfcklMtfmRBmTv3V2XRwnlhJx4YWLlMmLBSKRbHlaYT+nWxgK9k9HICBAgQIECAAAECyylgwbucYOPh8r/524PLIYd+qH8r9913X3nj/31duebqq0a8taEWvL3v6+19Krf3lQ6P/bPPvvuV4074/FI/s+AdkTj1AgveVN6qcAveKr60F0cveHsHnbDSqmWfN9yWduYuBD8w75bysx/sWR5ZFPdd8SutNLk8e+tDytOmvaALhGn3eOn5B5Z5c2+w4E0Tbk5w7/9gZZHfnHo4CQECBAgQIEDAgrdjz0Dvv4xfP+fm0vs+3d5ydpfnbF9+97vfjkrhsQveK6+4vGy3/Q7915327W+WD7z/oKUyLrzkijJ9+vrl7j/8oUyeMqWsvvrqxYJ3VMxpF1nwptFWB1vwVhOmBFjwprBWh2YseCdOnFK23+W4Mn2jV1Sfr8sBvcX7ffdeF7r4mzxlo7LOert3mbX63ufPu63cc/dl5ZFFD1RnPRowcdKaZdXVnl4mTJgYltnFoD8++Nvy8IL/Cf13pouO7pkAAQIECBDwFQ2dewbe+zcHlQ988MP9+/7C5z9XPn7s0aM2eOyC95STv15232PP/hJ34cKFZdbMTcqCBQv6WTvvsmv51mmn9/+595ewHXn0sRa8o1bOu9CCN8+2NtmCt1Yw5/UWvDmutakWvLWCea+PXvD6Dv6YWun/MY4ZKRn93yer6yv16Hfls6y3lECAAAECK07AJ3hXnHUj3ulHP5ldnv3sWf2zbLPV5mW9aeuVHZ/z3LLpppv1F7W//MX15d//7bTS+0vWHv/n8Qveiy+6oHz2xC/2L/vqSV8uRx5xeP+fz/rpuWXm5psPfmL3lzfcYsHbgOob8BpQhGUcIWPA2/TZ7ypb7XBUc2+6BSez4G1mkSx4m1mX3qkseJtZG/2/mXXpnSqj/6+73h7+vxEqS37nrf9R/vC788I/We0vWa0szP++3OI9xlEKAQLjT8CCd/zVdNg7uvzK68rT1lmnf03v6xMe/efHvujhhx8unz/xhPLpf/qHpbIev+A9/MOHlquu+UV56tpr9z+9O3PTZ5RNZswoZ88+v/+6T378mH6OBW8zHjIDXjPqMNQpMgY8C976elvw1htmJFjwZqjGZFrwxjhGp+j/0aJxefp/nGVkUnT/7y12V5q4Wpkx8+2Rx+xc1sKH55Y7bjm9LAr8Dv7OIbphAgTGtYAF77gu7xNv7oabby+rrLLKUr/ofXK39z+rrbbaUv+X6o8fc3T5wr98bvDaoRa8b3rzW8vRx3yif83xx3267LTTc8tzd96lPPjgg+XZz3pm6f0XmuEWvJOnPn3ECjyycEFZbZWNyu4vO2vEa12wbIHegHftFYeViatOCmN6aN4D5UWvPKdMnrJhWGYXg844dYOy6ppPKQMDE0Juf8Ef55WNN/6rsqVP8FZ5XnPZ4eX2275dVl51clXOoy9esmRxWTDv/vJqf8lalWdvwTv7zL3KKlNi6tI7zKKHHi7b7PiPPvVWVZlSfnbmi8qCh+8sK01a+r9nPNlY/f/Jyi39Ov0/xjEjRf/PUK3P1P/rDTMSMvp/xjllDi8w/3/uQkSAQJKABW8SbFNjb7vz9/2j9b6C4Zv/ekr5x099vP9VCr0/vb947dhP/GPZd7/9B4//vJ13LHfccXv/fx9qwdv7ee8vbZsyZUp/STxx4sT+kvjEzx1fPvWJY/uvG27Bu+4m245IteDB+8vAwjXL7i/98YjXumDZAr0B7/prjyprPG3dMKZ77ri57Pnyn1nwVoqe8a8blLU3nFkmTFipMulPL3/g3rvKetP2KVtuf2RIXldDrrnsI+X3d59ZJj8l5t+ZxY88Uu6988by6tff2lXSkPvuDXjn/Ogl5anrbxyS1wuZd/ddZcttjrHgrRSd/cO9y8Aq88vKq61RmfSnl+v/IYxF/49xzEjR/zNU6zP1/3rDjISM/p9xTpnDC/z+5qsQESCQJGDBmwTbxNiVV1653PjrO/pHu+nGG8qeuz9/yGN++zvf7X8Kt/fn6KOOKF/50hf6/7ysBe9B7zukHPy+Dwxm9b7iYfPNNh78Hl+f4G3G0+ATPM2ow1Cn8AmeZtbGJ3iaWZeMT/D4BG9MrX2CN8YxOkX/jxaNy9P/4ywjk/T/SM24rIz+H3c6SaMV8Ane0Uq5jsDyC1jwLr9Zq19x0y13lkmTJpX/vvvusv22Wwx5L/vst3857vgT+787+6dnlbe95Y3DLngnTJhQ5tx46+BXP5x6yjfKYR/688LXd/A245HxHXzNqMPQC971yyOPPBz2l3n0vhrFd/DW1zv6O/h6J5qw0qplH1/RUFUc38FbxZf6Yt/Bm8r7pMP1/ydNl/5C38GbTvyk3kD/f1Js6S/K6P/ph/YGBAgQWIECFrwrELsJb/XoX7LW+5Ttps/cYMgj7bDjTuXfv/v9/u8uv+zSsv++rxx2wdv75ceO/WR545veUhYvXly22HxGmT9//mC2BW8TKl/6/y+aV178/vLIogfCDjRhpdXLXq86z1c0VIoa8CoBk15uwEuCrYzNGPAmTpxStt/lOF/RUFkbC95KwKSX6/9JsAGx+n8AYkKE/p+AGhCZ0f8DjiWCAAECjRGw4G1MKVbMQX7wo5+WLbfcqv9mj/1+3ce++xv+8q/KJz71T/0fnfyNr5WPHPbBERe8vb+47YW77VHu+t1vy7XXXrPUzVjwrpjajvQuBryRhMbu9wa8sbMf7p0NeM2sS8aAZ8EbU2sL3hjH6BT9P1o0Lk//j7OMTNL/IzXjsjL6f9zpJBEgQGDsBSx4x74GK/QE7zzwPeWwjxzRf88bfjWn7LXnC5/w/udfeGnZcMON+j9/y5v+b5n9s5+OuOAd7iYseFdoiZf5Zga8ZtRhqFMY8JpZGwNeM+uSMeBZ8MbU2oI3xjE6Rf+PFo3L0//jLCOT9P9IzbisjP4fdzpJBAgQGHsBC96xr8EKP8GlV1xT1l336f33veDn55d3vfNtZe7cuWXqU59avvTlr5Udd3pO/3e3335bef4uOw2eb1l/ydpIN2DBO5LQivm9AW/FOD+ZdzHgPRm1/NcY8PKNn8w7ZAx4FrxPphJPfI0Fb4xjdIr+Hy0al6f/x1lGJun/kZpxWRn9P+50kggQIDD2Aha8Y1+DFX6C7bbfoZx+xg+W+gudFi1aVCZOnDh4lt539O72/J3Lb35zpwXvCq9Qzhsa8HJcI1INeBGK8RkGvHjTiMSMAc+CN6IypVjwxjhGp+j/0aJxefp/nGVkkv4fqRmXldH/404niQABAmMvYME79jUYkxPMnLl5Oenrp5Tp09d/wvtfdukl5W1v+av+p3of+2ettdYq115/Q/9Hj/1u3pFu4NFP8N53331l6y2eNdLlT/j9kiVLytS1tyl7vPwny/1aL/izgAGvuU+DAa+ZtTHgNbMuGQOeBW9MrS14YxyjU/T/aNG4PP0/zjIySf+P1IzLyuj/vTlzYGAg7pAdTer9Res9R5YdfQDcdmMELHgbU4qxOcjTnz6t7LzLruWZm2xSrr3mmnLhBeeX+fPnj81hlvGuFrwx5TDgxThmpBjwMlTrMw149YYZCRkDngVvTKUseGMco1P0/2jRuDz9P84yMkn/j9SMy8ro/yutNLmst+FLylpP2TzuoB1MuvlXXysPzr/DgreDtXfLzRKw4G1WPZxmCAEL3pjHwoAX45iRYsDLUK3PNODVG2YkZAx4FrwxlbLgjXGMTtH/o0Xj8vT/OMvIJP0/UjMuS/+Ps4xOiu7/0eeTR6ArAha8Xal0i+/TgjemeAa8GMeMFANehmp9pgGv3jAjwYCXoRqTGT3g6f8xddH/YxwzUvT/DNX6TP2/3jAjQf/PUI3JjO7/MaeSQqB7Aha83at56+7YgBdTMgNejGNGigEvQ7U+04BXb5iRYMDLUI3JjB7w9P+Yuuj/MY4ZKfp/hmp9pv5fb5iRoP9nqMZkRvf/mFNJIdA9AQve7tW8dXdswIspmQEvxjEjxYCXoVqfacCrN8xIMOBlqMZkRg94+n9MXfT/GMeMFP0/Q7U+U/+vN8xI0P8zVGMyo/t/zKmkEOiegAVv92reujs24MWUzIAX45iRYsDLUK3PNODVG2YkGPAyVGMyowc8/T+mLvp/jGNGiv6foVqfqf/XG2Yk6P8ZqjGZ0f0/5lRSCHRPwIK3ezVv3R0b8GJKZsCLccxIMeBlqNZnGvDqDTMSDHgZqjGZ0QOe/h9TF/0/xjEjRf/PUK3P1P/rDTMS9P8M1ZjM6P4fcyopBLonYMHbvZq37o4NeDElM+DFOGakGPAyVOszDXj1hhkJBrwM1ZjM6AFP/4+pi/4f45iRov9nqNZn6v/1hhkJ+n+GakxmdP+POZUUAt0TsODtXs1bd8cGvJiSGfBiHDNSDHgZqvWZBrx6w4wEA16Gakxm9ICn/8fURf+PccxI0f8zVOsz9f96w4wE/T9DNSYzuv/HnEoKge4JWPB2r+atu2MDXkzJDHgxjhkpBrwM1fpMA169YUaCAS9DNSYzesDT/2Pqov/HOGak6P8ZqvWZ+n+9YUaC/p+hGpMZ3f9jTiWFQPcELHi7V/PW3bEBL6ZkBrwYx4wUA16Gan2mAa/eMCPBgJehGpMZPeDp/zF10f9jHDNS9P8M1fpM/b/eMCNB/89QjcmM7v8xp5JCoHsCFrzdq3nr7tiAF1MyA16MY0aKAS9DtT7TgFdvmJFgwMtQjcmMHvD0/5i66P8xjhkp+n+Gan2m/l9vmJGg/2eoxmRG9/+YU0kh0D0BC97u1bx1d2zAiymZAS/GMSPFgJehWp9pwKs3zEgw4GWoxmRGD3j6f0xd9P8Yx4wU/T9DtT5T/683zEjQ/zNUYzKj+3/MqaQQ6J6ABW/3at66OzbgxZTMgBfjmJFiwMtQrc804NUbZiQY8DJUYzKjBzz9P6Yu+n+MY0aK/p+hWp+p/9cbZiTo/xmqMZnR/T/mVFIIdE/Agrd7NW/dHRvwYkpmwItxzEgx4GWo1mca8OoNMxIMeBmqMZnRA57+H1MX/T/GMSNF/89Qrc/U/+sNMxL0/wzVmMzo/h9zKikEuidgwdu9mrfujg14MSUz4MU4ZqQY8DJU6zMNePWGGQkGvAzVmMzoAU//j6mL/h/jmJGi/2eo1mfq//WGGQn6f4ZqTGZ0/485lRQC3ROw4O1ezVt3xwa8mJIZ8GIcM1IMeBmq9ZkGvHrDjAQDXoZqTGb0gKf/x9RF/49xzEjR/zNU6zP1/3rDjAT9P0M1JjO6/8ecSgqB7glY8Hav5q27YwNeTMkMeDGOGSkGvAzV+kwDXr1hRoIBL0M1JjN6wNP/Y+qi/8c4ZqTo/xmq9Zn6f71hRoL+n6Eakxnd/2NOJYVA9wQseLtX89bdsQEvpmQGvBjHjBQDXoZqfaYBr94wI8GAl6Eakxk94On/MXXR/2McM1L0/wzV+kz9v94wI0H/z1CNyYzu/zGnkkKgewIWvN2reevu2IAXUzIDXoxjRooBL0O1PtOAV2+YkWDAy1CNyYwe8PT/mLro/zGOGSn6f4Zqfab+X2+YkaD/Z6jGZEb3/5hTSSHQPQEL3u7VvHV3bMCLKZkBL8YxI8WAl6Fan2nAqzfMSDDgZajGZEYPePp/TF30/xjHjBT9P0O1PlP/rzfMSND/M1RjMqP7f8yppBDonoAFb/dq3ro7NuDFlMyAF+OYkWLAy1CtzzTg1RtmJBjwMlRjMqMHPP0/pi76f4xjRor+n6Fan6n/1xtmJOj/GaoxmdH9P+ZUUgh0T8CCt3s1b90dG/BiSmbAi3HMSDHgZajWZxrw6g0zEgx4GaoxmdEDnv4fUxf9P8YxI0X/z1Ctz9T/6w0zEvT/DNWYzOj+H3MqKQS6J2DB272at+6ODXgxJTPgxThmpBjwMlTrMw149YYZCQa8DNWYzOgBT/+PqYv+H+OYkaL/Z6jWZ+r/9YYZCfp/hmpMZnT/jzmVFALdE7Dg7V7NW3fHBryYkhnwYhwzUgx4Gar1mQa8esOMBANehmpMZvSAp//H1EX/j3HMSNH/M1TrM/X/esOMBP0/QzUmM7r/x5xKCoHuCVjwdq/mrbtjA15MyQx4MY4ZKQa8DNX6TANevWFGggEvQzUmM3rA0/9j6qL/xzhmpOj/Gar1mfp/vWFGgv6foRqTGd3/Y04lhUD3BCx4u1fz1t2xAS+mZAa8GMeMFANehmp9pgGv3jAjwYCXoRqTGT3g6f8xddH/YxwzUvT/DNX6TP2/3jAjQf/PUI3JjO7/MaeSQqB7Aha83at56+7YgBdTMgNejGNGigEvQ7U+04BXb5iRYMDLUI3JjB7w9P+Yuuj/MY4ZKfp/hmp9pv5fb5iRoP9nqMZkRvf/mFNJIdA9AQve7tW8dXdswIspmQEvxjEjxYCXoVqfacCrN8xIMOBlqMZkRg94+n9MXfT/GMeMFP0/Q7U+U/+vN8xI0P8zVGMyo/t/zKmkEOiegAVv92reujs24MWUzIAX45iRYsDLUK3PNODVG2YkGPAyVGMyowc8/T+mLvp/jGNGiv6foVqfqf/XG2Yk6P8ZqjGZ0f0/5lRSCHRPwIK3ezVv3R0b8GJKZsCLccxIMeBlqNZnGvDqDTMSDHgZqjGZ0QOe/h9TF/0/xjEjRf/PUK3P1P/rDTMS9P8M1ZjM6P4fcyopBLonYMHbvZq37o4NeDElM+DFOGakGPAyVOszDXj1hhkJBrwM1ZjM6AFP/4+pi/4f45iRov9nqNZn6v/1hhkJ+n+GakxmdP+POZUUAt0TsODtXs1bd8cGvJiSGfBiHDNSDHgZqvWZBrx6w4wEA16Gakxm9ICn/8fURf+PccxI0f8zVOsz9f96w4wE/T9DNSYzuv/HnEoKge4JWPB2r+atu2MDXkzJDHgxjhkpBrwM1fpMA169YUaCAS9DNSYzesDT/2Pqov/HOGak6P8ZqvWZ+n+9YUaC/p+hGpMZ3f9jTiWFQPcELHi7V/PW3bEBL6ZkBrwYx4wUA16Gan2mAa/eMCPBgJehGpMZPeDp/zF10f9jHDNS9P8M1fpM/b/eMCNB/89QjcmM7v8xp5JCoHsCFrzdq3nr7tiAF1MyA16MY0aKAS9DtT7TgFdvmJFgwMtQjcmMHvD0/5i66P8xjhkp+n+Gan2m/l9vmJGg/2eoxmRG9/+YU0kh0D0BC97u1bx1d2zAiymZAS/GMSPFgJehWp9pwKs3zEgw4GWoxmRGD3j6f0xd9P8Yx4wU/T9DtT5T/683zEjQ/zNUYzKj+3/MqaQQ6J6ABW/3at66OzbgxZTMgBfjmJFiwMtQrc804NUbZiQY8DJUYzKjBzz9P6Yu+n+MY0aK/p+hWp+p/9cbZiTo/xmqMZnR/T/mVFIIdE/Agrd7NW/dHRvwYkpmwItxzEgx4GWo1mca8OoNMxIMeBmqMZnRA57+H1MX/T/GMSNF/89Qrc/U/+sNMxL0/wzVmMzo/h9zKikEuidgwdu9mrfujg14MSUz4MU4ZqQY8DJU6zMNePWGGQkGvAzVmMzoAU//j6mL/h/jmJGi/2eo1mfq//WGGQn6f4ZqTGZ0/485lRQC3ROw4O1ezVt3xwa8mJIZ8GIcM1IMeBmq9ZkGvHrDjAQDXoZqTGb0gKf/x9RF/49xzEjR/zNU6zP1/3rDjAT9P0M1JjO6/8ecSgqB7glY8Hav5q27YwNeTMkMeDGOGSkGvAzV+kwDXr1hRoIBL0M1JjN6wNP/Y+qi/8c4ZqTo/xmq9Zn6f71hRoL+n6Eakxnd/2NOJYVA9wQseLtX89bdsQEvpmQGvBjHjBQDXoZqfaYBr94wI8GAl6Eakxk94On/MXXR/2McM1L0/wzV+kz9v94wI0H/z1CNyYzu/zGnkkKgewIWvN2reevu2IAXUzIDXoxjRooBL0O1PtOAV2+YkWDAy1CNyYwe8PT/mLro/zGOGSn6f4Zqfab+X2+YkaD/Z6jGZEb3/5hTSSHQPQEL3u7VvHV3bMCLKZkBL8YxI8WAl6Fan2nAqzfMSDDgZajGZEYPePp/TF30/xjHjBT9P0O1PlP/rzfMSND/M1RjMqP7f8yppBDonoAFb/dq3ro7NuDFlMyAF+OYkWLAy1CtzzTg1RtmJBjwMlRjMqMHPP0/pi76f4xjRor+n6Fan6n/1xtmJOj/GaoxmdH9P+ZUUgh0T8CCt3s1b90dG/BiSmbAi3HMSDHgZajWZxrw6g0zEgx4GaoxmdEDnv4fUxf9P8YxI0X/z1Ctz9T/6w0zEvT/DNWYzOj+H3MqKQS6J2DB272at+6ODXgxJTPgxThmpBjwMlTrMw149YYZCQa8DNWYzOgBT/+PqYv+H+OYkaL/Z6jWZ+r/9YYZCfp/hmpMZnT/jzmVFALdE7Dg7V7NW3fHBryYkhnwYhwzUgx4Gar1mQa8esOMBANehmpMZvSAp//H1EX/j3HMSNH/M1TrM/X/esOMBP0/QzUmM7r/x5xKCoHuCVjwdq/mrbtjA15MyQx4MY4ZKQa8DNX6TANevWFGggEvQzUmM3rA0/9j6qL/xzhmpOj/Gar1mfp/vWFGgv6foRqTGd3/Y04lhUD3BCx4u1fz1t2xAS+mZAa8GMeMlO+eun5Z/MjDZWBgICS+9+/Mps9+V9lqh6NC8roaYsBrZuUNeM2sS+9U0QOe/h9Ta/0/xjEjxYI3Q7U+U/+vN8xI0P8zVGMyo/t/zKmkEOiegAVv92reujs24MWUzIAX45iRYsGboVqfacCrN8xIMOBlqMZkRg94+n9MXfT/GMeMFAveDNX6TP2/3jAjQf/PUI3JjO7/MaeSQqB7Aha83at56+7YgBdTMgNejGNGigVvhmp9pgGv3jAjwYCXoRqTGT3g6f8xddH/YxwzUix4M1TrM/X/esOMBP0/QzUmM7r/x5xKCoHuCVjwdq/mrbtjA15MyQx4MY4ZKRa8Gar1mQa8esOMBANehmpMZvSAp//H1EX/j3HMSLHgzVCtz9T/6w0zEvT/DNWYzOj+H3MqKQS6J2DB272at+6ODXgxJTPgxThmpFjwZqjWZxrw6g0zEgx4GaoxmdEDnv4fUxf9P8YxI8WCN0O1PlP/rzfMSND/M1RjMqP7f8yppBDonoAFb/dq3ro7NuDFlMyAF+OYkWLBm6Fan2nAqzfMSDDgZajGZEYPePp/TF30/xjHjBQL3gzV+kz9v94wI0H/z1CNyYzu/zGnkkKgewIWvN2reevu2IAXUzIDXoxjRooFb4ZqfaYBr94wI8GAl6Eakxk94On/MXXR/2McM1IseDNU6zP1/3rDjAT9P0M1JjO6/8ecSgqB7glY8Hav5q27YwNeTMkMeDGOGSkWvBmq9ZkGvHrDjAQDXoZqTGb0gKf/x9RF/49xzEix4M1Qrc/U/+sNMxL0/wzVmMzo/h9zKikEuidgwdu9mrfujg14MSUz4MU4ZqRY8Gao1mca8OoNMxIMeBmqMZnRA57+H1MX/T/GMSPFgjdDtT5T/683zEjQ/zNUYzKj+3/MqaQQ6J6ABW/3at66OzbgxZTMgBfjmJFiwZuhWp9pwKs3zEgw4GWoxmRGD3j6f0xd9P8Yx4wUC94M1fpM/b/eMCNB/89QjcmM7v8xp5JCoHsCFrzdq3nr7tiAF1MyA16MY0aKBW+Gan3m1Zd+uNw85ytlYGCgPux/EyastGrZ5w23heV1MciA19yqRw94+n9MrfX/GMeMFAveDNX6TAveesOMBP0/QzUmM7r/x5xKCoHuCVjwdq/mrbtjA15MyQx4MY4ZKRa8Gar1mRa89YYZCQa8DNWYzOgBT/+PqYv+H+OYkWLBm6Fan2nBW2+YkaD/Z6jGZEb3/5hTSSHQPQEL3u7VvHV3bMCLKZkBL8YxI8WCN0O1PtOCt94wI8GAl6Eakxk94On/MXXR/2McM1IseDNU6zMteOsNMxL0/wzVmMzo/h9zKikEuidgwdu9mrfujg14MSUz4MU4ZqRY8Gao1mda8NYbZiQY8DJUYzKjBzz9P6Yu+n+MY0aKBW+Gan2mBW+9YUaC/p+hGpMZ3f9jTiWFQPcELHi7V/PW3bEBL6ZkBrwYx4wUC94M1fpMC956w4wEA16Gakxm9ICn/8fURf+PccxIseDNUK3PtOCtN8xI0P8zVGMyo/t/zKmkEOiegAVv92reujs24MWUzIAX45iRYsGboVqfacFbb5iRYMDLUI3JjB7w9P+Yuuj/MY4ZKRa8Gar1mRa89YYZCfp/hmpMZnT/jzmVFALdE7Dg7V7NW3fHBryYkhnwYhwzUix4M1TrMy146w0zEgx4GaoxmdEDnv4fUxf9P8YxI8WCN0O1PtOCt94wI0H/z1CNyYzu/zGnkkKgewIWvN2reevu2IAXUzIDXoxjRooFb4ZqfaYFb71hRoIBL0M1JjN6wNP/Y+qi/8c4ZqRY8Gao1mda8NYbZiTo/xmqMZnR/T/mVFIIdE/Agrd7NW/dHRvwYkpmwItxzEix4M1Qrc+04K03zEgw4GWoxmRGD3j6f0xd9P8Yx4wUC94M1fpMC956w4wE/T9DNSYzuv/HnEoKge4JWPB2r+atu2MDXkzJDHgxjhkpFrwZqvWZFrz1hhkJBrwM1ZjM6AFP/4+pi/4f45iRYsGboVqfacFbb5iRoP9nqMZkRvf/mFNJIdA9AQve7tW8dXdswIspmQEvxjEjxYI3Q7U+04K33jAj4YH7f11mn/mismjR/LD4iROnlO13Pb5M3/DlYZldDIoe8PT/mKdI/49xzEix4M1Qrc+04K03zEiw4M1QjcmM7v8xp5JCoHsCFrzdq3nr7tiAF1MyA16MY0aKBW+Gan2mBW+9Q6ruMQAAIABJREFUYUaCBW+Gakxm9ICn/8fURf+PccxIseDNUK3PtOCtN8xIsODNUI3JjO7/MaeSQqB7Aha83at5+eo3Ti1bbrHVqO587712K/fec0//2smTJ5fzzr948HWzZ59dDj3k4GXmDAwMlHPOu6BMmbJG/5pbb72lHLDfq0b1vo+9yIC33GRDvsCAF+OYkWLBm6Fan2nBW2+YkWDBm6Eakxk94On/MXXR/2McM1L0/wzV+kwL3nrDjAQL3gzVmMzo/h9zKikEuidgwdu9mpeLL7uqTJu23qju/Hk771juuOP2/rVPmTq1XHPdnMHX9Qav7baZNbgAfnzgOw98TznsI0cM/nju3Lllq1mbjep9LXiXm2nEFxjwRiQaswsMeGNGP+wbW/A2sy4WvM2sS+9U0QOeBW9MrfX/GMeMFP0/Q7U+U/+vN8xIsODNUI3JjO7/MaeSQqB7Aha83av54IK3Nzj94hfXDyvw+tfsV3qL2aEWvL2fnfmD75V3H/iOITOuvm5OmTp1qgVvQ54xA15DCjHEMQx4zayNAa+ZdbHgbWZdLHibWxf9v7m10f+bWRv9v5l1seBtZl0y+n9z79TJCDRbwIK32fVJOd2jn+BdsGBB2WyTDUf9Ho//BG/vhYsXL+5/KnfevHlL5eyz737luBM+v9TPfIJ31NQpFxrwUlhDQg14IYzhIQa8cNKQQAveEMaUkOhP8PgEb0yZ9P8Yx4wU/T9DtT5T/683zEhI6/+7HFemb/SKjCN3JjO6/3cGzo0SCBaw4A0GbUNcxIL3yisuL9ttv0P/dk/79jfLB95/0FK3fuElV5Tp09cvd//hD2XylCll9dVX738S2Fc0jN0TYsAbO/uR3tmAN5LQ2PzegDc27iO9a9qAt+vxZfqGLx/p7f1+GIHoAc+CN+Zx0/9jHDNS9P8M1fpM/b/eMCMhrf9b8FaXK7r/Vx9IAIGOCljwdrDwEQveU07+etl9jz37S9yFCxeWWTM3Kb1PBPf+7LzLruVbp53e/+feX8J25NHHWvA24Dkz4DWgCMs4ggGvmbUx4DWzLmkDngVvdcGjBzwL3uqS9AP0/xjHjBT9P0O1PlP/rzfMSEjr/xa81eWK7v/VBxJAoKMCFrwdLPyjC96HH364vGTvPcrk1Vcvf3zoj+WWX/+6LFq0aJkij/2Kht6C9+KLLiifPfGL/eu/etKXy5FHHN7/57N+em6Zufnmg5/Y/eUNt1jwNuA5M+A1oAgWvM0twhAnM+A1s1xpA54Fb3XBowc8C97qkljwxhCmpVjwptFWBev/VXxpL07r/xa81TWL7v/VBxJAoKMCFrwdLPyjC96hbv3+++8v/3rqN8qn/+kfBj+R++h1j1/wHv7hQ8tV1/yiPHXttfvXztz0GWWTGTPK2bPP77/kkx8/pnz+xBOKBW8zHjIL3mbUYahTGPCaWRsDXjPrkjbgWfBWFzx6wLPgrS6JBW8MYVqK/p9GWxWs/1fxpb04rf9b8FbXLLr/Vx9IAIGOCljwdrDwwy14H+X4zW/uLM/becf+X6I23IL3TW9+azn6mE/0Lzn+uE+XnXZ6bnnuzruUBx98sDz7Wc8sveFsuAXvyqtNGbECix9ZVNZYY2bZ/WVnjXitC5Yt0FvwXn3ZB8vAhGV/Snt5/R5ZuKS86JXnlslTRv+X9S3ve3Th+jNOXb+stPLKZWBgIOR2Fz28oDxzs7eVrXY4KiSvqyFXX3pYue3mk8tKk1YOIej95+HihY+UV7/htpC8rob0B7wf7l0mTFwSRrDkkZXKdjv/s+/grRTtDXjz599UJqw0sTLpTy/X/0MY+1/RoP/HWEan6P/RojF5+n+MY3RKSv9fvFLZ7jmf9pesVRZrefr/w398oPLdvJwAgWUJWPB28Nk45NAPlSlT1ij/dd215Q+//31/qbThRhuVffbdv2y/w46DS6YLfn5+ecPrDhgUGuoTvL1fXj/n5jJlypT+d/FOnDix//oTP3d8+dQnju2/drgF77qbbDtiBRY8eH+ZsGitsttLfjTitS5YtkBvwLv+2qPKGk9bN4zpnjtuLnu+/GcWvJWiZ5y6QVl7o5llwoSVKpP+9PIH7r2rrDdtn7Ll9keG5HU15OrLDi9/uPtHZfJT1gkhWPzII+XeO28sr379rSF5XQ3pDXjn/vilZer6G4cRzLv7rrLltsda8FaK9hbvA6vMLyuvtkZl0p9erv+HMPYXvPp/jGV0iv4fLRqTp//HOEanpPX/bY6x4K0s1vL0/9/ffFXlu3k5AQLLErDg9WwsJbDHnnuVk752cn9J2/uO3k2fucHg75e14D3ofYeUg9/3gcHreq/bfLONB7/Pd7gF79T1ZoxYgYUPPVgmTVi37P7SH494rQuWLdAb8K67+qNltTXXDGPqLUX2fMU5FryVor1P8Ky5zgZlYMKEyqQ/vfyP8+4tG6z/2rLlDha8NaBXX3ZY+d1vzyirTplaEzP42iWLHym9f2de/QYL3hrQ3oB3zo9fUqas/bSamKVe+8e5c8vWO3zKgrdSdPaZe5VFA/9dJq2yemXSn16u/4cw9he8+n+MZXSK/h8tGpOn/8c4Rqek9P/77y9bb/cJC97KYi1P//+f395U+W5eToDAsgQseD0bTxA49/yLysYbP7P/8+fssE25667f9f95WQveCRMmlDk33lpWWWWV/nWnnvKNctiH/rzw9R28zXjIfAdvM+ow1Cl8B18za+M7+JpZl7Tv4PMdvNUFj/4OPt/BW12SfoD+H+OYkaL/Z6jWZ+r/9YYZCWn933fwVpcruv9XH0gAgY4KWPB2tPDD3fa3Tju97LzLrv1LDtjvVeWySy8ZdsHb++XHjv1keeOb3tL/zt4tNp9R5s+fP/gWFrzNeMgMeM2ogwVvc+vw+JMZ8JpZq7QBz4K3uuDRA54Fb3VJLHhjCNNSLHjTaKuC9f8qvrQXp/V/C97qmkX3/+oDCSDQUQEL3o4WfrjbvvCSK8r06ev3L9lskw3LggULRlzw9j69+8Ld9ih3/e635dprr1kq3oK3GQ+ZBW8z6mDB29w6WPC2ozZpA54Fb/UDED3gWfBWl8SCN4YwLcWCN422KtiCt4ov7cX6fxptdXB0/68+kAACHRWw4O1Y4V/4wt3736977rmzh7zzvfZ+SfnySV/v/+6BBx4os2ZuMnjdsr6iYSRCC96RhFbM7y14V4zzk3kXA96TUct/jQEv3/jJvIMB78morZjXRA94FrwxddP/YxwzUvT/DNX6TP2/3jAjQf/PUI3JjO7/MaeSQqB7Aha8Hav58Z/9l/LqffYtv//9XeVb3zy1XHThBeWKyy8r09abXt79nr8pr33dG/oL4N6fYz52ZPnSFz5vwTtOnhEDXnMLacBrZm0MeM2siwGvmXXpnSp6wLPgjam1/h/jmJGi/2eo1mfq//WGGQn6f4ZqTGZ0/485lRQC3ROw4O1YzR9d8I5029ddd215xUv3Wuoyn+AdSa3ZvzfgNbc+Brxm1saA18y6GPCaWRcL3ubWRf9vbm30/2bWRv9vZl30/2bWJaP/N/dOnYxAswUseJtdn/DT7bHnXuWIvz+qPGPjZw5+Uvexb7Jw4cLyz//vH8vnPnvcE957rbXWKtdef0P/5yd/42vlI4d9cFTne/QrGu67776y9RbPGtVrHnuRT/AsN9mQLzDgxThmpBjwMlTrMw149YYZCQa8DNWYzOhP8Oj/MXXR/2McM1L0/wzV+kz9v94wI0H/z1CNyYzu/zGnkkKgewIWvN2ref+Oe38p2pZbbV022WRG2egZzyh33H57ufjii8otv765cSIGvJiSGPBiHDNSDHgZqvWZBrx6w4wEA16Gakxm9ICn/8fURf+PccxI0f8zVOsz9f96w4wE/T9DNSYzuv/HnEoKge4JWPB2r+atu2MDXkzJDHgxjhkpBrwM1fpMA169YUaCAS9DNSYzesDT/2Pqov/HOGak6P8ZqvWZ+n+9YUaC/p+hGpMZ3f9jTiWFQPcELHi7V/PW3bEBL6ZkBrwYx4wUA16Gan2mAa/eMCPBgJehGpMZPeDp/zF10f9jHDNS9P8M1fpM/b/eMCNB/89QjcmM7v8xp5JCoHsCFrzdq3nr7tiAF1MyA16MY0aKAS9DtT7TgFdvmJFgwMtQjcmMHvD0/5i66P8xjhkp+n+Gan2m/l9vmJGg/2eoxmRG9/+YU0kh0D0BC97u1bx1d9wb8J76F9uW3V92VuvO3qQDG/CaVI2lz2LAa2ZtDHjNrIsBr5l16Z0qesCz4I2ptf4f45iRov9nqNZn6v/1hhkJ+n+GakxmdP+POZUUAt0TsODtXs1bd8cWvDElM+DFOGakGPAyVOszDXj1hhkJBrwM1ZjM6AHPgjemLvp/jGNGiv6foVqfqf/XG2Yk6P8ZqjGZ0f0/5lRSCHRPwIK3ezVv3R1b8MaUzIAX45iRYsDLUK3PNODVG2YkGPAyVGMyowc8C96Yuuj/MY4ZKfp/hmp9pv5fb5iRoP9nqMZkRvf/mFNJIdA9AQve7tW8dXdswRtTMgNejGNGigEvQ7U+04BXb5iRYMDLUI3JjB7wLHhj6qL/xzhmpOj/Gar1mfp/vWFGgv6foRqTGd3/Y04lhUD3BCx4u1fz1t2xBW9MyQx4MY4ZKQa8DNX6TANevWFGggEvQzUmM3rAs+CNqYv+H+OYkaL/Z6jWZ+r/9YYZCfp/hmpMZnT/jzmVFALdE7Dg7V7NW3fHFrwxJTPgxThmpBjwMlTrMw149YYZCQa8DNWYzOgBz4I3pi76f4xjRor+n6Fan6n/1xtmJOj/GaoxmdH9P+ZUUgh0T8CCt3s1b90dW/DGlMyAF+OYkWLAy1CtzzTg1RtmJBjwMlRjMqMHPAvemLro/zGOGSn6f4Zqfab+X2+YkaD/Z6jGZEb3/5hTSSHQPQEL3u7VvHV3bMEbUzIDXoxjRooBL0O1PtOAV2+YkWDAy1CNyYwe8Cx4Y+qi/8c4ZqTo/xmq9Zn6f71hRoL+n6Eakxnd/2NOJYVA9wQseLtX89bdsQVvTMkMeDGOGSkGvAzV+kwDXr1hRoIBL0M1JjN6wLPgjamL/h/jmJGi/2eo1mfq//WGGQn6f4ZqTGZ0/485lRQC3ROw4O1ezVt3xxa8MSUz4MU4ZqQY8DJU6zMNePWGGQkGvAzVmMzoAc+CN6Yu+n+MY0aK/p+hWp+p/9cbZiTo/xmqMZnR/T/mVFIIdE/Agrd7NW/dHVvwxpTMgBfjmJFiwMtQrc804NUbZiQY8DJUYzKjBzwL3pi66P8xjhkp+n+Gan2m/l9vmJGg/2eoxmRG9/+YU0kh0D0BC97u1bx1d2zBG1MyA16MY0aKAS9DtT7TgFdvmJFgwMtQjcmMHvAseGPqov/HOGak6P8ZqvWZ+n+9YUaC/p+hGpMZ3f9jTiWFQPcELHi7V/PW3bEFb0zJDHgxjhkpBrwM1fpMA169YUaCAS9DNSYzesCz4I2pi/4f45iRov9nqNZn6v/1hhkJ+n+GakxmdP+POZUUAt0TsODtXs1bd8cWvDElM+DFOGakGPAyVOszDXj1hhkJBrwM1ZjM6AHPgjemLvp/jGNGiv6foVqfqf/XG2Yk6P8ZqjGZ0f0/5lRSCHRPwIK3ezVv3R1b8MaUzIAX45iRYsDLUK3PNODVG2YkGPAyVGMyowc8C96Yuuj/MY4ZKfp/hmp9pv5fb5iRoP9nqMZkRvf/mFNJIdA9AQve7tW8dXdswRtTMgNejGNGigEvQ7U+04BXb5iRYMDLUI3JjB7wLHhj6qL/xzhmpOj/Gar1mfp/vWFGgv6foRqTGd3/Y04lhUD3BCx4u1fz1t2xBW9MyQx4MY4ZKQa8DNX6TANevWFGggEvQzUmM3rAs+CNqYv+H+OYkaL/Z6jWZ+r/9YYZCfp/hmpMZnT/jzmVFALdE7Dg7V7NW3fHFrwxJTPgxThmpBjwMlTrMw149YYZCQa8DNWYzOgBz4I3pi76f4xjRor+n6Fan6n/1xtmJOj/GaoxmdH9P+ZUUgh0T8CCt3s1b90dW/DGlMyAF+OYkWLAy1CtzzTg1RtmJBjwMlRjMqMHPAvemLro/zGOGSn6f4Zqfab+X2+YkaD/Z6jGZEb3/5hTSSHQPQEL3lLKOuusW979nr8pmz1rZv8JuPzyS8t/nPHdcvNNN3bviWjgHVvwxhTFgBfjmJFiwMtQrc804NUbZiQY8DJUYzKjBzwL3pi66P8xjhkp+n+Gan2m/l9vmJGg/2eoxmRG9/+YU0kh0D2BcbvgPfFfvlSe/4Ld+hXtDQjP2WHr8sc//vEJFX7HO99VDjv8iDJhwoQn/O60b3+zfOD9B3XvqWjYHVvwxhTEgBfjmJFiwMtQrc804NUbZiQY8DJUYzKjBzwL3pi66P8xjhkp+n+Gan2m/l9vmJGg/2eoxmRG9/+YU0kh0D2BcbvgvemWO8ukSZP6Ff31zTeV3V+46xOqu8OOO5V/O/17ZWBgYJmVv+qqK8s+r3xp956MBt2xBW9MMQx4MY4ZKQa8DNX6TANevWFGggEvQzUmM3rAs+CNqYv+H+OYkaL/Z6jWZ+r/9YYZCfp/hmpMZnT/jzmVFALdExiXC9699n5J+fJJXx+s5qtf+dJy9VVXPqG6s8/9edlkxqaDP+8NEnfeeUdZe+2/KKuvvvrgz9994NvLmT/4fveejobcsQVvTCEMeDGOGSkGvAzV+kwDXr1hRoIBL0M1JjN6wLPgjamL/h/jmJGi/2eo1mfq//WGGQn6f4ZqTGZ0/485lRQC3RMYlwveL375q+XFL3lZv5rXXXdtecVL93pCZf/iL55Wrrj6vwZ/fsOv5pRXvGzvsmDBgv7PvnXa6WXnXf70qd9777mnbLv1s7v3dDTkji14YwphwItxzEgx4GWo1mca8OoNMxIMeBmqMZnRA54Fb0xd9P8Yx4wU/T9DtT5T/683zEjQ/zNUYzKj+3/MqaQQ6J7AuFzwnvnjs8sWW2zZr+YnP35M+fyJJzyhsu9+z9+WD3748MGfv+zFe5brr//zwrf3i1/ddFtZddVV+9e8aI/nlxtvuKF7T0gD7tiCN6YIBrwYx4wUA16Gan2mAa/eMCPBgJehGpMZPeBZ8MbURf+PccxI0f8zVOsz9f96w4wE/T9DNSYzuv/HnEoKge4JjMsF78WXXVWmTVuvX819X/3ycuUVlz+hst849VvlhS/cvf/z3/zmzrLLc7Z/wjWfOf7Esu9++/d/3vvL1np/6Zo/K17AgjfG3IAX45iRYsDLUK3PNODVG2YkGPAyVGMyowc8C96Yuuj/MY4ZKfp/hmp9pv5fb5iRoP9nqMZkRvf/mFNJIdA9gXG54L1+zs1lypQp/WpuvOG0snjx4idU9tIrrinrrvv0/s9/+pMfl7e/9U1PuObNb317OeroY/s//+pJXy5HHvHnT/x271EZuzu24I2xN+DFOGakGPAyVOszDXj1hhkJBrwM1ZjM6AHPgjemLvp/jGNGiv6foVqfqf/XG2Yk6P8ZqjGZ0f0/5lRSCHRPYFwueG+65c4yadKk8tBDD5VnzdhoyKrecvvvyoQJE/q/O+rIj5aTvvzFJ1y354v2Lid97eT+z88775zyxr98XfeekAbcsQVvTBEMeDGOGSkGvAzV+kwDXr1hRoIBL0M1JjN6wLPgjamL/h/jmJGi/2eo1mfq//WGGQn6f4ZqTGZ0/485lRQC3RMYlwvea6+/oay11lr9T+72PsH7+D8bP3OTcu5/Xjj442V9v+573vt35dAPHda/7odnfr+8651v794T0oA7tuCNKYIBL8YxI8WAl6Fan2nAqzfMSDDgZajGZEYPeBa8MXXR/2McM1L0/wzV+kz9v94wI0H/z1CNyYzu/zGnkkKgewLjcsE7+9yfl01mbNqv5t4vemH51Zw5S1X2oIMPKQe//wP9n/WGh2ds8Kevanj8n96nd3uf4u39+eK/nFiOPeao7j0hDbhjC96YIhjwYhwzUgx4Gar1mQa8esOMBANehmpMZvSAZ8EbUxf9P8YxI0X/z1Ctz9T/6w0zEvT/DNWYzOj+H3MqKQS6JzAuF7xf+eo3yov2enG/mhddeEF53Wv2W6qyF15yRZk+ff3+z26//bby/F12GrLyP7/osrLBBhv2f3f4hw8tp5z89e49IQ24YwvemCIY8GIcM1IMeBmq9ZkGvHrDjAQDXoZqTGb0gGfBG1MX/T/GMSNF/89Qrc/U/+sNMxL0/wzVmMzo/h9zKikEuicwLhe8m262WTl79vmD1Tz1lG+Uo/7+I2XGjE3LoR8+vOy22x6DvzvuM/+vfPqf/uEJlV9zzTXLNf/1q8Hv6X3NAfuUSy6+qHtPSAPu2II3pggGvBjHjBQDXoZqfaYBr94wI8GAl6Eakxk94FnwxtRF/49xzEjR/zNU6zP1/3rDjAT9P0M1JjO6/8ecSgqB7gmMywVvr4xnfO+HZdvtth+2ogsXLizbbzOrzJ079wnXfekrXyt7v/il/Z8vWrSozNh4/f7XOfiz4gUseGPMDXgxjhkpBrwM1fpMA169YUaCAS9DNSYzesCz4I2pi/4f45iRov9nqNZn6v/1hhkJ+n+GakxmdP+POZUUAt0TGLcL3mnT1is/+snsMnXq1GVW9f0H/235t+98+wm/3+gZG5fzzr+oDAwM9H93+WWXlv33fWX3no6G3LEFb0whDHgxjhkpBrwM1fpMA169YUaCAS9DNSYzesCz4I2pi/4f45iRov9nqNZn6v/1hhkJ+n+GakxmdP+POZUUAt0TGLcL3l4pJ0+eXE4/48zyrJkzB5e1vZ/Pnz+/HPahQ8oZ3z19yIp//4c/KVtttfXg79777r8u3//ef3Tv6WjIHVvwxhTCgBfjmJFiwMtQrc804NUbZiQY8DJUYzKjBzwL3pi66P8xjhkp+n+Gan2m/l9vmJGg/2eoxmRG9/+YU0kh0D2Bcb3gfbScEydOLLvv8aIyecrkct2115abb7px2EofdPAhZb3p0/vX9L6e4bAPfaB7T0aD7tiCN6YYBrwYx4wUA16Gan2mAa/eMCPBgJehGpMZPeBZ8MbURf+PccxI0f8zVOsz9f96w4wE/T9DNSYzuv/HnEoKge4JdGLB272yjq87tuCNqacBL8YxI8WAl6Fan2nAqzfMSDDgZajGZEYPeBa8MXXR/2McM1L0/wzV+kz9v94wI0H/z1CNyYzu/zGnkkKgewIWvN2reevu2II3pmQGvBjHjBQDXoZqfaYBr94wI8GAl6Eakxk94FnwxtRF/49xzEjR/zNU6zP1/3rDjAT9P0M1JjO6/8ecSgqB7gmMywXvvvsdUF7y0pf1q/nxYz9Wbrv1lqUqe8D/eW3Za+8X9392zNFHljvuuH3Iyr/hL/+qvHC33fu/+/uPHl7uuut33XtCGnDHFrwxRTDgxThmpBjwMlTrMw149YYZCQa8DNWYzOgBz4I3pi76f4xjRor+n6Fan6n/1xtmJOj/GaoxmdH9P+ZUUgh0T2BcLnhP/eZ3yvOe/4J+NYf6C9K+ddrpZedddu3//h1ve3P5yVk/GrLyZ3zvh2Xb7bbv/+71r92/XHjBz7v3hDTgji14Y4pgwItxzEgx4GWo1mca8OoNMxIMeBmqMZnRA54Fb0xd9P8Yx4wU/T9DtT5T/683zEjQ/zNUYzKj+3/MqaQQ6J6ABa8Fb+OfegvemBIZ8GIcM1IMeBmq9ZkGvHrDjAQDXoZqTGb0gGfBG1MX/T/GMSNF/89Qrc/U/+sNMxL0/wzVmMzo/h9zKikEuidgwWvB2/in3oI3pkQGvBjHjBQDXoZqfaYBr94wI8GAl6Eakxk94FnwxtRF/49xzEjR/zNU6zP1/3rDjAT9P0M1JjO6/8ecSgqB7glY8FrwNv6pt+CNKZEBL8YxI+W7p0wvixcvLAMDAyHxvX9nNn32u8pWOxwVktfVEANeMytvwGtmXXqnih7wLHhjaq3/xzhmpFjwZqjWZ+r/9YYZCfp/hmpMZnT/jzmVFALdE7DgteBt/FNvwRtTIgNejGNGigVvhmp9pgGv3jAjwYCXoRqTGT3gWfDG1EX/j3HMSLHgzVCtz9T/6w0zEvT/DNWYzOj+H3MqKQS6J2DBa8Hb+KfegjemRAa8GMeMFAveDNX6TANevWFGggEvQzUmM3rAs+CNqYv+H+OYkWLBm6Fan6n/1xtmJOj/GaoxmdH9P+ZUUgh0T8CC14K38U+9BW9MiQx4MY4ZKRa8Gar1mQa8esOMBANehmpMZvSAZ8EbUxf9P8YxI8WCN0O1PlP/rzfMSND/M1RjMqP7f8yppBDonoAFrwVv4596C96YEhnwYhwzUix4M1TrMw149YYZCQa8DNWYzOgBz4I3pi76f4xjRooFb4Zqfab+X2+YkaD/Z6jGZEb3/5hTSSHQPQELXgvexj/1FrwxJTLgxThmpFjwZqjWZxrw6g0zEgx4GaoxmdEDngVvTF30/xjHjBQL3gzV+kz9v94wI0H/z1CNyYzu/zGnkkKgewIWvBa8jX/qLXhjSmTAi3HMSLHgzVCtzzTg1RtmJBjwMlRjMqMHPAvemLro/zGOGSkWvBmq9Zn6f71hRoL+n6Eakxnd/2NOJYVA9wTG/YL3oYceKr3/eeyfNddcs0yYMKH/owcffLA8/PDDQ1b+sde9/rX7lwsv+Hn3npAG3LEFb0wRDHgxjhkpFrwZqvWZBrx6w4wEA16Gakxm9IBnwRtTF/0/xjEjxYI3Q7U+U/+vN8xI0P8zVGMyo/t/zKmkEOiewLhf8EaV1II3SnL5cyx4l99sqFcY8GIcM1IseDNU6zMNePWGGQkGvAzVmMzoAc+CN6Yu+n+MY0aKBW+Gan2m/l9vmJGg/2eoxmRG9/+YU0kh0D0BC95R1tyCd5RQCZdZ8MagGvBiHDNSLHgzVOszDXj1hhkJBrwM1ZiOCrVOAAAgAElEQVTM6AHPgjemLvp/jGNGigVvhmp9pv5fb5iRoP9nqMZkRvf/mFNJIdA9gXG54N1qq63L1ttsG1rN0//9O2X+/PmhmcJGJ2DBOzqnka4y4I0kNHa/t+AdO/vh3vmqSz5Ufv2rk8rAwEDYASestGrZ5w23heV1MciA19yqRw94Frwxtdb/YxwzUix4M1TrMy146w0zEvT/DNWYzOj+H3MqKQS6JzAuF7zdK+P4vmML3pj6GvBiHDNSLHgzVOszLXjrDTMSDHgZqjGZ0QOeBW9MXfT/GMeMFAveDNX6TAveesOMBP0/QzUmM7r/x5xKCoHuCVjwDlPz/Q94TXn+C3brX3HM0X9f/vu/7+7eE9KAO7bgjSmCAS/GMSPFgjdDtT7TgrfeMCPBgJehGpMZPeBZ8MbURf+PccxIseDNUK3PtOCtN8xI0P8zVGMyo/t/zKmkEOiegAXvMDU/43s/LNtut33/Ct/BO3b/cljwxtgb8GIcM1IseDNU6zMteOsNMxIMeBmqMZnRA54Fb0xd9P8Yx4wUC94M1fpMC956w4wE/T9DNSYzuv/HnEoKge4JWPBa8Db+qbfgjSmRAS/GMSPFgjdDtT7TgrfeMCPBgJehGpMZPeBZ8MbURf+PccxIseDNUK3PtOCtN8xI0P8zVGMyo/t/zKmkEOiegAWvBW/jn3oL3pgSGfBiHDNSLHgzVOszLXjrDTMSDHgZqjGZ0QOeBW9MXfT/GMeMFAveDNX6TAveesOMBP0/QzUmM7r/x5xKCoHuCVjwWvA2/qm34I0pkQEvxjEjxYI3Q7U+04K33jAjwYCXoRqTGT3gWfDG1EX/j3HMSLHgzVCtz7TgrTfMSND/M1RjMqP7f8yppBDonoAFrwVv4596C96YEhnwYhwzUix4M1TrMy146w0zEgx4GaoxmdEDngVvTF30/xjHjBQL3gzV+kwL3nrDjAT9P0M1JjO6/8ecSgqB7glY8FrwNv6pt+CNKZEBL8YxI8WCN0O1PtOCt94wI8GAl6Eakxk94FnwxtRF/49xzEix4M1Qrc+04K03zEjQ/zNUYzKj+3/MqaQQ6J6ABa8Fb+OfegvemBIZ8GIcM1IseDNU6zMteOsNMxLm3X9zOefMvcuiRQ+ExU+cOKVsv+vxZfqGLw/L7GJQ9IBnwRvzFOn/MY4ZKRa8Gar1mRa89YYZCRa8GaoxmdH9P+ZUUgh0T8CC14K38U+9BW9MiQx4MY4ZKRa8Gar1mRa89YYZCRkL3pUmTi477vrZst6GL8s4cmcyowc8C96YR0f/j3HMSLHgzVCtz7TgrTfMSLDgzVCNyYzu/zGnkkKgewIWvBa8jX/qLXhjSmTAi3HMSLHgzVCtz7TgrTfMSLDgzVCNyYwe8PT/mLro/zGOGSn6f4ZqfaYFb71hRoIFb4ZqTGZ0/485lRQC3RMYlwverbbaumyz7XbV1Xz3e/+2TJu2Xj/n9a/dv1x4wc+rMwUsv4ABb/nNhnqFAS/GMSPFgJehWp9pwVtvmJFgwZuhGpMZPeDp/zF10f9jHDNS9P8M1fpMC956w4wEC94M1ZjM6P4fcyopBLonMC4XvKd+8zvlec9/QWg1LXhDOZcrzIC3XFzLvNiAF+OYkWLAy1Ctz7TgrTfMSLDgzVCNyYwe8PT/mLro/zGOGSn6f4Zqfab+X2+YkWDBm6Eakxnd/2NOJYVA9wQseEdZcwveUUIlXGbAi0E14MU4ZqQY8DJU6zMNePWGGQkWvBmqMZnRA57+H1MX/T/GMSNF/89Qrc/U/+sNMxIy+r+/ZDWmUtH9P+ZUUgh0T2BcLniP+tjHyz777h9azdcesE+ZM+eXoZnCRidgwBud00hXGfBGEhq73xvwxs5+uHc24DWzLhkDnr9kLabW0QOe/h9TF/0/xjEjRf/PUK3P1P/rDTMSMvq/BW9MpaL7f8yppBDonsC4XPB2r4wxd/yZ4z43+NUWr3/d/uXGG25YKnjy5MnlvPMvHvzZ7Nlnl0MPOXiZbz4wMFDOOe+CMmXKGv1rbr31lnLAfq9a7sMa8JabbMgXGPBiHDNSDHgZqvWZBrx6w4yEjAHPgjemUtEDnv4fUxf9P8YxI0X/z1Ctz9T/6w0zEjL6vwVvTKWi+3/MqaQQ6J6ABW/3aj7kHR/6ocPKe977d4O/6y1iL7v0kqWufcrUqeWa6+YM/qw3eG23zaxy7z33DJn5zgPfUw77yBGDv5s7d27ZatZmyy1uwFtuMgveGLIVlmLAW2HUy/VGBrzl4lphF2cMeBa8MeWLHvD0/5i6WPDGOGak6P8ZqvWZ+n+9YUZCRv+34I2pVHT/jzmVFALdE7DgHaHmvU+hvnqffcvsn51d7r///nH5hOy73wHlM8d/bql7G82Ct/eCM3/wvfLuA98xpMvV180pU6dOteBtyFNjwGtIIYY4hgGvmbUx4DWzLhkDngVvTK2jBzwL3pi66P8xjhkp+n+Gan2m/l9vmJGQ0f8teGMqFd3/Y04lhUD3BCx4l1HzHXd6Tvmbvzu47LLL88qkSZPKeP1L1rbbfofy79/9fpkwYcKTWvAuXry4/6ncefPmLfX6ffbdrxx3wueX+plP8I7tf8AY8MbWf7h3N+A1szYGvGbWJWPAs+CNqXX0gGfBG1MX/T/GMSNF/89Qrc/U/+sNMxIy+r8Fb0ylovt/zKmkEOiegAXvY2q+/voblL896H3lpS97RVlzzTWXehrG44J32rT1ynk/v7isssoq5aGHHio//tEPS28x2/sz0id4r7zi8tJbDvf+nPbtb5YPvP+gpbwuvOSKMn36+uXuP/yhTJ4ypay++urFgnds/wPGgDe2/ha8zfVf1skMeM2sWcaAZ8EbU+voAc+CN6Yu+n+MY0aKBW+Gan2m/l9vmJGQ0f8teGMqFd3/Y04lhUD3BDq/4O39xWHv+Ot3lde87vX9heSy/uy/7yvL5ZddOm6ekNVWW61cdMmVZepTn1p6n8Ld51UvK72vanjLW98+qgXvKSd/vey+x559s4ULF5ZZMzcpCxYs6L925112Ld867fT+P/f+ErYjjz7WgrcBT44BrwFFWMYRDHjNrI0Br5l1yRjwLHhjah094FnwxtRF/49xzEjR/zNU6zP1/3rDjISM/m/BG1Op6P4fcyopBLon0NkFb2+Z+fa/PrDMmrVF6X3P7lB/el87cPZPzionnPCZcvNNN46rp+Ps2f9ZNt3sWf17eu+7/7p8/3v/0V/ELs+C9+KLLiifPfGL/YyvnvTlcuQRh/f/+ayfnltmbr754Cd2f3nDLRa8DXh6DHgNKIIFb3OLMMTJDHjNLFfGgGfBG1Pr6AHPgjemLvp/jGNGigVvhmp9pv5fb5iRkNH/LXhjKhXd/2NOJYVA9wQ6teDdYcedBr9Xd+WVVx6y2r1Po/7neeeUz55wXOl9DcF4/HPS104ue75o7/6t/fOn/7F85tP/1P/n5V3wHv7hQ8tV1/yiPHXttfuf3p256TPKJjNmlLNnn9/P++THjymfP/GEYsHbjKfIgNeMOgx1CgNeM2tjwGtmXTIGPAvemFpHD3gWvDF10f9jHDNS9P8M1f/P3nnH2VWWa/vJEBLIJJBQBQLSe+9dIIAUacI5CIogKiUUAakBFRQEVJCOepSeA8JRkY5SpQhISQKBGESqgjQJIYGEEL7f2vkYCZlkMvPcN1l73mv+OZLZ65p3Xc/G+9yPO2vyTPI/79BBcOQ/C17NpNT5rzkVFAyUZ6DbL3irRwh89Fzdueeeu8MJ337bH2Lfffbq8HXN+oJjjjs+Bh90aOP4N914fRy4/5RHMnR1wbv3PvvG908+tXH9OWefGeuuu36sv8GGMX78+FhxuSWjKmcseOvxbqHg1WMOLHjrO4dPnoyCV89ZOQoeC17NrNUFjwWvZi7kv8ajg8KC12E1zyT/8w4dBEf+s+DVTEqd/5pTQcFAeQa65YK3er7sfvsPjt332HO6z9WtSsPfnh4dV1xxWTz7zDNx2dCrGtPvzgveXXf77zjzrHMb9/nUk0/GNltvPtU7viuf4K0AI0c9E3379m08i7dnz56NR15ccP45cfqpp0z5WTN4RMOCS63R4b91E8a/HS2T+sdm29zU4Wt5wfQNVAVv5IiTot/8C8o0vfHiMzFo+9ujte9iMmaJoGuHDoz5Prti9Ghpkdz+O2++EgsvtHOsstaJEl6pkGEPDYlXX78lWvsvIFEw+YMP4s2Xno6d9nhOwisVUhW8u2/dPgYssrhMwdhXX45V1zw1Fl5sOxmzRNAdN20dPXqPi15z9pPcPvkv0Rjkv8ajg0L+O6zmmeR/3qGDQP47rGqYncn/fz3zmOaHQsEABqYx0C0XvFf879Wxyaafa3fcL7/8z/jtb66Jn194fuMZsdXXhhttHFf++jeN/9ydF7yPPPZEzDf//FE9W3i7zw+KiRMnTuXoqGOOi93+a/fGnw0+4BvxyMMPx7vvjm/z1H/AgBj++KjG96tfslY9oqH6OuyII+PwI45qY1XcFZZdIiZNmtT4Mxa89fhvHgpePebQ3ikoePWcDQWvnnOh4NVzLtWpOlPwZuYuWPDOjKWOX0P+d+xoVr2C/J9V5mf8c8n/es6F/K/nXDqb/yx46ztHTtb8BrrlgnfoldfExpts2jadapF7y803xrln/zRefPGFaaa2wYYbxVVX/7bx5yUseDvztn39tddirTVWblwyvQVvS0tLjHr6uejdu3fjdUOvuCyGHPufhS+PaOiMcd9r+SuaPrdZMn9FM2vQcz1/RdPjNUt1/BVNHtGQncqU69V/RZNHNGjmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPANFLHhHjnwiLvrlL+I3/3d145mwn/xiwTv9N/7MLHirq39wymnx1b2/FpMnT46VV1g6xo0b1wZlwVuP/2Kh4NVjDu2dgoJXz9lQ8Oo5FwpePefCgre+cyH/6zsb8r+esyH/6zkX8r+ec3Hkf33vlJNhoN4GuuWCd3qPaKieEfvQgw80ng977z1/aptMKQve+eabP/rNNdd035HVYxZ22nmXxvcPO/SgGDbssRj79tvx+uuvNf5sep/grb5XfXr3c5ttEa+8/M8YMWL4VD+DBW89/kuAglePObDgre8cPnkyCl49Z0XBq+dcHAWPT/BqZk3+azw6KCx4HVbzTPI/79BBIP8dVjVMPsGr8QgFA1kD3XLBO/fcc8fggw+NL+76X7HAAu3/QqnqE6a33/bHOOfsM2L++Rco4hm8Hb1ZuvpL1jrisuDtyNCn830K3qfjuSs/hYLXFWv+ayh4fsdd+QkUvK5Y+3SuURc8FryauZH/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM9At1zwfnyMSy29THzrsG/HllttHa2tre1O+L333os55pij8b3u/Azejt7eLHg7MtTc36fg1Xd+FLx6zoaCV8+5UPDqOZfG/w91w6B4683Ho0ePHpJDsuCVaAzyX+PRQSH/HVbzTPI/79BBIP8dVjVMdf5rTgUFA+UZ6PYL3o+PdLPNtogDDzok1l5n3ejZs2e70x47dmz8/MLz46Jf/WKq58iW8NZgwdu9p0zBq+98KXj1nA0Fr55zoeDVcy4seOs7F/K/vrMh/+s5G/K/nnMh/+s5F0f+1/dOORkG6m2gqAXvR6NoaWmJr+y1d+OXgi29zLLtftKk+tTIX0eNiisuvySGXnFZ45eHdfev7534g9j3G/s1bnOXnbaPRx95eKpbrh59MWLk6MafXX7ZJXHCkGNmSslHj2h46623YrWVl5upaz7+oimf4FkzNt/ulk5fywX/MUDBq++7gYJXz9lQ8Oo5FwpePefiKHh8glcza/Jf49FBIf8dVvNM8j/v0EEg/x1WNUw+wavxCAUDWQNFLng/Lq36xWGDBx/SeF7v/Ass0K7Parm7/TZbxpNPjsz65vouGGDB2wVp7VxCwdN4dFAoeA6reSYFL+/QQaDgOaxqmOqCx4JXMxfyX+PRQSH/HVbzTPI/79BBIP8dVjVMdf5rTgUFA+UZKH7B+/GRL7PssnHot74dg7bcaprn9e6x+65x/333lvcOqcEds+DVDIGCp/HooFDwHFbzTApe3qGDQMFzWNUw1QWPBa9mLuS/xqODQv47rOaZ5H/eoYNA/jusapjq/NecCgoGyjPAgnc6M998iy1j8EGHxJprrd14Xi8L3ln3LwcLXo17Cp7Go4NCwXNYzTMpeHmHDgIFz2FVw1QXPBa8mrmQ/xqPDgr577CaZ5L/eYcOAvnvsKphqvNfcyooGCjPAAveDmZePa93zy/vFTfccF289e9/l/cOqcEds+DVDIGCp/HooFDwHFbzTApe3qGDQMFzWNUw1QWPBa9mLuS/xqODQv47rOaZ5H/eoYNA/jusapjq/NecCgoGyjPAgvdjM+/Xr1/jF669/fbb5b0TanzHLHg1w6HgaTw6KBQ8h9U8k4KXd+ggUPAcVjVMdcFjwauZC/mv8eigkP8Oq3km+Z936CCQ/w6rGqY6/zWngoKB8gx02wXv2uusG6uutnpjotUvSbvskosa//eTX3POOWecdc75MWjLrWP22WdvfPu9996Lp54cGQfs9/V45ZWXy3tX1OyOWfBqBkLB03h0UCh4Dqt5JgUv79BBoOA5rGqY6oLHglczF/Jf49FBIf8dVvNM8j/v0EEg/x1WNUx1/mtOBQUD5Rnotgvevzw6IhZYYMHGRCdNmhQrLLtETJw4caoJV5/WffDhYbHggp9pd/LV67+5795x1113lPfOqNEds+DVDIOCp/HooFDwHFbzTApe3qGDQMFzWNUw1QWPBa9mLuS/xqODQv47rOaZ5H/eoYNA/jusapjq/NecCgoGyjPQLRe81WK3WvB+9HXxRb+ME797/DTTPe1HZ8Qee35lhlOvPvW7+irLx5gxY8p7d9TkjlnwagZBwdN4dFAoeA6reSYFL+/QQaDgOaxqmOqCx4JXMxfyX+PRQSH/HVbzTPI/79BBIP8dVjVMdf5rTgUFA+UZ6JYL3mOOOz4GH3RoY5rV4xZWWn6pxqd4P/n11789H3PMMUfjj6vv33TjDfF/V1/VeLTDYUccGT179mx879Zbbor9vvG18t4dNbljFryaQVDwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCx4NXMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQa65YL319f8LtbfYMPGNIdecVkMOfaoaSa7xaCt4uJLr2j78/PPOzt+dNoP2/65eobvb353feOfq4KxyorLxNixY8t7h9TgjlnwaoZAwdN4dFAoeA6reSYFL+/QQaDgOaxqmOqCx4JXMxfyX+PRQSH/HVbzTPI/79BBIP8dVjVMdf5rTgUFA+UZ6JYL3jvvvi+WXGrpxjQPPfiA+P21v5tmsh9/PMOECRNi+WUWn+aXsN12x59imWWXa1z71S9/Ke6++87y3iE1uGMWvJohUPA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BrrlgnfYiKdiwDzzNKa51uorx+uvvzbNZG/9412x/AorNP58xIjhscN2W0/zmuoxDYcfMeXTvz8+/dQ479yzynuH1OCOWfBqhkDB03h0UCh4Dqt5JgUv79BBoOA5rGqY6oLHglczF/Jf49FBIf8dVvNM8j/v0EEg/x1WNUx1/mtOBQUD5Rnolgvep//+YvTq1avxXN2lFl+k3ak++de/R2tra+N70/slbDvtvEucc97PGq+57vfXxiEH7V/eO6QGd8yCVzMECp7Go4NCwXNYzTMpeHmHDgIFz2FVw1QXPBa8mrmQ/xqPDgr577CaZ5L/eYcOAvnvsKphqvNfcyooGCjPQLdc8I5+5oXo3bt3TJw4MZZZctFpplp9r3rNR1/77rNX3H7bH6Z53c67fDHOPvfCxp9Xj2eoHtPA16dvgAWvxjkFT+PRQaHgOazmmRS8vEMHgYLnsKphqgseC17NXMh/jUcHhfx3WM0zyf+8QweB/HdY1TDV+a85FRQMlGegWy54H3pkeCy44Gca01xisYWmebbuVltvE7+86NK2aa+43JIxbty4aaZ/yqk/iq/stXfjz3991f/G0UceXt47pAZ3zIJXMwQKnsajg0LBc1jNMyl4eYcOAgXPYVXDVBc8FryauZD/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM9At1zwXnvdTbHGmms1pnn6qafEBeefM9VkL7rk8hi05ZRn7laL3WrB297X9Tf9IVZddbXGt3502g/j/PPOLu8dUoM7ZsGrGQIFT+PRQaHgOazmmRS8vEMHgYLnsKphqgseC17NXMh/jUcHhfx3WM0zyf+8QweB/HdY1TDV+a85FRQMlGegWy54Dzn08Djy6GMb0xw/fnxsvumG8corLzf+eeDAReOe+x+KlpaWxj/feeftsc9ee7Y7+REjR8fcc8/d+N7gA74RN95wfXnvkBrcMQtezRAoeBqPDgoFz2E1z6Tg5R06CBQ8h1UNU13wWPBq5kL+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwD3XLB26NHj6h+iVqfPn0aE50wYULce8/dscgii8Zyyy8f1fc/+vryHv8V997zp2kmv+12X4if/eJXbX++/jprxMsv/7O8d0gN7pgFr2YIFDyNRweFguewmmdS8PIOHQQKnsOqhqkueCx4NXMh/zUeHRTy32E1zyT/8w4dBPLfYVXDVOe/5lRQMFCegW654K3G+M39D4wTvnPiDCc6YsTw2GG7KY9q+OTXsBFPxYB55mn88Wuvvhprr7lKee+OmtwxC17NICh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfBY8GrmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAPddsFbjfLAwYfEsUNOaHeq//rXK7Hl5pvE22+/Pc33Dzr4W3H0sUPa/vyySy+O7xw/5ZEPfH36BljwapxT8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGuvWCtxrneutvEHvvs2+svsaa0WfOPvGPf/4jbr7xhjjv3LOmO+37H3wkFlpo4bbvb7jeWjyeYRb+u8GCVyOfgqfx6KBQ8BxW80wKXt6hg0DBc1jVMNUFjwWvZi7kv8ajg0L+O6zmmeR/3qGDQP47rGqY6vzXnAoKBsoz0O0XvOWNtPvdMQtezUwpeBqPDgoFz2E1z6Tg5R06CBQ8h1UNU13wWPBq5kL+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwDLHg7OfMLfvY/sdrqa8QxRx3R7i9n6ySOl8+EARa8MyFpJl5CwZsJSbPoJRS8WSS+gx9LwavnXCh49ZxLdSp1wWPBq5k1+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDg7eTMH/jLY43HN5ww5Ji4/LJLOnk1L++KARa8XbE27TUUPI1HB4WC57CaZ1Lw8g4dBAqew6qGqS54LHg1cyH/NR4dFPLfYTXPJP/zDh0E8t9hVcNU57/mVFAwUJ4BFrydnDkL3k4KE7ycBa9AYkRQ8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPB2cuYseDspTPByFrwCiSx4NRJNFAqeSWwSS8FLCjRdTsEziRVg1QWPBa9gKOS/RqKJQv6bxCax5H9SoOly8t8kVoBV57/gSCAwUKQBFrydHDsL3k4KE7ycBa9AIgVPI9FEoeCZxCaxFLykQNPlFDyTWAFWXfBY8AqGQv5rJJoo5L9JbBJL/icFmi4n/01iBVh1/guOBAIDRRpgwdvJsbPg7aQwwctZ8AokUvA0Ek0UCp5JbBJLwUsKNF1OwTOJFWDVBY8Fr2Ao5L9GoolC/pvEJrHkf1Kg6XLy3yRWgFXnv+BIIDBQpAEWvJ0cOwveTgoTvJwFr0AiBU8j0USh4JnEJrEUvKRA0+UUPJNYAVZd8FjwCoZC/mskmijkv0lsEkv+JwWaLif/TWIFWHX+C44EAgNFGmDB28mxs+DtpDDBy1nwCiRS8DQSTRQKnklsEkvBSwo0XU7BM4kVYNUFjwWvYCjkv0aiiUL+m8QmseR/UqDpcvLfJFaAVee/4EggMFCkARa8nRw7C95OChO8nAWvQCIFTyPRRKHgmcQmsRS8pEDT5RQ8k1gBVl3wWPAKhkL+aySaKOS/SWwSS/4nBZouJ/9NYgVYdf4LjgQCA0UaYMHbybGz4O2kMMHLWfAKJFLwNBJNFAqeSWwSS8FLCjRdTsEziRVg1QWPBa9gKOS/RqKJQv6bxCax5H9SoOly8t8kVoBV57/gSCAwUKQBFrydHDsL3k4KE7ycBa9AIgVPI9FEoeCZxCaxFLykQNPlFDyTWAFWXfBY8AqGQv5rJJoo5L9JbBJL/icFmi4n/01iBVh1/guOBAIDRRpgwdvJsbPg7aQwwctZ8AokUvA0Ek0UCp5JbBJLwUsKNF1OwTOJFWDVBY8Fr2Ao5L9GoolC/pvEJrHkf1Kg6XLy3yRWgFXnv+BIIDBQpAEWvJ0cOwveTgoTvJwFr0AiBU8j0USh4JnEJrEUvKRA0+UUPJNYAVZd8FjwCoZC/mskmijkv0lsEkv+JwWaLif/TWIFWHX+C44EAgNFGmDB28mxs+DtpDDBy1nwCiRS8DQSTRQKnklsEkvBSwo0XU7BM4kVYNUFjwWvYCjkv0aiiUL+m8QmseR/UqDpcvLfJFaAVee/4EggMFCkARa8nRw7C95OChO8nAWvQCIFTyPRRKHgmWBu13AAACAASURBVMQmsRS8pEDT5RQ8k1gBVl3wWPAKhkL+aySaKOS/SWwSS/4nBZouJ/9NYgVYdf4LjgQCA0UaYMHbybGz4O2kMMHLWfAKJFLwNBJNFAqeSWwSS8FLCjRdTsEziRVg1QWPBa9gKOS/RqKJQv6bxCax5H9SoOly8t8kVoBV57/gSCAwUKQBFrydHDsL3k4KE7ycBa9AIgVPI9FEoeCZxCaxFLykQNPlFDyTWAFWXfBY8AqGQv5rJJoo5L9JbBJL/icFmi4n/01iBVh1/guOBAIDRRpgwdvJsbPg7aQwwctZ8AokUvA0Ek0UCp5JbBJLwUsKNF1OwTOJFWDVBY8Fr2Ao5L9GoolC/pvEJrHkf1Kg6XLy3yRWgFXnv+BIIDBQpAEWvDMY+4knnRxbb7Nt4xV777VHPD16dFR/tvIqq8bJPzgxhj32aJFvmk/7plnwaoy/+Oy18egD344PJr2jAUZEy2x9Yqsd747WvovJmCWCKHj1nDoFr55zoeDVcy7VqdQFjwWvZtbkv8ajg0L+O6zmmeR/3qGDQP47rGqY6vzXnAoKBsozwIJ3BjO/9rqbYo0112q8Yo/dd43777u3vHdIDe6YBa9mCBQ8jUcHhYLnsJpnUvDyDh0ECp7DqoapLngseDVzIf81Hh0U8t9hNc8k//MOHQTy32FVw1Tnv+ZUUDBQngEWvCx4a/+uZ8GrGREFT+PRQaHgOazmmRS8vEMHgYLnsKphqgseC17NXMh/jUcHhfx3WM0zyf+8QweB/HdY1TDV+a85FRQMlGeABS8L3tq/61nwakZEwdN4dFAoeA6reSYFL+/QQaDgOaxqmOqCx4JXMxfyX+PRQSH/HVbzTPI/79BBIP8dVjVMdf5rTgUFA+UZYMHLgrf273oWvJoRUfA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwsuCt/bueBa9mRBQ8jUcHhYLnsJpnUvDyDh0ECp7DqoapLngseDVzIf81Hh0U8t9hNc8k//MOHQTy32FVw1Tnv+ZUUDBQngEWvCx4a/+uZ8GrGREFT+PRQaHgOazmmRS8vEMHgYLnsKphqgseC17NXMh/jUcHhfx3WM0zyf+8QweB/HdY1TDV+a85FRQMlGeABS8L3tq/61nwakZEwdN4dFAoeA6reSYFL+/QQaDgOaxqmOqCx4JXMxfyX+PRQSH/HVbzTPI/79BBIP8dVjVMdf5rTgUFA+UZYMHLgrcp3vXzzLdObLbtDU1x1roe8sXnrotH/3x4fDDpHdkRW2brE1vteHe09l1MxiwRRMGr59QpePWcCwWvnnOpTqUueCx4NbNmwavx6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDgZcFb+3c9n+DVjIiCp/HooFDwHFbzTApe3qGDQMFzWNUw1QWPBa9mLuS/xqODQv47rOaZ5H/eoYNA/jusapjq/NecCgoGyjPQLRe8e355r9hu+x3S01xjzbWib9++Dc4eu+8a9993b5oJoPMGWPB23ll7V1DwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCx4NXMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQa65YJ36JXXxMabbCqdJgteqc5OwVjwdkrXdF9MwdN4dFAoeA6reWZV8J4dfXEe9DFCy2xzxM57Pi9llgaj4NV34uqCx4JXM2vyX+PRQSH/HVbzTBa8eYcOAvnvsKphqvNfcyooGCjPAAvemZw5C96ZFGV4GQtejVQKnsajg0LBc1jNM1nw5h06CBQ8h1UNU13wWPBq5kL+azw6KOS/w2qeyYI379BBIP8dVjVMdf5rTgUFA+UZ6JYL3uoRDdtu9wXpNI89+tvxj3+8JGUCmzkDLHhnzlNHr6LgdWRo1n2fgjfr3M/oJ7PgredcKHj1nEt1KnXBY8GrmTX5r/HooJD/Dqt5JgvevEMHgfx3WNUw1fmvORUUDJRnoFsueMsbY/e+Yxa8mvlS8DQeHRQKnsNqnsmCN+/QQaDgOaxqmOqCx4JXMxfyX+PRQSH/HVbzTBa8eYcOAvnvsKphqvNfcyooGCjPAAve8mbedHfMglczMgqexqODQsFzWM0zWfDmHToIFDyHVQ1TXfBY8GrmQv5rPDoo5L/Dap7Jgjfv0EEg/x1WNUx1/mtOBQUD5RlgwTuDmQ+YZ5449NDDY4cdd46999ojRo58orx3SA3umAWvZggUPI1HB4WC57CaZ7LgzTt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8kwVv3qGDQP47rGqY6vzXnAoKBsozwIL3EzPv2bNnfHWffWOvvfaOJZdauu27/JK1WfcvBwtejXsKnsajg0LBc1jNM1nw5h06CBQ8h1UNU13wWPBq5kL+azw6KOS/w2qeyYI379BBIP8dVjVMdf5rTgUFA+UZYMH7/2c+aMut48DBB8daa68TLS0t07wTWPDOun85WPBq3FPwNB4dFAqew2qeyYI379BBoOA5rGqY6oLHglczF/Jf49FBIf8dVvNMFrx5hw4C+e+wqmGq819zKigYKM9A0Qve5ZZfPr512Ldj8y22jD59+rQ7/cmTJ8cTTzweX99nr3j11X+V9w6pwR2z4NUMgYKn8eigUPAcVvNMFrx5hw4CBc9hVcNUFzwWvJq5kP8ajw4K+e+wmmey4M07dBDIf4dVDVOd/5pTQcFAeQaKW/BWz9U9+OBvxc677BrzzT9/uxOvCsXfn/lbDB16eVx+6cUxceLE8t4ZNbpjFryaYVDwNB4dFAqew2qeyYI379BBGDvmb3HnTZ+PSZPekeFn69ka62x0Xiy82HYyZokgdcFjwat5F5H/Go8OCvnvsJpnsuDNO3QQWPA6rGqY6vzXnAoKBsozUMSCt3qu7le+uk/svffXpnqubnvjHvXUU/Hfu+0UY8aMKe/dUNM7ZsGrGQwFT+PRQaHgOazmmSx48w4dBNuCd+PzY+FFt3UcuRimuuCx4NW8dch/jUcHhfx3WM0zWfDmHToILHgdVjVMdf5rTgUFA+UZ6NYL3i0GbRWDDzpkus/VrcZdLXKrT+uuseZajenfftsfYt999irvnVDjO2bBqxkOBU/j0UGh4Dms5pksePMOHQQWvA6rGqa64JH/mrmQ/xqPDgr577CaZ7LgzTt0EFjwOqxqmOr815wKCgbKM9AtF7z7fmO/OOro46b7XN0JEybEvffcHeec/dMY9tijseFGG8eVv/4NC96avv8peJrBUPA0Hh0UCp7Dap7Jgjfv0EFgweuwqmGqCx75r5kL+a/x6KCQ/w6reSYL3rxDB4EFr8OqhqnOf82poGCgPAPdcsE79MprYuNNNp1qmtUvS3vs0UfiFz+/MG65+capvrfBhhvFVVf/lgVvTd//FDzNYCh4Go8OCgXPYTXPZMGbd+ggsOB1WNUw1QWP/NfMhfzXeHRQyH+H1TyT/M87dBBY8Dqsapjq/NecCgoGyjNQxIL34ot+GSd//3sxadKkdifMgrfeb3wKnmY+FDyNRweFguewmmdS8PIOHQQWvA6rGqa64JH/mrmQ/xqPDgr577CaZ5L/eYcOgi3/+SWr6XGp8z99IAAYKNRAEQvearZvvvFGXHfdtXHu2T+N119/bapxs+Ct97ufgqeZDwVP49FBoeA5rOaZFLy8QwfBVvD4JWvpcakLHvmfHkkDQP5rPDoo5L/Dap5J/ucdOgi2/GfBmx6XOv/TBwKAgUINdMsF74GDD4kjjjw6evXq1e5YX3jh+bhy6BXxq1/+PKrn8bLgrfe7n4KnmQ8FT+PRQaHgOazmmRS8vEMHwVbwWPCmx6UueOR/eiQseDUKbRTy36Y2BSb/U/psF9vynwVvembq/E8fCAAGCjXQLRe8H81yp513iW/sd2Csssqq0aNHj2lGXBWHkSOfaDybd6+v7tP4/u23/SH23WevQt8O9bxtCp5mLo4Fb8/Z+8WgL9wZrX0X1RyyUMq1Qz8bkye/J7v76t+ZZVY8MFZd+yQZs0QQBa+eU7cVPBa86YGrCx75nx4JC16NQhuFBa9NbQpM/qf02S625T8L3vTM1PmfPhAADBRqoFsveD+aae/eveMb3zwg9vjyV2LRRReb4ajvv+/e2GP3XQt9O9Tztil4mrk4Frwts/WJrXa8O1r7zvjfK80ddF8KBa+es6Xg1XMutoLHgjc9cHXBI//TI2HBq1Foo5D/NrUpMPmf0me72Jb/LHjTM1Pnf/pAADBQqIEiFrwfn+1CCy0ch3zr8Nj+CztG//792x37+PHj4647b4/zzjmr8QlfvmatAQqexj8LXo1HB4WC57CaZ1Lw8g4dBFvBY8GbHpe64JH/6ZGw4NUotFHIf5vaFJj8T+mzXWzLfxa86Zmp8z99IAAYKNRAcQvej8959TXWjG8ddkRsvMnnpvu83rfeeituufnGOPn734uxY8cW+jaZtbdNwdP4Z8Gr8eigUPAcVvNMCl7eoYNgK3gseNPjUhc88j89Eha8GoU2CvlvU5sCk/8pfbaLbfnPgjc9M3X+pw8EAAOFGih6wfvxme+8yxcbz+tdeeVV2n1eb/XYhurxDd3xa7755o/qMRb/+MdLtbw9Cp5mLCx4NR4dFAqew2qeScHLO3QQbAWPBW96XOqCR/6nR8KCV6PQRiH/bWpTYPI/pc92sS3/WfCmZ6bO//SBAGCgUAMseD8x+DnnnDO+/o39G8/rHTjwP784qrsseKtfNveVvfaO//7SnrHkkktFa2vrVAvtN994Iy695KI45+wzY/LkyVPZqV579z0PtP3ZHXfcFkcfefh0/9Wpftadd98Xffv2a7zmueeejd2+uGOn/1Wj4HVaWbsXsODVeHRQHAVv2ZW/FausebzjuMUwRzx8YoweeX60tLTI7rlltjli5z2fl/FKBNkKHgve9NtJXfDI//RIWPBqFNoojvznl6zmx8WCN+/QQbDlPwve9LjU+Z8+EAAMFGqgWy54+/XrF/37D2iM9KWXXoyqIHTla5FFBjae17vNttvHV7+8e4wYMbwrmFpds9lmW8SlV1zZ4Zkef3xEfGHbraZ6Xf8BA2L446Pa/qzyuubqK0W1FG7va/8DDoohJ3y37VtjxoyJVVdatsOf/ckXUPA6razdC1jwajw6KBQ8h9U8k4KXd+gg2AoeC970uNQFj/xPj6QBIP81Hh0U8t9hNc8k//MOHQRb/rPgTY9Lnf/pAwHAQKEGuuWC94r/vTo22fRzjZEOPuAbceMN1xc63mlv++ML3mr5PeyxR2P4sGHxYXwYgwZtFRtsuFHbRT8988dx1pk/afvnTy54q2/ceMN1MfiAb7brd9jjo2LAgCmL9uqLBe+sfRtS8Gat/xn9dApePWdDwavnXGwFjwVveuDqgseCNz2SBoD813h0UMh/h9U8k/zPO3QQbPnPgjc9LnX+pw8EAAOFGuiWC96hV14TG2+yaWOkBw/eL66/7veFjnfa215llVXjtB+fGd/7zpB4+C8PTfOCwQcdGsccN+WvdVefWN5hu63bXtPegrd6jEP1qdxP/gK66pnGZ5974VR8Fryz9m1IwZu1/lnw1tf/9E5GwavnzGwFjwVveuDqgseCNz0SFrwahTYKC16b2hSY/E/ps11M/tvUpsHq/E8fCAAGCjXAgrfQwU/vtqtnEI96+rnGt6tfurbhemu1u+B99JGHY8211m587+pfXxlHffuwqZD3P/hIVI+4eO3VV6O1b9/o06cPn+Cdxe81FryzeAAz+PEUvHrOhoJXz7lQ8Oo5l+pU6oLHglcza/Jf49FBIf8dVvNM8j/v0EEg/x1WNUx1/mtOBQUD5RlgwVvezGd4xzvsuFOcd8EvGq+56647Yu+v7NHugveKyy+NzbcY1Fjivv/++7HS8kvFhAkTGq+tHvNw1dW/bfzn6pewnfj9U1jw1uB9RsGrwRCmcwQKXj1noy541d946Df3MvH5ne+v5w03yanGjn027v3DbvHu+JdkJ+45e79Ye+MLYuGB//lbKzJ4QaC7btkxXv/Xn2W/mJAFr+bNQ/5rPDoo5L/Dap6pzv/qRPyS1fxcWPDmHboILHhdZuFioHMGWPB2zle3ffXAgYvGbv+9exx8yGEx++yzR7WI2GTDdRu/pO6jr48/oqFa8D7w5/valsEXX/TLOPG7Ux7tcOsf74rlV1ih7RO7T41+lgVvDd45FLwaDIEFb32H0M7JKHj1HBcFr55zqU7lKHifGbhNbLj5pfW96SY42T9euDkevv9b8cH7Y2SnnWPOhWLTra+LvnMtJmOWCLr12vVj3NhnZbde/Y8iy6x4YKy69kkyZokg8r+eUyf/6zkXV/7X9245GQbqa4AFb31n86mc7PwLfxGbb7FltLa2tv286rEK3z780Lj77junOsMnF7zHH3d0PDb8yZhn3nkbn95dfpnFY6mll47b7rincd1pPzw5Lrzg3GDB+6mMssMfwoK3Q0Wz7AV8gmeWqZ/hD6bg1XMuFLx6zsVR8PgEr2bW5L/Go4Oizv/qAxorrn5crLjaEY7jFsN8cviPYtSIM6T3yyd48zrJ/7xDF8HxP/C6zgoXA93ZAAve7jzdmbi3u/50fyyx5FJtr5w0aVL89jfXxAlDjml75MJH32xvwbv3PvvG908+tfGSc84+M9Zdd/1Yf4MNY/z48bHicktGVc5mtOAdsPDSHZ7y/ffGRa/ZFo7Ntrmpw9fygukbqAre48O+E3PONZdM09jXXolBX7gzWvvyCZ6M1N8NXSTmXnCx6NGjJYNpu/bdsW/GogN3j1XWPlHCKxUy7KFj4+WXr485+vaXKPhw8gdR/Tuz055TnnPOV9cMVAXv7lu3j9Z55+saoJ2r3h0zJlZf58ex8KLbypglgu64cauY1OP1mL13H8ntk/8SjUH+azw6KOS/w2qeqc7/yR98EGNffyV2Jv9Twxn79jNT8n+eeVOcj19M/mtUdib///3Pv2l+KBQMYGAaA91+wTtx4sTGM2KzX//1xR1j5MgnspjaXX/IoYfHeutvEAPmmSeWXHKpxqMUqq9qQfu5jdePV1/9V9uZ21vwVt8cOeqZ6Nu3b8Nzz549o0ePHnHB+efE6aee0rh2RgveBZdao0MnE8a/HS2TBsRm29zY4Wt5wfQNVAVv5IiTot/8C8o0vfHiMzFo+9tZ8CaNVgVv/s+uFD1aNAved958JRZeaOdYZS0WvJnRDHvouHjt9VujT/8FMpi2a6uC9+ZLT8dOe7DgzQhtLHj/8IUYsMjiGcxU17796sux2lqnseBNGr3jpq2jR+9x0WvOfknSlMvJf4nGxoKX/Ne4VFPIf7VRDY/813hUU8h/tVEdrzP5/69nHtP9YEgYwMBUBrr9glc17z123zXuv+9eFa62nNN+dEbssedXGucb9dRT8fmtNms76/QWvIcdcWQcfsRRba+rluorLLtEVJ8Grr5mtODtNWffDl1M/mBS9Jtrxdh825s7fC0vmL6BquAN+8sx0aNlylwUXx+8/2FsucNdLHiTMqu/otmzd+/G/zii+Jo0cUIsuezXeQZfUuawB4+N558dGrP17JUkTbm8+hsNk9//IHba83kJr1RI469o3rxNtPT8UKbgww9aYq0Nz2HBmzRa/RXNceP+Fi2z9UySplxO/ks0Nha85L/GpZpC/quNanjkv8ajmkL+q43qeJ3J/4nvvqP7wZAwgIGpDLDgnck3RCkL3krHR5/IrRa0Sy2+SJuh6S14W1paYtTTz0Xv3r0brx16xWUx5Nj/LHx5Bu9MvsnML+MZfGbBCbz6GXz8kpXEMD52Kc/g1XhUU3gGn9qojqd+Bh/P4NXMhvzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQa6/YK3WjY+9OCf05O99Zab4913301zmgHw8efyrrPmqm2PaZjegre6px+cclp8de+vRfXLHVZeYekYN25c262y4K3H1Cl49ZhDe6eg4NVzNhS8es6FglfPuVSnUhc8FryaWZP/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM9At1/wHjx4v7j+ut+XN9nEHQ9/4q/Rv3//xl8nXvKzCzeWttXXjBa81ad3P7fZFvHKy/+MESOGT/XTWfAmhiG8lIInlClGUfDEQkU4Cp5IpBhDwRMLFeLUBY8Fr2Y45L/Go4NC/jus5pnkf96hg+DI/9l79Y+1N7ogFho4yHHkYpj33f7lePmlP0T1N3v5wgAGZp0BFryzzv0s+cn77T84Hn74oXj0kYfb/fm7/dfuccZPz2l876233orVVl6u7XUzWvDO6GZY8M6SUU/zQyl49ZhDe6eg4NVzNhS8es7FUfBm69ka62x8Ps/gTY6cBW9SoOly8t8kVoAl/wUSDQjy3yBVgCT/BRJNCHX+m44JFgPd3gAL3m4/4qlv8L4HHo6BAxeN559/Lq6+6sp48ME/x2OPPhJLLb10HHzI4bHDjju1/aKnM3/yozj7rDNY8HaT9wgFr76DpODVczYUvHrOhYJXz7lUp1IXPD7Bq5k1+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDgLWzmHy14O7rtJ554PLbfZsupXsYneDuyVu/vU/DqOx8KXj1nQ8Gr51woePWcCwve+s6F/K/vbMj/es6G/K/nXMj/es7Fkf/1vVNOhoF6G2DBW+/5yE/3lb32jv0PPCgWW+yz7bInTpwYZ535kzj/vLOn+f7cc88dI0aObvz55ZddEicMOWamzvfRIxo++ciHmbo4ovEs4HnmWzM23+6Wmb2E17VjgIJX37cFBa+es6Hg1XMuFLx6zsVR8Mh/zazJf41HB4X8d1jNM8n/vEMHgfx3WNUw+QSvxiMUDGQNsODNGmzS63v16hXLLbd8rLDiSrH4EkvEiy+80Hg279Ojpyxw6/RFwdNMg4Kn8eigUPAcVvNMCl7eoYNAwXNY1TDVBY/818yF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5Brrlgnf3L+0Z22y3fWOa3z/xu/Hs358pb7Ld6I4peJphUvA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64JH/mrmQ/xqPDgr577CaZ5L/eYcOAvnvsKphqvNfcyooGCjPQLdc8M7sGFtbW+Pdd9+NyZMnz+wlvG4WGKDgaaRT8DQeHRQKnsNqnknByzt0ECh4Dqsaprrgkf+auZD/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM9AMQvegQMXjSOPOjaWXnbZWOgzC0X1C8N69uzZmPh7770Xr7/+Wrzw/PPx4AN/jrPPOqPx3Fe+6mGAgqeZAwVP49FBoeA5rOaZFLy8QweBguewqmGqCx75r5kL+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDHT7BW/v3r3jRz85K3baeZfo0aPHTE34nXfeie+ecFz85v+unqnX8yKvAQqexi8FT+PRQaHgOazmmRS8vEMHgYLnsKphqgse+a+ZC/mv8eigkP8Oq3km+Z936CCQ/w6rGqY6/zWngoKB8gx06wXvZpttEb/41SVRLXm78vX3Z/4Wn99q85g4cWJXLucakQEKnkYkBU/j0UGh4Dms5pkUvLxDB4GC57CqYaoLHvmvmQv5r/HooJD/Dqt5Jvmfd+ggkP8OqxqmOv81p4KCgfIMdNsFb79+/eLhx56IOeaYo22qVVEY9tijMXLkE/H006Pjub//PWbv1SuWX36FWGbZ5WLd9daLhRZaeKp3wR133BZf++qXy3tn1OiOKXiaYVDwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCR/5q5kP8ajw4K+e+wmmeS/3mHDgL577CqYarzX3MqKBgoz0C3XfD+32+vi3XWXa9tog/8+f448ohvxYsvvjDDKe+w405x4kmnxHzzz9/2uoMH7xfXX/f78t4dNbljCp5mEBQ8jUcHhYLnsJpnUvDyDh0ECp7DqoapLnjkv2Yu5L/Go4NC/jus5pnkf96hg0D+O6xqmOr815wKCgbKM9AtF7ybb7FlXHLZ0LZpXnLxr+J73xky09NtaWmJhx4eHvMvsEDjmuqXsC239Gdn+npeqDVAwdP4pOBpPDooFDyH1TyTgpd36CBQ8BxWNUx1wSP/NXMh/zUeHRTy32E1zyT/8w4dBPLfYVXDVOe/5lRQMFCegW654D39x2fGl/aY8liFUU89FZ/farNOT3axxT4bd/7p/ujZs2fj2g3XWyv+8Y+XOs3hgrwBCl7eYUWg4Gk8OigUPIfVPJOCl3foIFDwHFY1THXBI/81cyH/NR4dFPLfYTXPJP/zDh0E8t9hVcNU57/mVFAwUJ6BbrngvfGW22LllVdpTPO/d9s5Hnzgz12a7GVDr4rPfW7zxrVHH3l4/Pqq/+0Sh4tyBih4OX8fXU3B03h0UCh4Dqt5JgUv79BBoOA5rGqY6oJH/mvmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAPdcsH7+JNPx1xzzRVVMVhisYUa/7crXwcfclgcdcxxjUuvufqqxjN8+fr0DVDwNM4peBqPDgoFz2E1z6Tg5R06CBQ8h1UNU13wyH/NXMh/jUcHhfx3WM0zyf+8QweB/HdY1TDV+a85FRQMlGegWy54n33h5aieoztu3LhYcbkluzzVDTfaOK789W8a1z/6yMOxy07bd5nFhV03QMHruruPX0nB03h0UCh4Dqt5JgUv79BBoOA5rGqY6oJH/mvmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAPdcsE7ctQz0bdv38Yndxdf9DNdnuo39z8wTvjOiY3rf3/t7+LQgw/oMosLu26Agtd1dyx4Ne7cFAqeTF/k4QAAIABJREFU23DX+BS8rnlzX0XBcxvuOl9d8Mj/rs+C/Ne4c1PIf7fhrvHJ/655c19F/rsNd52vzv+un4QrMVC2gW654L31j3fF8ius0JjsDtttHSNGDO/SlH918WWx5Vafb1x7wpBj4vLLLukSh4tyBih4OX8fXc0neDQeHRQKnsNqnknByzt0ECh4Dqsaprrgkf+auZD/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM9At1zwnnXOBbHLF3dtTPO+e++JPb+0W6cnO2CeeeLBvwyL3r17N67dZMN144UXnu80hwvyBih4eYcVgYKn8eigUPAcVvNMCl7eoYNAwXNY1TDVBY/818yF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BrrlgnennXeJc877Wds0T/7BifE/P7+wU9O960/3xxJLLtW4ZuLEibHMkot26nperDNAwdO4pOBpPDooFDyH1TyTgpd36CBQ8BxWNUx1wSP/NXMh/zUeHRTy32E1zyT/8w4dBPLfYVXDVOe/5lRQMFCegW654K3GeNsdf4plll2uMdGqIFz96yvje98ZEu++++4Mp7zSSivH2ede0HZt9eITv3dCXPyr/ynv3VGTO6bgaQZBwdN4dFAoeA6reSYFL+/QQaDgOaxqmOqCR/5r5kL+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwD3XbBu8ACC8afH3o0evbs2TbV999/P2668YZ47LFH4onHR8Sop56Mvn37xSqrrhYrrrhSbLbFoFhjjTWnehdUz++tnuPL16wzQMHTuKfgaTw6KBQ8h9U8k4KXd+ggUPAcVjVMdcEj/zVzIf81Hh0U8t9hNc8k//MOHQTy32FVw1Tnv+ZUUDBQnoFuu+CtRrn7l/aM0398ZvTo0aNLkx0zZkxssuE6Uf1fvmadAQqexj0FT+PRQaHgOazmmRS8vEMHgYLnsKphqgse+a+ZC/mv8eigkP8Oq3km+Z936CCQ/w6rGqY6/zWngoKB8gx06wVvNc6FFlo4zr/wF7HW2uvM9HQnTZoUl1z0y6ie3VuVC75mrQEKnsY/BU/j0UGh4Dms5pkUvLxDB4GC57CqYaoLHvmvmQv5r/HooJD/Dqt5Jvmfd+ggkP8OqxqmOv81p4KCgfIMdPsF70cjXWfd9eLY406IRRdbLAYMmCd69erVNu2qQIwfPz5ef/21eHzE8Dh+yDHx1r//Xd67oaZ3TMHTDIaCp/HooFDwHFbzTApe3qGDQMFzWNUw1QWP/NfMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQaKWfB+crS9e/eOVVdbPd5669/x9OjR5U2+ie6YgqcZFgVP49FBoeA5rOaZFLy8QweBguewqmGqCx75r5kL+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDHTLBe/Xv7l/7LjTLo1pHnPk4TFq1FPlTbYb3TEFTzNMCp7Go4NCwXNYzTMpeHmHDgIFz2FVw1QXPPJfMxfyX+PRQSH/HVbzTPI/79BBIP8dVjVMdf5rTgUFA+UZ6JYL3qFXXhMbb7JpY5oHD94vrr/u9+VNthvdMQVPM0wKnsajg0LBc1jNMyl4eYcOAgXPYVXDVBc88l8zF/Jf49FBIf8dVvNM8j/v0EEg/x1WNUx1/mtOBQUD5RlgwVvezJvujil4mpFR8DQeHRQKnsNqnknByzt0ECh4Dqsaprrgkf+auZD/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM8AC97yZt50d0zB04yMgqfx6KBQ8BxW80wKXt6hg0DBc1jVMNUFj/zXzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MKnmZkFDyNRweFguewmmdS8PIOHQQKnsOqhqkueOS/Zi7kv8ajg0L+O6zmmeR/3qGDQP47rGqY6vzXnAoKBsozwIK3vJk33R1T8DQjo+BpPDooFDyH1TyTgpd36CBQ8BxWNUx1wSP/NXMh/zUeHRTy32E1zyT/8w4dBPLfYVXDVOe/5lRQMFCeARa85c286e6YgqcZGQVP49FBoeA5rOaZFLy8QweBguewqmGqCx75r5kL+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDHT7Be9NN14fj48YkZ7sFZdfEm+//XaaA6DzBih4nXfW3hUUPI1HB4WC57CaZ1Lw8g4dBAqew6qGqS545L9mLuS/xqODQv47rOaZ5H/eoYNA/jusapjq/NecCgoGyjPQ7Re8qpHusfuucf9996pwcDphgILXCVkzeCkFT+PRQaHgOazmmRS8vEMHgYLnsKphqgse+a+ZC/mv8eigkP8Oq3km+Z936CCQ/w6rGqY6/zWngoKB8gyw4J3JmbPgnUlRhpdR8DRSKXgajw4KBc9hNc+k4OUdOggUPIdVDVNd8Mh/zVzIf41HB4X8d1jNM8n/vEMHgfx3WNUw1fmvORUUDJRnoNsveN955514d/z49GT3+NKu8fTo0WkOgM4boOB13ll7V1DwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCR/5q5kP8ajw4K+e+wmmeS/3mHDgL577CqYarzX3MqKBgoz0C3X/AePHi/uP6635c32W50xxQ8zTApeBqPDgoFz2E1z6Tg5R06CBQ8h1UNU13wyH/NXMh/jUcHhfx3WM0zyf+8QweB/HdY1TDV+a85FRQMlGeABW95M2+6O6bgaUZGwdN4dFAoeA6reSYFL+/QQaDgOaxqmOqCR/5r5kL+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwDLHjLm3nT3TEFTzMyCp7Go4NCwXNYzTMpeHmHDgIFz2FVw1QXPPJfMxfyX+PRQSH/HVbzTPI/79BBIP8dVjVMdf5rTgUFA+UZYMFb3syb7o4peJqRUfA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64JH/mrmQ/xqPDgr577CaZ5L/eYcOAvnvsKphqvNfcyooGCjPAAve8mbedHdMwdOMjIKn8eigUPAcVvNMCl7eoYNAwXNY1TDVBY/818yF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwljfzprtjCp5mZBQ8jUcHhYLnsJpnUvDyDh0ECp7DqoapLnjkv2Yu5L/Go4NC/jus5pnkf96hg0D+O6xqmOr815wKCgbKM9AtF7yXXnFlbLbZFo1pfvPr+8Qfbr25vMl2ozum4GmGScHTeHRQKHgOq3kmBS/v0EGg4Dmsapjqgkf+a+ZC/ms8Oijkv8Nqnkn+5x06COS/w6qGqc5/zamgYKA8A91ywVveGLv3HVPwNPOl4Gk8OigUPIfVPJOCl3foIFDwHFY1THXBI/81cyH/NR4dFPLfYTXPJP/zDh0E8t9hVcNU57/mVFAwUJ4BFrzlzbzp7nhKwVsjNt/u1qY7e50OTMGr0zSmPgsFr56zoeDVcy4UvHrOpTqVuuCx4NXMmvzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQZY8JY386a7Yxa8mpFR8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MWvJqRUfA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwljfzprtjFryakVHwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCx4NXMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQZY8JY386a7Yxa8mpFR8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MWvJqRUfA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwljfzprtjFryakVHwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCx4NXMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQZY8JY386a7Yxa8mpFR8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MWvJqRUfA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwljfzprtjFryakVHwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCx4NXMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQZY8JY386a7Yxa8mpFR8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MWvJqRUfA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwljfzprtjFryakVHwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCx4NXMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQZY8JY386a7Yxa8mpFR8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MWvJqRUfA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwljfzprtjFryakVHwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCx4NXMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQZY8JY386a7Yxa8mpFR8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MWvJqRUfA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwljfzprtjFryakVHwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCx4NXMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQZY8JY386a7Yxa8mpFR8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MWvJqRUfA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwljfzprtjFryakVHwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCx4NXMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQZY8JY386a7Yxa8mpFR8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MWvJqRUfA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwljfzprtjFryakVHwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCx4NXMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQZY8JY386a7Yxa8mpFR8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MWvJqRUfA0Hh0UCp7Dap5ZFby///Wi6NGjRx72/wkts80RO+/5vIxXIoiCV9+pqwseC17NrMl/jUcHhfx3WM0zWfDmHToI5L/Dqoapzn/NqaBgoDwDLHjLm3nT3TELXs3IKHgajw4KBc9hNc9kwZt36CBQ8BxWNUx1wWPBq5kL+a/x6KCQ/w6reSYL3rxDB4H8d1jVMNX5rzkVFAyUZ4AFb3kzb7o7ZsGrGRkFT+PRQaHgOazmmSx48w4dBAqew6qGqS54LHg1cyH/NR4dFPLfYTXPZMGbd+ggkP8OqxqmOv81p4KCgfIMsOAtb+bT3PFCCy0cb775RkyYMKGWNljwasZCwdN4dFAoeA6reSYL3rxDB4GC57CqYaoLHgtezVzIf41HB4X8d1jNM1nw5h06COS/w6qGqc5/zamgYKA8Ayx4C5t5796948DBh8QXdtgxFhm4aMw555xtz5d8//3347ln/x7fPuJbMXzYY9OYaW1tjbvveaDtz++447Y4+sjDp2uwem7lnXffF3379mu85rnnno3dvrhjp42z4O20snYvoOBpPDooFDyH1TyTBW/eoYNAwXNY1TDVBY8Fr2Yu5L/Go4NC/jus5pksePMOHQTy32FVw1Tnv+ZUUDBQngEWvIXN/JBDD48jjz62w7v+4cnfj5//7PypXtd/wIAY/viotj+riteaq68Ub77xRru8/Q84KIac8N22740ZMyZWXWnZDn/2J1/AgrfTyljwapR9ahQK3qemulM/iAVvp3R9ai8e+/YzceeNW8ekSe/IfuZsPVtjnY3Oi4UX207GLBGkLngseDXvIha8Go8OCvnvsJpnsuDNO3QQWPA6rGqY6vzXnAoKBsozwIK3sJl/fMH79Oi/xvDhw+JvTz8dG2y0UayzznrRp0+fhpGqVG01aNN4evToNkOfXPBW37jxhuti8AHfbNfisMdHxYABA9q+x4J31r7ZKHiz1v+MfjoFr56zYcFbz7mw4K3nXKpTqQse/wOvZtbkv8ajg0L+O6zmmSx48w4dBBa8Dqsapjr/NaeCgoHyDLDgLWzmO+/yxfjSHl+J44ccE8/87elp7v6Gm/8Yq6yyauPPf/GzC+KUk0+a4YJ38uTJjU/ljh07dipW9XPOPvfCqf6MBe+sfbNR8Gatfxa89fU/vZOx4K3nzFjw1nMuLHjrOxfyv76zYcFbz9mQ//Wciy3/Nz4/Fl5023redJOcigVvkwyKY3Z7Ayx4u/2IO3eDWwzaKi6+9IrGRX956MGpnpn78U/wPvrIw7HmWms3Xnf1r6+Mo7592FQ/6P4HH4lFFhkYr736arT27dv4ZDAL3s7NQv1qCp7aqI5HwdO5VJIoeEqbOpat4PGIhvSQ1AWPT/CmR9IAkP8ajw4K+e+wmmeS/3mHDoIt/1nwpselzv/0gQBgoFADLHgLHfz0bnvjTTaNoVde0/j2/ffdG3vsvmvbSz++4L3i8ktj8y0GNZa41S9nW2n5pWLChAmN126w4UZx1dW/bfzn6pewnfj9U1jw1uB9RsGrwRCmcwQKXj1nQ8Gr51xsBY8Fb3rg6oLHgjc9Eha8GoU2CvlvU5sCk/8pfbaLbfnPgjc9M3X+pw8EAAOFGmDBW+jgp3fbJ//w9Njrq/s0vn35ZZfECUOOme6C94E/3xfnXfCLxvcvvuiXceJ3j2/851v/eFcsv8IKbZ/YfWr0syx4a/A+Y8FbgyGw4K3vENo5GQWvnuOyFTwWvOmBqwseC970SFjwahTaKCx4bWpTYPI/pc92sS3/WfCmZ6bO//SBAGCgUAMseAsdfHu33draGo+NeCp69+7d+PYmG64bL7zw/HQXvMcfd3Q8NvzJmGfeeRuf3l1+mcVjqaWXjtvuuKdxzWk/PDkuvODcYMFbjzcZC956zKG9U1Dw6jkbCl4952IreCx40wNXFzwWvOmRsODVKLRRyH+b2hSY/E/ps11sy38WvOmZqfM/fSAAGCjUAAveQgff3m3f8oc7Y4UVV2x86+G/PBS77rLDVC/75CMaqgXv3vvsG98/+dTG6845+8xYd931Y/0NNozx48fHisstGVU5m9GCt3XAZzqcwKT3J0SfORaPzbe9pcPX8oLpG6gWvCMeGRI955hdpum9se/EljvcGa19F5MxSwT9bujAmHOueaJHjx6S25/w7thYYom9YpW1//NLEiXgwiDDHjouXnrhmph9jlbJnX/44eSYMPbt2GnP//wPZxJwYZCq4N118zbRq7WP7M7ff29irLnuGbHwYtvJmCWCbr9xy5gw8aWYbfYp/0Nx9ov8zxqccj35r/HooJD/Dqt5Jvmfd+ggWPL/3Qmx5vo/5ZesJQfWmfwf9+9Xkj+NyzGAgekZYMHLe6Nh4MKf/zK2237KQnfcuHGx3tqrxdixY6ey096Ct3rByFHPRN++fRvP4u3Zs2djSXXB+efE6aee0rh+RgveBZdao8MJTBj/drRM6h+bbXNTh6/lBdM3UBW8kSNOin7zLyjT9MaLz8Sg7W9nwZs0eu3QgTHfZ1eMHi0tSdKUy99585VYeKGdY5W1TpTwSoUMe2hIvPr6LdHafwGJgskffBBvvvR07LTHcxJeqZCq4N196/YxYJHFZQrGvvpyrLrmqSx4k0bvuGnr6NF7XPSas1+SNOVy8l+isbHgJf81LtUU8l9tVMMj/zUe1RTyX21Ux+tM/v/rmcd0PxgSBjAwlQEWvLwh4qyzz49ddt2tYWLixImx3TaD4unRo6cxM70F72FHHBmHH3FU2+srxgrLLhGTJk1q/Bmf4K3Hm4xP8NRjDu2dgk/w1HM2fIKnnnOxfIKHT/BKht2ZT/DMzA/kE7wzY6nj15D/HTuaVa8g/2eV+Rn/XPK/nnMh/+s5l+pUncl/PsFb3zlysuY3wIK3+WeYuoMLfvY/sf0Xdmwwqk/gfnGn7WPEiOHtMqe34G1paYlRTz/X9uzeoVdcFkOO/c/Cl2fwpkYku5hn8MpUykE8g0+uVALkGXwSjXKI7Rl8PIM3PSv1M/h4Bm96JA0A+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDgLW/mjTuuHqNwzW9+H+usu17jn6tn5u74hc+3+8ndjxRNb8Fbff8Hp5wWX937azF58uRYeYWlG495+OiLBW893mQUvHrMob1TUPDqORsKXj3nQsGr51yqU6kLHgtezazJf41HB4X8d1jNM8n/vEMHgfx3WNUw1fmvORUUDJRngAVveTOP1tbWuPHmP8YSSy7VuPu33norPr/lZvHKKy/P0MaMFry9e/eOz222Rbzy8j+n+QQwC956vMkoePWYAwve+s7hkyej4NVzVhS8es6FBW9950L+13c2LHjrORvyv55zIf/rORdH/tf3TjkZBuptgAVvvecjP92iiy4WN9z8x+jfv3+D/cILz8d2nx80zS9Ua+8Hz2jBO6ODsuCVj7FLQApel7R9KhdR8D4VzZ3+IRS8Tiv7VC6g4H0qmrv0Q9Sf4OETvF0awzQXkf8ajw4K+e+wmmeS/3mHDgL577CqYarzX3MqKBgozwAL3sJm/tAjw2PBBT/TuOvqMQpn/OT0qArU9L5uv+2P8fxzzza+zYK3ud8sFLz6zo+CV8/ZUPDqORcKXj3nUp1KXfBY8GpmTf5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseAub+bART8WAeeaZ6bs+5+wz44wfn86Cd6aN1feFFLz6zoaCV8/ZUPDqORcKXj3nwoK3vnMh/+s7G/K/nrMh/+s5F/K/nnNx5H9975STYaDeBljw1ns+8tM9NvzJmGfeeWea+9MzfxxnnfmTxuvnnnvuGDFydOM/X37ZJXHCkGNmivPRIxqqZ/2utvJyM3XNx1/EJ3g6razdCyh4Go8OCgXPYTXPpODlHToIFDyHVQ1T/Qke8l8zF/Jf49FBIf8dVvNM8j/v0EEg/x1WNUx1/mtOBQUD5RlgwVvezJvujil4mpFR8DQeHRQKnsNqnknByzt0ECh4Dqsaprrgkf+auZD/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM8AC97yZt50d0zB04yMgqfx6KBQ8BxW80wKXt6hg0DBc1jVMNUFj/zXzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MKnmZkFDyNRweFguewmmdS8PIOHQQKnsOqhqkueOS/Zi7kv8ajg0L+O6zmmeR/3qGDQP47rGqY6vzXnAoKBsozwIK3vJk33R1T8DQjo+BpPDooFDyH1TyTgpd36CBQ8BxWNUx1wSP/NXMh/zUeHRTy32E1zyT/8w4dBPLfYVXDVOe/5lRQMFCeARa85c286e6YgqcZGQVP49FBoeA5rOaZFLy8QweBguewqmGqCx75r5kL+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDgLW/mTXfHFDzNyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfDIf81cyH+NRweF/HdYzTPJ/7xDB4H8d1jVMNX5rzkVFAyUZ4AFb3kzb7o7puBpRkbB03h0UCh4Dqt5JgUv79BBoOA5rGqY6oJH/mvmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMubedPdMQVPMzIKnsajg0LBc1jNMyl4eYcOAgXPYVXDVBc88l8zF/Jf49FBIf8dVvNM8j/v0EEg/x1WNUx1/mtOBQUD5RlgwVvezJvujil4mpFR8DQeHRQKnsNqnknByzt0ECh4Dqsaprrgkf+auZD/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM8AC97yZt50d0zB04yMgqfx6KBQ8BxW80wKXt6hg0DBc1jVMNUFj/zXzIX813j9DvGoAAAgAElEQVR0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MKnmZkFDyNRweFguewmmdS8PIOHQQKnsOqhqkueOS/Zi7kv8ajg0L+O6zmmeR/3qGDQP47rGqY6vzXnAoKBsozwIK3vJk33R1T8DQjo+BpPDooFDyH1TyTgpd36CBQ8BxWNUx1wSP/NXMh/zUeHRTy32E1zyT/8w4dBPLfYVXDVOe/5lRQMFCeARa85c286e6YgqcZGQVP49FBoeA5rOaZFLy8QweBguewqmGqCx75r5kL+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDgLW/mTXfHFDzNyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfDIf81cyH+NRweF/HdYzTPJ/7xDB4H8d1jVMNX5rzkVFAyUZ4AFb3kzb7o7puBpRkbB03h0UCh4Dqt5JgUv79BBoOA5rGqY6oJH/mvmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMubedPdMQVPMzIKnsajg0LBc1jNMyl4eYcOAgXPYVXDVBc88l8zF/Jf49FBIf8dVvNM8j/v0EEg/x1WNUx1/mtOBQUD5RlgwVvezJvujil4mpFR8DQeHRQKnsNqnknByzt0ECh4Dqsaprrgkf+auZD/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM8AC97yZt50d0zB04yMgqfx6KBQ8BxW80wKXt6hg0DBc1jVMNUFj/zXzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MKnmZkFDyNRweFguewmmdS8PIOHQQKnsOqhqkueOS/Zi7kv8ajg0L+O6zmmeR/3qGDQP47rGqY6vzXnAoKBsozwIK3vJk33R1T8DQjo+BpPDooFDyH1TyTgpd36CBQ8BxWNUx1wSP/NXMh/zUeHRTy32E1zyT/8w4dBPLfYVXDVOe/5lRQMFCeARa85c286e6YgqcZGQVP49FBoeA5rOaZFLy8QweBguewqmGqCx75r5kL+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDgLW/mTXfHFDzNyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfDIf81cyH+NRweF/HdYzTPJ/7xDB4H8d1jVMNX5rzkVFAyUZ4AFb3kzb7o7puBpRkbB03h0UCh4Dqt5JgUv79BBoOA5rGqY6oJH/mvmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMubedPdMQVPMzIKnsajg0LBc1jNMyl4eYcOAgXPYVXDVBc88l8zF/Jf49FBIf8dVvNM8j/v0EEg/x1WNUx1/mtOBQUD5RlgwVvezJvujil4mpFR8DQeHRQKnsNqnknByzt0ECh4Dqsaprrgkf+auZD/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM8AC97yZt50d0zB04yMgqfx6KBQ8BxW80wKXt6hg0DBc1jVMNUFj/zXzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MKnmZkFDyNRweFguewmmdS8PIOHQQKnsOqhqkueOS/Zi7kv8ajg0L+O6zmmeR/3qGDQP47rGqY6vzXnAoKBsozwIK3vJk33R1T8DQjo+BpPDooFDyH1TyTgpd36CBQ8BxWNUx1wSP/NXMh/zUeHRTy32E1zyT/8w4dBPLfYVXDVOe/5lRQMFCeARa85c286e6YgqcZGQVP49FBoeA5rOaZFLy8QweBguewqmGqCx75r5kL+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDgLW/mTXfHFDzNyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfDIf81cyH+NRweF/HdYzTPJ/7xDB4H8d1jVMNX5rzkVFAyUZ4AFb3kzb7o7puBpRkbB03h0UCh4Dqt5JgUv79BBoOA5rGqY6oJH/mvmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMubedPdMQVPMzIKnsajg0LBc1jNMyl4eYcOAgXPYVXDVBc88l8zF/Jf49FBIf8dVvNM8j/v0EEg/x1WNUx1/mtOBQUD5RlgwVvezJvujil4mpFR8DQeHRQKnsNqnknByzt0ECh4Dqsaprrgkf+auZD/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM8AC97yZt50d0zB04yMgqfx6KBQ8BxW80wKXt6hg0DBc1jVMNUFj/zXzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MKnmZkFDyNRweFguewmmdS8PIOHQQKnsOqhqkueOS/Zi7kv8ajg0L+O6zmmeR/3qGDQP47rGqY6vzXnAoKBsozwIK3vJk33R1T8DQjo+BpPDooFDyH1TyTgpd36CBQ8BxWNUx1wSP/NXMh/zUeHRTy32E1zyT/8w4dBPLfYVXDVOe/5lRQMFCeARa85c286e6YgqcZGQVP49FBoeA5rOaZFLy8QweBguewqmGqCx75r5kL+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDgLW/mTXfHFDzNyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfDIf81cyH+NRweF/HdYzTPJ/7xDB4H8d1jVMNX5rzkVFAyUZ4AFb3kzb7o7rgregHlXjy22/0PTnb1OB6bg1WkaU5+FglfP2VDw6jkXCl4951KdSl3wWPBqZk3+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwDLHjLm3nT3TELXs3IKHgajw4KBc9hNc+k4OUdOggUPIdVDVNd8FjwauZC/ms8Oijkv8Nqnkn+5x06COS/w6qGqc5/zamgYKA8Ayx4y5t5090xC17NyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfBY8GrmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMubedPdMQtezcgoeBqPDgoFz2E1z6Tg5R06CBQ8h1UNU13wWPBq5kL+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwDLHjLm3nT3TELXs3IKHgajw4KBc9hNc+k4OUdOggUPIdVDVNd8FjwauZC/ms8Oijkv8Nqnkn+5x06COS/w6qGqc5/zamgYKA8Ayx4y5t5090xC17NyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfBY8GrmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMubedPdMQtezcgoeBqPDgoFz2E1z6Tg5R06CBQ8h1UNU13wWPBq5kL+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwDLHjLm3nT3TELXs3IKHgajw4KBc9hNc+k4OUdOggUPIdVDVNd8FjwauZC/ms8Oijkv8Nqnkn+5x06COS/w6qGqc5/zamgYKA8Ayx4y5t5090xC17NyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfBY8GrmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMubedPdMQtezcgoeBqPDgoFz2E1z6Tg5R06CBQ8h1UNU13wWPBq5kL+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwDLHjLm3nT3TELXs3IKHgajw4KBc9hNc+k4OUdOggUPIdVDVNd8FjwauZC/ms8Oijkv8Nqnkn+5x06COS/w6qGqc5/zamgYKA8Ayx4y5t5090xC17NyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfBY8GrmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMubedPdMQtezcgoeBqPDgoFz2E1z6Tg5R06CBQ8h1UNU13wWPBq5kL+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwDLHjLm3nT3TELXs3IKHgajw4KBc9hNc+k4OUdOggUPIdVDVNd8FjwauZC/ms8Oijkv8Nqnkn+5x06COS/w6qGqc5/zamgYKA8Ayx4y5t5090xC17NyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfBY8GrmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMubedPdMQtezcgoeBqPDgoFz2E1z6Tg5R06CBQ8h1UNU13wWPBq5kL+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwDLHjLm3nT3TELXs3IKHgajw4KBc9hNc+k4OUdOggUPIdVDVNd8FjwauZC/ms8Oijkv8Nqnkn+5x06COS/w6qGqc5/zamgYKA8Ayx4y5t5090xC17NyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfBY8GrmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMubedPdMQtezcgoeBqPDgoFz2E1z6Tg5R06CBQ8h1UNU13wWPBq5kL+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwDLHjLm3nT3TELXs3IKHgajw4KBc9hNc+k4OUdOggUPIdVDVNd8FjwauZC/ms8Oijkv8Nqnkn+5x06COS/w6qGqc5/zamgYKA8Ayx4y5t5090xC17NyCh4Go8Oyu+GDozJH0yMHj16SPDVvzPLrHhgrLr2SRJeqRAKXj0nT8Gr51yqU6kLHgtezazJf41HB4UFr8Nqnkn+5x06COS/w6qGqc5/zamgYKA8Ayx4y5t5090xC17NyCh4Go8OCgteh9U8k4KXd+ggUPAcVjVMdcFjwauZC/mv8eigsOB1WM0zyf+8QweB/HdY1TDV+a85FRQMlGeABW95M2+6O2bBqxkZBU/j0UFhweuwmmdS8PIOHQQKnsOqhqkueCx4NXMh/zUeHRQWvA6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDgLW/mTXfHLHg1I6PgaTw6KCx4HVbzTApe3qGDQMFzWNUw1QWPBa9mLuS/xqODwoLXYTXPJP/zDh0E8t9hVcNU57/mVFAwUJ4BFrzlzbzp7pgFr2ZkFDyNRweFBa/Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFBY8Dqs5pnkf96hg0D+O6xqmOr815wKCgbKM8CCt7yZN90ds+DVjIyCp/HooLDgdVjNM4c9dFw8M+pXsl9+V52oZbY5Yuc9n88frmACBa++w1cXPBa8mlmT/xqPDgoLXofVPJMFb96hg0D+O6xqmOr815wKCgbKM8CCt7yZN90ds+DVjIyCp/HooLDgdVjNM1nw5h06CBQ8h1UNU13wWPBq5kL+azw6KCx4HVbzTBa8eYcOAvnvsKphqvNfcyooGCjPAAve8mbedHfMglczMgqexqODwoLXYTXPZMGbd+ggUPAcVjVMdcFjwauZC/mv8eigsOB1WM0zWfDmHToI5L/Dqoapzn/NqaBgoDwDLHjLm3nT3TELXs3IKHgajw4KC16H1TyTBW/eoYNAwXNY1TDVBY8Fr2Yu5L/Go4PCgtdhNc9kwZt36CCQ/w6rGqY6/zWngoKB8gyw4C1v5k13xyx4NSOj4Gk8OigseB1W80wWvHmHDgIFz2FVw1QXPBa8mrmQ/xqPDgoLXofVPJMFb96hg0D+O6xqmOr815wKCgbKM8CCt7yZN90ds+DVjIyCp/HooLDgdVjNM1nw5h06CO+8/fe448YtY9KkcTJ8z559Y62NzolFFttexiwRpC54LHg17yLyX+PRQWHB67CaZ7LgzTt0EFjwOqxqmOr815wKCgbKM8CCt7yZN90ds+DVjIyCp/HooLDgdVjNM1nw5h06CCx4HVY1THXBI/81cyH/NR4dFPLfYTXPZMGbd+ggsOB1WNUw1fmvORUUDJRngAVveTNvujum4GlGRsHTeHRQKHgOq3kmC968QweBBa/DqoapLnjkv2Yu5L/Go4NC/jus5pnkf96hg8CC12FVw1Tnv+ZUUDBQngEWvOXNvOnumIKnGRkFT+PRQaHgOazmmRS8vEMHgQWvw6qGqS545L9mLuS/xqODQv47rOaZ5H/eoYPgyP/ZerbGOhudFwsvtp3jyMUw1flfjDhuFANiAyx4xUKbEffto46Jr+37zXjxxRdi2623mO4ttLa2xt33PND2/TvuuC2OPvLw6b6+R48ecefd90Xfvv0ar3nuuWdjty/u2GlFFLxOK2v3AgqexqODQsFzWM0zKXh5hw6Co+DxDF7NpNQFj/zXzIX813h0UMh/h9U8k/zPO3QQHPnPglczKXX+a04FBQPlGWDBW97Mp7rjAfPME/fc91D069cv3n777VhlxWWma6T/gAEx/PFRbd+viteaq68Ub77xRrvX7H/AQTHkhO+2fW/MmDGx6krLdto4Ba/TyljwapR9ahQK3qemulM/iILXKV2f2osdBY8Fr2Z86oJH/mvmwoJX49FBIf8dVvNM8j/v0EFw5D8LXs2k1PmvORUUDJRngAVveTOPNddaO760x5dj6aWXiVVXWz1mn332hoXOLnira2684boYfMA327U47PFRMWDAABa8NXmPUfBqMoh2jkHBq+dsKHj1nIuj4LHg1cxaXfBY8GrmQv5rPDoo5L/Dap5J/ucdOgiO/GfBq5mUOv81p4KCgfIMsOAtb+Zx4vdPia/t+41p7rwrC97Jkyc3PpU7duzYqXg77/LFOPvcC6f6Mz7BO2vfbBS8Wet/Rj+dglfP2VDw6jkXR8FjwauZtbrgseDVzIX813h0UMh/h9U8k/zPO3QQHPnPglczKXX+a04FBQPlGWDBW97MY9CWW8e+X//Pp27X32DD6NmzZ6c+wfvoIw83PglcfV396yvjqG8fNpXJ+x98JBZZZGC89uqr0dq3b/Tp0ydY8M7aNxsFb9b6Z8FbX//TOxkFr54zcxQ8FryaWasLHgtezVzIf41HB4UFr8Nqnkn+5x06COS/w6qGqc5/zamgYKA8Ayx4y5v5NHc8bMRTUT2LtzOf4L3i8ktj8y0GNZa477//fqy0/FIxYcKEBnuDDTeKq67+beM/V7+ErfrEMAveWf9Go+DN+hlM7wQUvHrOhoJXz7lQ8Oo5l+pU6oLHglcza/Jf49FBIf8dVvNM8j/v0EEg/x1WNUx1/mtOBQUD5RlgwVvezGUL3gf+fF+cd8EvGryLL/plnPjd4xv/+dY/3hXLr7BC2yd2nxr9LAveGrzPKHg1GMJ0jkDBq+dsKHj1nAsFr55zYcFb37mQ//WdDflfz9mQ//WcC/lfz7k48r++d8rJMFBvAyx46z2fT+V0Xf0E7/HHHR2PDX8y5pl33sand5dfZvFYauml47Y77mmc+7QfnhwXXnBusOD9VMbY4Q+h4HWoaJa9gII3y9TP8AdT8Oo5FwpePefiKHh8glcza/Jf49FBIf8dVvNM8j/v0EEg/x1WNUw+wavxCAUDWQMseLMGu8H1mQXv3vvsG98/+dSGhXPOPjPWXXf9qJ7pO378+FhxuSWjKmczWvD2mrNvhwYnfzAp+vVbPjbf7tYOX8sLpm+gKnjD/nJM9GiZJNP0wfsfxpY73BWtfReTMUsEXTt0YMzWq1f06NFDcvuTJk6IJZf9eqy69kkSXqmQYQ8NieefuTxmm72XREH134eT3/8gdtrzeQmvVEij4N20dbT0/FCm4MMPZos1N/hpLLLY9jJmiaCq4I0b97doma2n5PbJf4nGIP81Hh0U8t9hNc8k//MOHQTy32FVw+xM/k989x3ND4WCAQxMY4AFL2+KyCx4K30jRz0Tffv2bTyLt/plbdWS6oLzz4nTTz2lYXdGC94Fl1qjwwlMGP92tEyaOzbb5uYOX8sLpm+gKngjR5wU/eZfUKbpjRefiUHb386CN2n02qGLxryfXT5aWmZLkqZc/s6br8TCC+0cq6x1ooRXKmTYX46PV1+7OVr7LyBRMPmDD+LNl56OnfZ4TsIrFVIVvLtu2TYGDFxCpmDsa6/EKmucwoI3abRavPfoPS56zdkvSZpyOfkv0dhY8JL/GpdqCvmvNqrhkf8aj2oK+a82quN1Jv//9cxjuh8MCQMYmMoAC17eEOkF72FHHBmHH3FUm8mJEyfGCssuEZMmTfmk6IwWvAMWXrrDCbz/3viYvWXB2HzbWzp8LS+YvoGq4D0+7Dsx51xzyTRVS5FBX7iTBW/SaPUJnrkWWDR6tLQkSVMuf3fsm7HowN1jlbVZ8GaEDvvLkHj5n9fGHH0HZDBt1344+YOo/p3ZaU8WvBmhVcG785Ztou+882cwU1377pgxsdrap7PgTRq948atYlKP12P23n2SpCmXk/8SjY0FL/mvcammkP9qoxoe+a/xqKaQ/2qjOl5n8v/f//yb7gdDwgAGpjLAgpc3RHrB29LSEqOefi569+7dsDn0istiyLH/WfjyDN56vMl4Bl895tDeKXgGXz1nwzP46jkXnsFXz7lUp1I/g49n8GpmTf5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMub+TR3nH1EQwX8wSmnxVf3/lpMnjw5Vl5h6Rg3blzbz2HBW483GQWvHnNgwVvfOXzyZBS8es6KglfPubDgre9cyP/6zoYFbz1nQ/7Xcy7kfz3n4sj/+t4pJ8NAvQ2w4K33fD6V0ykWvNWndz+32Rbxysv/jBEjhk91bha8n8oYO/whFLwOFc2yF1DwZpn6Gf5gCl4950LBq+dcHAWPT/BqZk3+azw6KOS/w2qeSf7nHToI5L/DqobJJ3g1HqFgIGuABW/WYDe4XrHgnZEGFrz1eJNQ8Ooxh/ZOQcGr52woePWcCwWvnnNhwVvfuZD/9Z0N+V/P2ZD/9ZwL+V/PuTjyv753yskwUG8DLHjrPR/L6Xr16hX9+//nlwbdduc9Mffcc8c777wTm2+6YdvPfPPNN9p+UVr1h/0HDIjhj49qfP+Kyy+N4487eqbOx4J3pjTZX0TBsyvu8g+g4HVZnfVCCp5Vb5fhFLwuq7NfqP4ED5/g1YyM/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwljfzOPGkk+NrX/9mh3d+ztlnxhk/Pr3tdSx4O1RW6xdQ8Oo7HgpePWdDwavnXCh49ZxLdSp1wWPBq5k1+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDgLW/m8b0TfxD7fmO/Du/87LPOiDN/8qO211Wf8h0xcnTjny+/7JI4YcgxHTKqF3z0Cd633norVlt5uZm65uMvouB1Wlm7F1DwNB4dFAqew2qeScHLO3QQ/h975x0nRfG08TIrioIKouQcJOecc06KiJIzSM45Sg6Sc845Z46ccxAOEBEUUZEoAsbf+6m+d8e9uz1u97p6b/bm6X/kdmee6f7W9JRV21ONAM8EVRlN6QAP/l/GLvD/MhxNqMD/m6Cqrwn/r8/QhAL8vwmqMprS/l+mV1ABAecRQILXeTYPuBEjwJMxGQI8GY4mVBDgmaCqr4kAT5+hCQUEeCaoymhKB3jw/zJ2gf+X4WhCBf7fBFV9Tfh/fYYmFOD/TVCV0ZT2/zK9ggoIOI8AErzOs3nAjRgBnozJEODJcDShggDPBFV9TQR4+gxNKCDAM0FVRlM6wIP/l7EL/L8MRxMq8P8mqOprwv/rMzShAP9vgqqMprT/l+kVVEDAeQSQ4HWezQNuxAjwZEyGAE+GowkVBHgmqOprIsDTZ2hCAQGeCaoymtIBHvy/jF3g/2U4mlCB/zdBVV8T/l+foQkF+H8TVGU0pf2/TK+gAgLOI4AEr/NsHnAjRoAnYzIEeDIcTaggwDNBVV8TAZ4+QxMKCPBMUJXRlA7w4P9l7AL/L8PRhAr8vwmq+prw//oMTSjA/5ugKqMp7f9legUVEHAeASR4nWfzgBsxAjwZkyHAk+FoQgUBngmq+poI8PQZmlBAgGeCqoymdIAH/y9jF/h/GY4mVOD/TVDV14T/12doQgH+3wRVGU1p/y/TK6iAgPMIIMHrPJsH3IgR4MmYDAGeDEcTKgjwTFDV10SAp8/QhAICPBNUZTSlAzz4fxm7wP/LcDShAv9vgqq+Jvy/PkMTCvD/JqjKaEr7f5leQQUEnEcACV7n2TzgRowAT8ZkCPBkOJpQQYBngqq+JgI8fYYmFBDgmaAqoykd4MH/y9gF/l+GowkV+H8TVPU14f/1GZpQgP83QVVGU9r/y/QKKiDgPAJI8DrP5gE3YgR4MiZDgCfD0YQKAjwTVPU1EeDpMzShgADPBFUZTekAD/5fxi7w/zIcTajA/5ugqq8J/6/P0IQC/L8JqjKa0v5fpldQAQHnEUCC13k2D7gRI8CTMRkCPBmOJlQQ4Jmgqq+JAE+foQkFBHgmqMpoSgd48P8ydoH/l+FoQgX+3wRVfU34f32GJhTg/01QldGU9v8yvYIKCDiPABK8zrN5wI0YAZ6MyRDgyXA0oYIAzwRVfU0EePoMTSggwDNBVUZTOsCD/5exC/y/DEcTKvD/Jqjqa8L/6zM0oQD/b4KqjKa0/5fpFVRAwHkEkOB1ns0DbsQI8GRMhgBPhqMJFQR4JqjqayLA02doQgEBngmqMprSAR78v4xd4P9lOJpQgf83QVVfE/5fn6EJBfh/E1RlNKX9v0yvoAICziOABK/zbB5wI0aAJ2MyBHgyHE2oIMAzQVVfEwGePkMTCgjwTFCV0ZQO8OD/ZewC/y/D0YQK/L8Jqvqa8P/6DE0owP+boCqjKe3/ZXoFFRBwHgEkeJ1n84AbMQI8GZMhwJPhaEIFAZ4JqvqaCPD0GZpQQIBngqqMpnSAB/8vYxf4fxmOJlTg/01Q1deE/9dnaEIB/hlXGp0AACAASURBVN8EVRlNaf8v0yuogIDzCCDB6zybB9yIEeDJmAwBngxHEyoI8ExQ1ddEgKfP0IQCAjwTVGU0pQM8+H8Zu8D/y3A0oQL/b4Kqvib8vz5DEwrw/yaoymhK+3+ZXkEFBJxHAAle59k84EaMAE/GZAjwZDiaUEGAZ4KqviYCPH2GJhQQ4JmgKqMpHeDB/8vYBf5fhqMJFfh/E1T1NeH/9RmaUID/N0FVRlPa/8v0Ciog4DwCSPA6z+YBN2IEeDImQ4Anw9GECgI8E1T1NRHg6TM0oYAAzwRVGU3pAA/+X8Yu8P8yHE2owP+boKqvCf+vz9CEAvy/CaoymtL+X6ZXUAEB5xFAgtd5Ng+4ESPAkzEZAjwZjiZUEOCZoKqviQBPn6EJBQR4JqjKaEoHePD/MnaB/5fhaEIF/t8EVX1N+H99hiYU4P9NUJXRlPb/Mr2CCgg4jwASvM6zecCNGAGejMkQ4MlwNKGCAM8EVX1NBHj6DE0oIMAzQVVGUzrAg/+XsQv8vwxHEyrw/yao6mvC/+szNKEA/2+CqoymtP+X6RVUQMB5BJDgdZ7NA27ECPBkTIYAT4ajCRUEeCao6msiwNNnaEIBAZ4JqjKa0gEe/L+MXeD/ZTiaUIH/N0FVXxP+X5+hCQX4fxNUZTSl/b9Mr6ACAs4jgASv82wecCNGgCdjMgR4MhxNqCDAM0FVXxMBnj5DEwoI8ExQldGUDvDg/2XsAv8vw9GECvy/Car6mvD/+gxNKMD/m6Aqoynt/2V6BRUQcB4BJHidZ/OAGzECPBmTIcCT4WhCBQGeCar6mgjw9BmaUECAZ4KqjKZ0gAf/L2MX+H8ZjiZU4P9NUNXXhP/XZ2hCAf7fBFUZTWn/L9MrqICA8wggwes8mwfciBHgyZgMAZ4MRxMqCPBMUNXXRICnz9CEAgI8E1RlNKUDPPh/GbvA/8twNKEC/2+Cqr4m/L8+QxMK8P8mqMpoSvt/mV5BBQScRwAJXufZPOBGjABPxmQI8GQ4mlBBgGeCqr4mAjx9hiYUEOCZoCqjKR3gwf/L2AX+X4ajCRX4fxNU9TXh//UZmlCA/zdBVUZT2v/L9AoqIOA8AkjwOs/mATdiBHgyJkOAJ8PRhAoCPBNU9TUR4OkzNKGAAM8EVRlN6QAP/l/GLvD/MhxNqMD/m6Cqrwn/r8/QhAL8vwmqMprS/l+mV1ABAecRQILXeTYPuBEjwJMxGQI8GY4mVBDgmaCqr4kAT5+hCQUEeCaoymhKB3jw/zJ2gf+X4WhCBf7fBFV9Tfh/fYYmFOD/TVCV0ZT2/zK9ggoIOI8AErzOs3nAjRgBnozJEODJcDShggDPBFV9TQR4+gxNKCDAM0FVRlM6wIP/l7EL/L8MRxMq8P8mqOprwv/rMzShAP9vgqqMprT/l+kVVEDAeQSQ4HWezQNuxAjwZEyGAE+GowkVBHgmqOprIsDTZ2hCAQGeCaoymtIBHvy/jF3g/2U4mlCB/zdBVV8T/l+foQkF+H8TVGU0pf2/TK+gAgLOI4AEr/NsHnAjRoAnYzIEeDIcTaggwDNBVV8TAZ4+QxMKCPBMUJXRlA7w4P9l7AL/L8PRhAr8vwmq+prw//oMTSjA/5ugKqMp7f9legUVEHAeASR4nWfzgBsxAjwZkyHAk+FoQgUBngmq+poI8PQZmlBAgGeCqoymdIAH/y9jF/h/GY4mVOD/TVDV14T/12doQgH+3wRVGU1p/y/TK6iAgPMIIMHrPJsH3IgR4MmYDAGeDEcTKgjwTFDV10SAp8/QhAICPBNUZTSlAzz4fxm7wP/LcDShAv9vgqq+Jvy/PkMTCvD/JqjKaEr7f5leQQUEnEcACV7n2TzgRowAT8ZkCPBkOJpQQYBngqq+JgI8fYYmFBDgmaAqoykd4MH/y9gF/l+GowkV+H8TVPU14f/1GZpQgP83QVVGU9r/y/QKKiDgPAJI8DrP5gE3YgR4MiZDgCfD0YQKAjwTVPU1EeDpMzShgADPBFUZTekAD/5fxi7w/zIcTajA/5ugqq8J/6/P0IQC/L8JqjKa0v5fpldQAQHnEUCC13k2D7gRI8CTMRkCPBmOJlQQ4Jmgqq+JAE+foQkFBHgmqMpoSgd48P8ydoH/l+FoQgX+3wRVfU34f32GJhTg/01QldGU9v8yvYIKCDiPABK8zrN5wI0YAZ6MyRDgyXA0oYIAzwRVfU0EePoMTSggwDNBVUZTOsCD/5exC/y/DEcTKvD/Jqjqa8L/6zM0oQD/b4KqjKa0/5fpFVRAwHkEkOB1ns0DbsQI8GRMhgBPhqMJFQR4JqjqayLA02doQgEBngmqMprSAR78v4xd4P9lOJpQgf83QVVfE/5fn6EJBfh/E1RlNKX9v0yvoAICziOABK/zbB5wI0aAJ2MyBHgyHE2oIMAzQVVfEwGePkMTCgjwTFCV0ZQO8OD/ZewC/y/D0YQK/L8Jqvqa8P/6DE0owP+boCqjKe3/ZXoFFRBwHgEkeJ1n84AbMQI8GZMhwJPhaEIFAZ4JqvqaCPD0GZpQQIBngqqMpnSAB/8vYxf4fxmOJlTg/01Q1deE/9dnaEIB/t8EVRlNaf8v0yuogIDzCCDB6zybB9yIEeDJmAwBngxHEyoI8ExQ1ddEgKfP0IQCAjwTVGU0pQM8+H8Zu8D/y3A0oQL/b4Kqvib8vz5DEwrw/yaoymhK+3+ZXkEFBJxHAAle59k84EaMAE/GZAjwZDiaUEGAZ4KqviYCPH2GJhQQ4JmgKqMpHeDB/8vYBf5fhqMJFfh/E1T1NeH/9RmaUID/N0FVRlPa/8v0Ciog4DwCSPA6z+YBN2IEeDImQ4Anw9GECgI8E1T1NRHg6TM0oYAAzwRVGU3pAA/+X8Yu8P8yHE2owP+boKqvCf+vz9CEAvy/CaoymtL+X6ZXUAEB5xFAgtd5Ng+4ESPAkzEZAjwZjiZUEOCZoKqviQBPn6EJBQR4JqjKaEoHePD/MnaB/5fhaEIF/t8EVX1N+H99hiYU4P9NUJXRlPb/Mr2CCgg4jwASvM6zecCNGAGejMkQ4MlwNKGCAM8EVX1NBHj6DE0oIMAzQVVGUzrAg/+XsQv8vwxHEyrw/yao6mvC/+szNKEA/2+CqoymtP+X6RVUQMB5BJDgdZ7NA27ECPBkTIYAT4ajCRUEeCao6msiwNNnaEIBAZ4JqjKa0gEe/L+MXeD/ZTiaUIH/N0FVXxP+X5+hCQX4fxNUZTSl/b9Mr6ACAs4jgASv82wecCNGgCdjMgR4MhxNqCDAM0FVXxMBnj5DEwoI8ExQldGUDvDg/2XsAv8vw9GECvy/Car6mvD/+gxNKMD/m6Aqoynt/2V6BRUQcB4BJHidZ/OAGzECPBmTIcCT4WhCBQGeCar6mgjw9BmaUECAZ4KqjKZ0gAf/L2MX+H8ZjiZU4P9NUNXXhP/XZ2hCAf7fBFUZTWn/L9MrqICA8wggwes8mwfciBHgyZgMAZ4MRxMqCPBMUNXXRICnz9CEAgI8E1RlNKUDPPh/GbvA/8twNKEC/2+Cqr4m/L8+QxMK8P8mqMpoSvt/mV5BBQScRwAJXufZPOBGjABPxmQI8GQ4mlBBgGeCqr4mAjx9hiYUEOCZoCqjKR3gwf/L2AX+X4ajCRX4fxNU9TXh//UZmlCA/zdBVUZT2v/L9AoqIOA8AkjwOs/mATdiBHgyJkOAJ8PRhAoCPBNU9TUR4OkzNKGAAM8EVRlN6QAP/l/GLvD/MhxNqMD/m6Cqrwn/r8/QhAL8vwmqMprS/l+mV1ABAecRQILXeTYPuBEjwJMxGQI8GY4mVBDgmaCqr4kAT5+hCQUEeCaoymhKB3jw/zJ2gf+X4WhCBf7fBFV9Tfh/fYYmFOD/TVCV0ZT2/zK9ggoIOI8AErzOs3nAjRgBnozJEODJcDShggDPBFV9TQR4+gxNKCDAM0FVRlM6wIP/l7EL/L8MRxMq8P8mqOprwv/rMzShAP9vgqqMprT/l+kVVEDAeQSQ4HWezQNuxAjwZEyGAE+GowkVBHgmqOprIsDTZ2hCAQGeCaoymtIBHvy/jF3g/2U4mlCB/zdBVV8T/l+foQkF+H8TVGU0pf2/TK+gAgLOI4AEr/NsHnAjRoAnYzIEeDIcTaggwDNBVV8TAZ4+QxMKCPBMUJXRlA7w4P9l7AL/L8PRhAr8vwmq+prw//oMTSjA/5ugKqMp7f9legUVEHAeASR4nWfzgBsxAjwZkyHAk+FoQgUBngmq+poI8PQZmlBAgGeCqoymdIAH/y9jF/h/GY4mVOD/TVDV14T/12doQgH+3wRVGU1p/y/TK6iAgPMIIMHrPJsH3IgR4MmYDAGeDEcTKgjwTFDV10SAp8/QhAICPBNUZTSlAzz4fxm7wP/LcDShAv9vgqq+Jvy/PkMTCvD/JqjKaEr7f5leQQUEnEcACV7n2TzgRowAT8ZkCPBkOJpQWbMwEf3zz5/03HPPicjznEmdoQVlztlfRM+pIgjw7Gl5BHj2tAv3SjrAg/+XsTX8vwxHEypI8Jqgqq8J/6/P0IQC/L8JqjKa0v5fpldQAQHnEUCC13k2D7gRI8CTMRkCPBmOJlSQ4DVBVV8TAZ4+QxMKCPBMUJXRlA7w4P9l7AL/L8PRhAoSvCao6mvC/+szNKEA/2+CqoymtP+X6RVUQMB5BJDgdZ7NA27ECPBkTIYAT4ajCRUkeE1Q1ddEgKfP0IQCAjwTVGU0pQM8+H8Zu8D/y3A0oYIErwmq+prw//oMTSjA/5ugKqMp7f9legUVEHAeASR4nWfzgBsxAjwZkyHAk+FoQgUJXhNU9TUR4OkzNKGAAM8EVRlN6QAP/l/GLvD/MhxNqCDBa4Kqvib8vz5DEwrw/yaoymhK+3+ZXkEFBJxHAAle59k84EaMAE/GZAjwZDiaUEGC1wRVfU0EePoMTSggwDNBVUZTOsCD/5exC/y/DEcTKkjwmqCqrwn/r8/QhAL8vwmqMprS/l+mV1ABAecRQILXeTYPuBEjwJMxGQI8GY4mVJDgNUFVX/P00R50NXiG2OZ33KPnX3iVqn56Xb9zDlZAgGdf40sHePD/MraG/5fhaEIFCV4TVPU1keDVZ2hCAf7fBFUZTWn/L9MrqICA8wggwes8mwfciBHgyZgMAZ4MRxMqSPCaoKqviQSvPkMTCgjwTFCV0ZQO8OD/ZewC/y/D0YQKErwmqOprIsGrz9CEAvy/CaoymtL+X6ZXUAEB5xFAgtd5Ng+4ESPAkzEZAjwZjiZUkOA1QVVfEwlefYYmFBDgmaAqoykd4MH/y9gF/l+GowkVJHhNUNXXRIJXn6EJBfh/E1RlNKX9v0yvoAICziOABK/zbB5wI0aAJ2MyBHgyHE2oIMFrgqq+JhK8+gxNKCDAM0FVRlM6wIP/l7EL/L8MRxMqSPCaoKqviQSvPkMTCvD/JqjKaEr7f5leQQUEnEcACV7n2TzgRowAT8ZkCPBkOJpQQYLXBFV9TSR49RmaUHj02zXiQOKfv38Xk3/xxTcoR4FxlDBJBTFNJwpJB3jw/zJ3Efy/DEcTKkjwmqCqr4kErz5DEwpI8JqgKqMp7f9legUVEHAeASR4nWfzgBsxAjwZkyHAk+FoQgUJXhNU9TWR4NVnaELBWII3/1eUMGlFE112jKZ0gAf/L3PrwP/LcDShAv9vgqq+JhK8+gxNKCDBa4KqjKa0/5fpFVRAwHkEkOB1ns0DbsQI8GRMhgBPhqMJFQR4JqjqayLBq8/QhAISvCaoymhKB3jw/zJ2gf+X4WhCBf7fBFV9Tfh/fYYmFJDgNUFVRlPa/8v0Ciog4DwCSPA6z+YBN2IEeDImQ4Anw9GECgI8E1T1NRHg6TM0oYAErwmqMprSAR78v4xd4P9lOJpQgf83QVVfE/5fn6EJBWP+HyWatM0l7f+1OwQBEHAoASR4HWr4QBo2AjwZayHAk+FoQgUBngmq+poI8PQZmlAwFuChRIO2uaQDPPh/bZMoAfh/GY4mVOD/TVDV14T/12doQsGY/0eCV9tc0v5fu0MQAAGHEkCC16GGD6RhI8CTsRYCPBmOJlQQ4Jmgqq+JAE+foQkFYwEeErza5pIO8OD/tU2CBK8MQmMq8P/G0GoJw/9r4TN2sjH/jwSvts2k/b92hyAAAg4lgASvQw0fSMNGgCdjLSR4ZTiaUEGAZ4KqviYCPH2GJhSMBXhI8GqbSzrAg//XNgkSvDIIjanA/xtDqyUM/6+Fz9jJxvw/ErzaNpP2/9odggAIOJQAErwONXwgDRsBnoy1kOCV4WhCBQGeCar6mgjw9BmaUDAW4CHBq20u6QAP/l/bJEjwyiA0pgL/bwytljD8vxY+Yycb8/9I8GrbTNr/a3cIAiDgUAJI8DrU8KaHHfftt+ne3bsil0GAJ4IRNfhkMBpRQYBnBKu2KAI8bYRGBIwFeEjwattLOsCD/9c2CRK8MgiNqcD/G0OrJQz/r4XP2Mnw/8bQagtL+3/tDkEABBxKAAlehxrexLCHDh9FJUqWonjx4tNzzz1Hf/31F9269SPNmjmdZs+cHuVLIsCLMrpQJ2IFrwxHEyoI8ExQ1ddEgKfP0IQCAjwTVGU0pQM8+H8Zu8D/y3A0oQL/b4Kqvib8vz5DEwrw/yaoymhK+3+ZXkEFBJxHAAle59lcfMTPP/88rd2whTJnzhKh9pzZM6lv7x5RujYCvChhC3cSAjwZjiZUEOCZoKqviQBPn6EJBQR4JqjKaEoHePD/MnaB/5fhaEIF/t8EVX1N+H99hiYU4P9NUJXRlPb/Mr2CCgg4jwASvM6zufiIx0+cSpWrVFW6jx49otWrVtDpUyepcJFiVKlyFeIEMLd2bVqp73xtCPB8Jeb5eAR4MhxNqCDAM0FVXxMBnj5DEwoI8ExQldGUDvDg/2XsAv8vw9GECvy/Car6mvD/+gxNKMD/m6Aqoynt/2V6BRUQcB4BJHidZ3PxEV++eoNeeeUVVZKheJECdOPGdesaFSpWoklTZqi/L18KplIlivh8fQR4PiPzeAICPBmOJlQQ4Jmgqq+JAE+foQkFBHgmqMpoSgd48P8ydoH/l+FoQgX+3wRVfU34f32GJhTg/01QldGU9v8yvYIKCDiPABK8zrO56Ihr1PyYRo8drzRXr1pJ7dq0DKe/7+BRSpIkqfo8W5YMdPfOHZ/6gADPJ1wRHowAT4ajCRUEeCao6msiwNNnaEIBAZ4JqjKa0gEe/L+MXeD/ZTiaUIH/N0FVXxP+X5+hCQX4fxNUZTSl/b9Mr6ACAs4jgASv82wuOuLJU2dQ+QqVlGaTRvVp29bN4fSHjRhNn9Suoz7v0qk9LV2yyKc+IMDzCRcSvDK4/KqCAM+vuL2+GAI8r1H59UAEeH7F7dPFpAM8+H+f8MP/y+Dyqwr8v19xe30x+H+vUfn1QPh/v+L26WLS/t+ni+NgEAABiwASvLgZtAisXL2ecubKrTRSJktIf//9dzi9qtVr0FfjJqnPx301mkaNGObTNRHg+YQLAZ4MLr+qIMDzK26vL4YAz2tUfj0QAZ5fcft0MekAD/7fJ/zw/zK4/KoC/+9X3F5fDP7fa1R+PRD+36+4fbqYtP/36eI4GARAwCKABC9uBi0Cu/YcoBQpUymNpIne86hVtGhxmrtgsfpuxfKl1LF9G5+uiQDPJ1wI8GRw+VUFAZ5fcXt9MQR4XqPy64EI8PyK26eLSQd48P8+4Yf/l8HlVxX4f7/i9vpi8P9eo/LrgfD/fsXt08Wk/b9PF8fBIAACFgEkeHEzaBE4ceo8vRsvHv3777+UPMn7HrWyZM1G6zZsUd/t37eX6tT+yDruvZTZIr3+H48f0nN/vUnFyoVooEWNANfg+/psf4odz3MiPiqqd76/SiUq7KTX30gSldNxzv8TWLMoMb2TJB09//wLIkwe3f2JPni/KmXK0U9Ez6kiZ471op9vb6TX48jMmX//+Yfu/nCFqtT+zqlIRcbNAd6uzWXp7UTJRfRY5LfbP1GmrIMoYdKKYppOFAraVJqee+V3evm12CLDh/8XwUjw/zIcTajA/5ugqq8J/6/P0IQC/L8JqjKavvj/n6+ekrkoVEAABMIRQIIXN4UWgdPngilu3LiqNAOXaPDUPvwwI23aulN9FdUE75+//UVJU9TS6qvTT35wP5ju3TtGb8b3nIiPCp9fb1ymZCnr0MsvvxWV03HO/xMIPj+G3k2aQTTB++pLiSl+giJgrEHg51u76c9/b4omeH+9EUzpMrbV6BVO/fPPe3T926X0TuKQt0ck2sOff6S338lLb76VRkLOsRrXv11Cr7z5imiCF/5f/3aC/9dnaEoB/t8UWT1d+H89fqbOhv83RVZf1xf/jwSvPm8ogEBEBJDgxb2hRWD/oWOUOHES4tcokyVO4FGrYKHCtHDxcvXd+nVrqXXLptZx3qzg1eogTgYBEAABEAABEAABEAABEAABEAABEIh2AkjwRrsJ0IEYTAAJ3hhsXH8Mbf2mbZQ5cxZ1qYhq8FaqXIUmTJqmjpk2ZRINHtQfCV5/GAfXAAEQAAEQAAEQAAEQAAEQAAEQAAGbEECC1yaGQDdiJAEkeGOkWf03qNlzF1DxEqXUBcuULErBwRfDXbxLtx7UqnXIK8l9+/SkObNm+K+DuBIIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIxGACSPDGYOP6Y2gdO3elNm07qEtNmTyBhgweGO6yG7fsoIwZM6nPK5YrRefOnfVH13ANEAABEAABEAABEAABEAABEAABEAABEAABEIjxBJDgjfEmNjvA2LFj07kLV+i5556ju3fuUI5sGenff/+1LpooUWLad/AoPf/88+r7bFkymO0Q1EEABEAABEAABEAABEAABEAABEAABEAABEDAQQSQ4HWQsU0Nde2GLZQ1azYlf+rkCerWpaMq1ZC/QEGaNHk6xX37bfXdpInjaNiQwaa6AV0QAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQcBwBJHgdZ3L5AadOk4bWbdhKsWLFssT/97//qVW9rvbDD99TyWKF6MmTJ/IdgCIIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIOJQAErwONbz0sOPHf4/WbdxC77//QShpTvQeP3aUPq5ZNVTpBunrQw8EQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEnEgACV4nWt3gmF9//XUqWqw4pU2Xno4eOUwHD+xHYtcgb0iDAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAg4mwASvM62P0YPAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAQwASQ4A1g46HrIAACIAACIAACIAACIAACIAACIAACIAACIAACziaABK+z7Y/RgwAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIBDABJHgD2Hjour0JvPbaa1Tzo1qULn0GeuON2HTt26s0e9Z0evDggb077oDeVahYibJmzU7vf5CQbv/yMy1YMI+ufnPFASO39xATJUpMFSpWpnTp0tO///uXTp08QYsWzkcdbxuYDXPGBkbw0IXsOXKquvfJk6ek3357SFs3b6I9e3bZs7MO6hX8v32NjWeZPW0D/29Pu3CvMGfsaRv4f3vaBb0CgegmgARvdFsA149xBJ577jnq3LU7NWnagl5++eVQ4/vf//5Hl4KDaeaMqbRs6eIYN3a7D6hS5So0cNBQivv22+G6+vPPPymbjP9qDP3xxx92H0qM6t9bb71Fo8aMo5KlyhDPH/f2999/05HDh2jM6BF07OiRGDXuQBgM5ow9rcQ/gnw1fjKlS58+XAcfPXpE27duoRHDh9DNmz/YcwAxtFfw//Y1LJ5l9rQN/L897cK9wpyxp23g/+1pF/QKBOxCAAleu1gC/YgRBBInTkKbtwVR7NixQ43nr7/+opdeeinUZ8EXL9JHNSrTw4cPY8TY7TwIDrq3bNsVLhny77//qm4///zzVvfZHp/WqkHnzp2185BiTN+qVqtOo8aMpxdffDHSObNi+VLq2L5NjBm7nQeCOWNf6wwdPopqf/pZqA7yj4f8Y4i7n+HnW49unWnxogX2HUwM6hn8vz2NiWeZPe3CvYL/t6dtMGfsaRfuFfy/fW2DnoGAXQggwWsXS6AfAU+AV+seOXaa3n7nHTUWDrjXrF5FfXp1U0ncN998k5q3bE2f1qlLcePGVcc8fvyYqlUuT8HBFwN+/HYewPyFS6lwkaJWFzl5+0Wr5qpsBid3P6ldhxo2akKp06S1bMeJES4PgGaOQNp06VTi3ZVg//PPP2nk8KFqhTsnq5KnSElt23agCpUqW6vhb9y4TiWKFiQ+Fs0cAcwZc2x1lOs3bEz9Bwy2JH69fZs6dWxHu4J2qM8KFipMLVu1ofwFClqr4deuWU1tWjfXuSzOjYQA/L99bxE8y+xpG/h/e9qFe4U5Y0/bwP/b0y7oFQjYjQASvHazCPoTsATWrNtE2bLnUP3nhG7F8qXp+nfXwo2Hk1nLV66lnLlyq+9+++03ypc7m/ovmjyBdu07UfuOnZUwJ92bNKpP27dt8Xihrt17quSI69ia1SvT8WNH5TsFRbXK/dDRU9Zq9/Pnz1HNapXoyZMn4egkTJiINm7ebpXWOH36FFWpWBYUDRHAnDEEVlOW6+2tWrPBStzOnjmd+vXt5VG1eIlSNH3mHGtlPJc4GTt6pGYPcHpEBOD/7Xlv4FlmT7vA/9vTLtwrzBl72gb+3552Qa9AwI4EkOC1o1XQp4Aj0K5DJ2rfISSJyK/Fli1dTNXafVYbMWosfVyrtjrkmyuXqUSxQgE3brt3OHPmLLR+0zarm3379KQ5s2Y8s9v8yuDYcZNUEuXp06eUL092unvnjt2HGnD9W7thC2XNmk31+97du5Q7Z5Znrsp95ZVXaMu2IEqRMpU6Z97c2dS7Z7eAG7fdO4w5Y08L8Q+DXwdfwLi9OgAAIABJREFUpVixYqkO7tu7hz779ONndjZlqtS0YdM265z6detYK33tOcrA7BX8vz3thmeZPe3CvYL/t6dtMGfsaRf4f3vaBb0CAbsSQILXrpZBvwKGACcCg698R6+++qrqc+eO7bzeQO3YybMUP/576rz8eXJgQxxhq2/csoMyZsykVHnVbuOG9by6wtTps6hsuQrq2AH9+9DM6VO9Og8HeUcgQ4YPVa1qblyKoXjRgh5Xu4dV4/InJ06dVyUdeMV7xvQhyV40OQKYM3IsJZU6delGX7RpryRv//KL+kHEVUP8WdfhH6x4MzZuhw4eoE8+ri7ZLcdrwf/b9xbAs8yetoH/t6dduFeYM/a0Dfy/Pe2CXoGAXQkgwWtXy6BfAUOgYeOm1LffQNXfn366RXlyZvW67yVKlqZZc+bT7t1BVO+zkNW8aDIEOHHOCXRuXJrhw3Qp6ffff/dKnOslnzp7kX57+JCyZg6/S71XIjgoQgKLl65UNUK5rV+3llq3bOo1rTFjJ1D1mh9R966dUCPZa2reHYg54x2n6Djq3IUrqo47t+ZNG9HmTRu87saBw8eJy5wUzJeLfvjhe6/Pw4GRE4D/j5xRdByBZ1l0UPfumvD/3nHy91GYM/4m7v314P+9Z4UjQQAEiJDgxV0AApoE1qzfTNmyZVcqo0cOp6/GjvJJccasudSxfRt68OCBT+fh4GcTcK8jdurkCapaubxPyDp06kKnT52ioJ3bfToPB0dO4OLla9Zr40UL51eb3XnbXnvtNZo0dQY1qFvH21NwnJcEMGe8BOXnw5IkSUr7DobUAueNOdOnSe5TD/LkzUelS5elgQP6+nQeDo6cAPx/5Iyi4wg8y6KDunfXhP/3jpO/j8Kc8Tdx764H/+8dJxwFAiDwHwEkeHE3gIAmgTPnL1GcOHHU67LpUiejP/74Q1MRp0sQcN8FmEszRLSxmsS1oOE9gRdffJGufndTnXDz5g+qNAmaPQhgztjDDmF78Xnd+jToy2Hq4zWrV1HbL1rYs6MO7BX8vz2NjmeZPe0C/29Pu3CvMGfsaRv4f3vaBb0CATsTQILXztZB3wKCwKkzF4hrg0ZlZZX7AAsWKkwdOnahVi2a0q1bPwbE2O3cSS59wSUwuOnUN+bdnpevXEf9+/VSNSzR9Alc/+FnJRKVldXuV+/avSfFixefenTr/MwN2vR77AwFzBl72rnmR7Vo1JhxqnNReUvEfVQcxAcF7aDZM6fbc7AB1iv4f3saDM8ye9qFewX/b0/bYM7Y0y7w//a0C3oFAnYmgASvna2DvgUEgaMnztB77yWgp0+fUtpUSaPc5+Mnz1G8+PHVSmDePMrberFRvmAMP3Hi5GlUsVIVNcpC+XPTjRvXozTi6TPnUOky5dS5zZo0pC2bN0ZJByf9R8AV4J09e4YqlQ9JwvvauF7ckeOn1YZrXFe0QN6cvkrg+DAEMGfseUtUqFiJJk2ZoTrHJYA4yRuVVq16TRo7bqI6ddWK5dS+XeuoyOAcNwLw//a8HfAss6dduFfw//a0DeaMPe0C/29Pu6BXIGBnAkjw2tk66FtAENi97xAlT55CbeTFSSZ+7dzX1rJVG+LViNyOHT1CNatX9lUCx4chMHT4KKr96Wfq0759etKcWSEJEl9a6jRpaPvOvcQ7pf/222+UKUNqZWc0PQLXbtxSiVmuO535wzRRElu5ej3lzJVbnfvloAE0dUpI4got6gQwZ6LOzuSZ+fIXoCXLVqlLHNi/jz79pKbPl+P5xhu1vPHGG+oZVqpEYbpy+bLPOjghNAH4f3veEXiW2dMu3Cv4f3vaBnPGnnaB/7enXdArELAzASR47Wwd9C0gCHxa53MaMmyk6uvePbvp8zq1fOo3bxp19uvL9PLLL6vVu3lyZqVffgl5hR0t6gTef/8DOnT0pErO3r9/n7JkTOuz2I6gvZQ6Tch5XPeS61+i6ROYu2AxFS1aXAn16tGV5s+b45Mobxq1bMUadQ7PlVzZM/t0Pg72TABzxr53xulzwRQ3blyVnM2XO7vPZXz6DRhMDRo2VgPcumUTNW3cwL6DDaCewf/b01h4ltnTLtwr+H972gZzxp524V7B/9vXNugZCNiRABK8drQK+hRwBI6dPEv8yjgH3316dad5c2d7PQb316I40cUJL0+N68mePHmc7t2967W20w+cPHUGla9QSWHg0gpcYsHbVqlyFZowaZo6/Nur31CxIgU8npouXXqVnOdyA2jeEeCa1SdOnVereHlTwprVKvnEz/VaNF+tdq0adPDAfo8X5lfS165ZpX44QfOOAOaMd5z8fVSVqtVo3IQp6rJckqRc6eL08OFDr7rhPt/+/PNPypopnccSQK+88gqVLlOW1q9b65UuDgohAP9vzzsBzzJ72gX+35524V5hztjTNvD/9rQLegUCdiWABK9dLYN+BRSBIkWKqVUJvFqU2+qVK6h3r27qtf5nteQpUtKuPQfUeVxzl2vvekpGxYkb10qIjRoxjCaMHxtQfKKrs2+++SYdPnaaXn/9ddWF4IsXqXHDuvT99zee2SW2B6+q5vO5lSlZlIKDL3o85+CRE5QwYSK1cVGDunWia6gBd92evfpS0+YtVb/5nh/Qv48qoxFZCYxGTZpRn74D1HnP2qStbLkKNHX6LHr06BE1a9KA9u/bG3CMoqPDmDPRQd27a27eFkQZMnyoDmbf0qRRPa82fuTyDvyaJ7eRw4fS+HFjPF5w7LhJVK16Dbp+/TuqWrk83b1zx7uOOfwo+H973gB4ltnTLtwr+H972gZzxp524V7B/9vXNugZCNiNABK8drMI+hOwBLJmy06Ll66kWLFiqTFwoupScDAtXryAzp87S2+9FYdSpExJM6dPtZK4W7fvpnTp06vjO3dsR8uWLvY4/gWLllGhwkXUd+O+Gk2c5EXzjgAnx9dt2EJJkyazTvjpp1u0auVyVVKDk7mpU6eh3bt30fXvrqlj3IOPnTu2UcP6n3u8WN16DWjg4KHqu3PnzlLFcqW86xSOUgTqN2xM/foPsn4Y+euvv+jokcO0eNF8unnzJiVMmJBefvkVWrlimTqeVxhyHVH+b2Svqp85f4nixImjzmO7sH3QvCOAOeMdp+g4yn2FFV+fE707tm2lNatX0u+Pf1f14H/88ab1g0b2HDlp9dqQjSE5YZstSwaP3U6SJCntPXBEzcXHjx+reuN///13dAwxIK8J/29Ps+FZZk+7wP/b1y6YM/a1Dfy/fW2DnoGAnQggwWsna6AvAU+A/8do1er1lDJVao9j+fX2bcqRLaP6rniJUjR77gL17xs3rlOh/CEbRoVtmTNnofWbtqmP7927p16vRfOdwKQp06lCRc+b1/EKUq5ryYnf2LFjq3pXL774InHCMXuWDB5fheayDJxsfPXVV1WysWC+XOrVaTTfCHACat6CJYq7p7Z92xZq3LCe+mrUmHFU86OQGtdLlyyiLp3aezynS7ce1Kp1W/Xdnj27qG6dT3zrFI5WBDBn7HkjNGjUhHr17qeeUZ5ah3ZfWD+KHDh8nBIlSqwOq/dZbdq9O8jjORu37KCMGTOp73p270IL5s+15+Bt3Cv4f/saB88ye9oG/t+edoH/t69d4P/taxv0DATsQgAJXrtYAv2IUQQKFipMnbp0VwHzSy+9ZI3t809r0d69u9Xf7qt3q1WpQCdPHPfIYP+hY5Q4cRL1HSe6OOHlavw6Fa/s/f3R73Ts2BGPdRVjFFjNwTDHfgMGUd58BdRu8q62cME86tGts/qzd5/+1Lhpc/XvWTOmUf9+vT1edeTor+ijj0MSh6tWLKf27VqHOi5L1myUJEkSVdoBu9VHbjhezVu/QSNKlix5qBW92TKnV6sUeWXh5as3VL1jriOaPk1yjysMeU6cOntRJb94BSIn6B88eIA5E7kJPB7hrznD9ZgLFy5Kr772Gp0+dVL92IIWMQHenLNHr75UrlwFihc/vnXgtWvfUtFC+dTf/Azitxe4Xb4UTKVKhLwFEra5/9jIP1IVyJsz1CF8D2TPkYN+/PFHOn7saKRlVJxuN/h/e94B/nqWueYe/L/39wH8v/es/Hmkv+YM/L9vVoX/940XjgYBpxFAgtdpFsd4/U6A67NycPziiy/R6lUr1PXfeustVeOV27Vvr1LRwvk99qv2p5/R0OGj1HcXLnytNtZxtfETp1LlKlWtv3kVKdck7de3F505fcrv4wy0C3IiMEfO3JQ8RQpV+9VV+/j02YsU9+23VXIwbaqkHpOIbFNeGcdJx6dPn6rXmTnpyI03XVuxen2oFan379+nJYsX0NAvByE54sWNwgw/zJiJbt360dpAzX0u8OpCXmXoqc2et5CKFy+pvpo0cRwNGzIYc8YL5t4cYmrOfF63PvUbMDjUilR+q2H0yOHWM9Ob/jn1GP4xI1v2HOrZs3fvHqvUzJz5i6hYsRIKS83qlenY0SMeEbmeefxllUrlVIKdG5dC2bItiFKkTGWdx885/pGxV89uqNHrxQ0H/+8FpGg4xNSzDP5f35jw//oMTSiYmjPw/3rWgv/X44ezQSAmEkCCNyZaFWOyPQHeXG333oOqn55Wf/Ln7LQ5CcwbhHHytkihfFbg3qNnH2rWopU1Tv7etcEb/5s3YePNdDw1/qU8fvz3sEIugruEV4lyYsPTSjbXKWvWb6Zs2bKrPzmhPnvmdPVv/lWdyztw2QZP7eeff6LqVSpGWMqBX6VGmQfPhunUpRt90SakJEP9unVoV9COcAfyBlS8EQU3XrWb+cM01jE6c+bdd+PRb789pD/++MP2z5bo6KDOnOHNv7h2ufvzy/VvHsvBA/vp8zq1IqwHizkTscVdZRfYJyRLnMDjge3ad6L2HUPeXmDWtWvVsI5zf8sk7Mmc6G3WpCEF7dzuURd2idgu8P/R8ZTy7po6zzL4f+8YR+Uo+P+oUPPPOTpzBv7fnI3g/82xhTII2J0AErx2txD6FyMJcPDLK0C5cUKP67dyEO7evhw6gup8Vld9tG7tGvqiVTPr64uXr6nN3HjVae+e3Wj5siVUv0Fj6tCpi5Vc3LRxPbVo1jgcv8FDhivd1StXUOdO7bCRThhCLra8gjdXjszhVqnxa+TzFy1VZ/EK07y5slkKbdt1VDbgFnzxItWp/RF98MEH1L1nH8pfoKD6nOv6lilVjK5+cyXUlfm13oWLl9OpUyepeZOGSMCHsQsndznI47Z61Upq16ZluHt7975DapMpbi2bN6aNG9aLzBn+MeaDhIlo6JBBqmwHWmgCOnNmzbpNavUptyWLF6qV2WXKlqOevfsRr350zTN+Robd9Atz5tl3ojtb3iiSN4x0b1z3msuZcBkh9iXZs35I9+7eVYfwpmv7Dh5V/3748CHV+7w2/XjzJn3Rtr3yH64kPNfB5nrYnnTv3btLrVs2oyOHD2HKuBGA/7fv7aDzLIP/N2dX+H9zbHWVdeYM/L8u/YjPh/83xxbKIGB3Akjw2t1C6F+MJcDBMwfR3G7e/IGGDRlE69etVYF2ggTv06GjJ4lX2/KqQS4B4L568Lvvf1IB9u1ffqGc2UM2xuHGKw03b9upVuhy41ecvxobUuKBG39+5PhppcsrsDKmT4VViWHusBGjxtLHtWqrT7n8AjNcvGi+tdHaiVPn6d148dT3YV97HjN2AlWv+ZH6rm2blrRm1UpL3T1A4ZqyubJnoidPnljfHz95zqql+azXqWPshIhkYLw66vzFb6zX+Hm14ehRw63XzmvU/JhGjx2vVDzVG43qnKlWvSaNHTcxQl2n2sN93Dpzxn0TMF5l6vqhi59vCxYtI07icuPyM1Urlw+FG3Pm2Xdf0aLFae6Cxeog5sqlTaZNmaQ29eQ2Y9ZcKlW6rPp32HrjxYqXpDnzFqrvtm3dTE0a1bcuxj9WzZ2/WNXDZt3qVSuGqiE/feYcKl2mnEddzJcQAvD/9rwTdJ5l8P/mbAr/b46trrLOnIH/16Uf8fnw/+bYQhkE7E4ACV67Wwj9i7EEUqdJQ6vXbgpVq5WDZU688ooqTsJyGzywP02bOikUB/eaiWETiVxegMsE8ArfLwcNoKlTJlKtTz6lTJmz0IcfZiTetZib67sYCziKA2N+GzZtozRp04VS4AT7Cy+8YCUYjx45TB/VqBLqGPc6sbxJFK/udV+Z3bFzV2rTtoPaNIyT9ryBBa+ovnjha6vkBtfJ5AQvWngCVavXIA6iXXODj+BVnf/8848qq8GNeZcoVijcCmlf54zLLrz6mjfkY91SJQpjwzwPN6bOnHGvE7th/Vpq1aJpqCts2LydMmXKrBL5PC/4RzHMGe+fDsNGjKZPatcJdYKrXjgnaLm5nkfuzyquQ37qzAX1QyLPsSIF84YqH+PawM19XsxfuJTWrllFvAEln+dJ1/uex+wj4f/taV+dZxn8v1mbwv+b5RtVdZ05A/8fVerenQf/7x0nHAUCMY0AErwxzaIYT0AR4E0L+g/4koqVKElx48YN1/dffvmZcmXPHO5z99WKvOKXayHyKitXK1e+IvUfOJhy58iiVlmdu3AlVF3YsCt/AwqanzrbrkMn+ujjT4hfpw3bmDnb5ddfb4f6ipMavEL6vfdC6l2eP3+OqlQsG+rV8oNHTtDwoYNpzepVtGnrTpV0dzXWzZMzK7Hd0TwT4Dq7nHTNkzefldR1P3LL5o1qPoRtvswZV/LKXWPrlk3UtHEDmOUZBKIyZzhhu2vvQeuHE65nzXWtXY3fStiz/7BKMPJ8w5zx/RasVLkKNW/5BfHccf9xxKXU9osW6nkUtk2eOoPKV6ikPuYyDbzJp3uN8K/GT6ZXX31Fzbeu3XtSy1ZtQklEpOv7CGLmGfD/9rVrVJ5l8P/m7Qn/b55xVK8QlTkD/x9V2t6fB//vPSscCQIxhQASvDHFkhhHwBPgTdU4+N5/6JiVIOQNb/hVdG5vvfWW2jjK1fr2G0gNG4esduNVVP379bY2++LPWIsThpzgnTBpKpUp+9/rzZzgbVCvDp07dzbguZkeAAdtvGnaqDHjqELFkJW18+fNoV49uqp/M18+xlVCg8tr7Ny9X6365MblN8qWKmaVeHDZhb/jsg1cs9eVdOGVdd26dKSVK5aZHlaM0OeVI3Hjvm2VM2F+WTOlo99//11rzvDKaq6z7Krny2K8grRxo3p0/969GMHO5CAimzNhn2UlSpammbPnWXVdt2/bQo0b1rO6iDkjZy3etLNkqdI0bsIUJfrt1W+oWJEC1gXC2mbLtl2UPkMG9T0/4/ithTOnT1nHs63Z/3BJh4mTp6lNQV2Nk/Xsl8LWl5cbTcxRgv+3py0je5bB/0ef3eD/o4/9s64c2ZyB/48+u8H/Rx97XBkE/EkACV5/0sa1QMALAvwKerUaNVXNyWpVKqgzeBUb1+QtX7ZEqFfE3eu68nHt2rSi1atWhLtKoybNqE/fAeE+37NnF33RslmoxLEXXXTkIXXrNaBeffqr1bhcu5iT59wmTZlO8eLFD1Wu4e133qFt23dbNXU5ycubRLnOcQHk3dR37TlgJbZcn1+79i21bNaYLlz42pGsfRk0s549dyFlzZqNRgwbQhPGjxWZM0uWrSLe4dm9se25VumXgwcgaeWFkSKaM0dPnKEZ06aGKj3DrPkVfy5Pwy3sxpKYM14A9/KQnLly05SpM9XzqXTJInQpOFidySt9vhw6krJkTBvqWbV46cpQm0QWL1LAquPruiQH9We/vky8KtW9cZmGXj26eFwh7GV3HXUY/L89zQ3/b0+7wP/b0y7cK/h/e9oG/t+edkGvQECSABK8kjShBQJCBLgswOMnj+nunTtKceny1ZQ3X366fv07KlwgT6irNGjUhPr1H6Q+4xVWaVMlDZV84lUOXKKB/+ta6duhYxcrEOekVb7c2VEWwAvbMcNkyZNbCZGUqVLTzl37VIK2ft06tCtoh6XCxx4+eoo4AOE2ZfIEGjJ4YKirbN2+m9KlT68+mzRxHJUpU45Y09U6tPsCq3m9sAsfkjlzFjp79ox1tM6c4f8BXrl6vdLiObhkyUJq2qylVUbg1q0fVX1ltMgJhJ0zTZq1oF69+9Fff/1FObJ+GOrHpXTp0tPmbUHWivbyZUrQ11+fx5yJHHOUjuBSJK7VuPwMYz8RO3ZsWrJ4IXXt3CGUJm94V6hwEfXZxQsXqGzpYqG+79mrLzVt3lJ9xm+dPH36hIqXKGUdwxuItm4Zur5ylDrtgJPg/+1pZPh/e9oF/t++doH/t69t4P/taxv0DAR0CSDBq0sQ54OAHwis37RNJbC4bdq4nlo0axzqqitWraNcuUMSvzWqVaLjx45a348dN4mqVa+h/nYF7hzMd+/Rm3hl748/3qRC+XP7YRQx7xKcCGT2rhINNatVCpVk5PpivFs6t7CvQpctV4GmTp+lvnNP3FepWo0GDxmhykJkz5LBKu0Q8+iZHZHOnOE6yQkTJlIdrPdZbdq9O0iVSBk3cQrxzsRLlyyiLp3amx1ADFV3bTTIw+N6rlzXleu7ulqLll9Qtx4hNXjdS6Hw35gz5m4K3qX+xOmvVYkF/iGwT6/uNG/ubOuCXCaDV+hyApi/T5Y4pM44tzhx49KJU+fVDyCcuHc9t7heJr/hwG8quOaRuRHEXGWdZxn8v7n7Av7fHFtdZZ05A/+vSz/i8+H/zbHVUYb/16GHc0HAfgSQ4LWfTdAjEAhHgH8FP3LsNPHO5tz41f06tT+yVvhu3LKDMmbMpL6rXLGstSqLa4lygpETkI8fP6ZMGVKH2vCLA/M3Xn8j1MY5wO8bAffyF1yCgWvocgKQG6/GDdodUkP5yuVLVLJ4YUv8zPlLFCdOHPV3xXKlQtVDZnulT58BJRp8M0Woo6M6Z/i1woGDhyotrlHNtnFvadOlo6vffBNqHml005GnLly8nAoWCpkLnNz9tFYN6/7v1KWbqk3NbfasGdSvT0/MGT/dJZyQZV/iqgm+eNEClejl2tb82cXL19QPT0+fPlVviria++recV+NplEjhoXqMW8kGXYltp+GFCMuE9VnGfy/efPD/5tnHJUrRHXOwP9HhbZv58D/+8bLX0fD//uLNK4DAuYJIMFrnjGuAAIiBLi24fKV66xX+lmUa7v+9vA36zNOlnAS19XcE789u3ehBfPnRtiX/AUKUs/e/YiDQk4w/njzpior4Kmmr8iAYpBIrU8+paHDR4XaLI0TGvw/TBxocOPNhrh+K7cu3XpQq9Zt1b+5DnLdOp9ESINXkg4fOYb49fXXYsWiO3d+pbVrVtG4saNV4gUtYgK+zhneMIdfU+ckFq9S5LrJvMo0osblBj799DOK/14C+vOPP+jy5Us05MuBdPrUSZglEgIjR39FH338333PG0jyKves2bKr5w/z5zcLvv/+hs9zBs+yqN9+nIxdsny1VcKHf7S6fOkSvfvuu/RuvHhKmFe084pcbvxmCa+W43bv3j21yWFEjefX4CHDqUDBQhQnTlx69Og3OnL4MA0e2I9++ulW1DvtgDN9fZYxEvh//9wY8P/+4ezrVXydM/D/vhKO+vHw/1FnZ/JM+H+TdKENAv4jgASv/1jjSiAgQoBrHXLdXddmRC5RDq4rlC2pkr7c+FXyuQsWq39zkqpA3pwer88JSF6BlTtPXo/fc9KlYvnS9Pvvv4v0P6aK8GrdmbPnUfLkKcIN0b3+Lr/ifPpcsHqdmesf8+vMnNzy1Pr2G0j1Gza2Esfux7A9qlUpb9UDjqlcJcbl7ZzhRDoH69xWrVhO7du19nj51GnS0Nz5i60yDmEPeta5EuOJKRq8qReXI+HyF+6N50XTxg1o546QxKG3cwbPMpk7g1/XnDFrnkrEcrLdvfHmn9WrVrQ2YeM3RLgUDbfGDevR9m1bPHaCbT185FiKFStWuO85mc8lT5YtDfFXaBET8PZZBv/v37sI/t+/vH25mrdzBv7fF6r6x8L/6zM0oQD/b4IqNEHAvwSQ4PUvb1wNBEQIcHKwYaOmlCdvXnrnnXcpOPgi9e/bi548eWLpb9+5h9KkDVlNVa1KBTp54rjHa69Zt4myZc+hvuNAm1eU/v7oEeXLV8DaIIyTx0UK5okwESkyqBgikilTZqrzeT1KnTqNsgfXsdy2dbM1Ok7aNmwcstnQjGlTaOCAvh5H3rZdR+rQqYv1HZcLuBR8USXiXQkVToR99unHdOjggRhCz9wwIpsz/Ar6pW+uE6/i4c0KM6ZP5XGFNNcoPXL8jEo6cuPSJzt3bKe4ceNS9hw5rQTWsaNHqGb1yuYGFIOUOdArVbocJUmShH7++ScaOWIoXbl82ec5g2eZ7E3x7rvxqEmz5pQpUxY1L3YF7aSJE76yLsKrrdeuD3m2BV+8SGVKFfXYAT6ObeNKFvNq3f379lK69BnUWw6ukhBjRo2gsWNGyg4iBqpF9izjIcP/R4/h4f+jh3tkV41szsD/R0bQ3Pfw/+bY6ijD/+vQw7kgEL0EkOCNXv64OggYIcC1ek+fvRhp4N21e09q2aqNOo7LO1StXJ6ufnPF6hMnGDnRyA0bS8mYylV7l5OI6VIns1bCuavny1+AFi9dqRIi/Io07z6/ccN665DChYvS7HkL1SrgGzeuY5M8AdN8Xrc+DfoypHbo1MkT6cvBAzyqbt4WpJJS3LgMR42qFa0fVthey1eutTY8/PzTWrR3726B3jlbwps5g2eZ/++R+QuXUuEiIUld3iyPa8OHbfya9OFjp9XmbdzmzJ5JfXv3sA6LH/892rp9l/oxkX+wypA2hfqBBS3qBOD/o87O9JnePMvg/01bIbw+/L//mXt7RW/mDPy/tzTljoP/l2MJJRCQJoAErzRR6IGADQjwRlDbduxRPQm7UZGrexxwn7/4jVo9xSt3y5YqplYCh22uVXFc7zV1isQ2GF1gd+HKt9+r1XBhN13pIs5GAAAgAElEQVRzH9XhY6fo/fc/UB8NGtiPpk+dHG7Q7it8y5cpgU2MNG+L7j17U/MWISUZ3DcqdJctW64CTZ0+S310//59ypU9k8dVvrwZFb+KfvHCBSpbuphmz3B6ZHMGz7LouUe2bNtF6TNkoL/++otSJU/ksRPjJ06lylWqqu8OHthPtWvVCHdc8hQpaffeg+pz93I20TOqwL8q/L99bRjZs4x7Dv/vf/vB//ufubdXjGzOwP97S1L2OPh/WZ5QAwFJAkjwStKEFgjYhACvijp28qzqzS+//EzFixSg3377LVTv3H/xnjZlEg0e1N9j77mcAJcV4JYyWUK1ygot6gR4Ey9e1cZJkcoVyoRb9carQ3mVKLdnvfbMJQI4Qc+tV4+uNH/enKh3CmeqWsf9BwxWJIKCdlCDunXCUdm0dSfxJhTcIkoC83e8+po3+uIkcJaMaUFXk0BkcwbPMk3AUTx90ZIVqk4vt+5dO9GihfPDKV2+ekNtNPmssid8Er9xwitPI9t0MopdddRp8P/2NXdkzzL4/+ixHfx/9HD35qqRzRn4f28oyh8D/y/PFIogIEUACV4pktABAZsRcHe+XCd0yaIFNG/eHLr27VXV0xOnzqtd0Tlhmz5Nco8rEfm4jp27Upu2HdQ5SRO9F2qUdes1oMxZslKPbp0jPN9mWKK9O+4Jcy6/sGXzRpo1czpxzVZuvFFbyVJl1L/r1P5I1ar01JImS0579x9WX/EGRVxCw9W4VMCyFWto9KjhqM/rg8XPfn3Z2vDr1q0faeaMabR82RK6f++eqrnLgQazvX79OypcIE+Eyhs2byeuxXjv7l3Kmjl9qONGjRlH58+fo9kzp/vQM2cfGtmckXiW8SZJQ4eNpDatWxDbHi1yArzydteeA1ZtXd6AbeaMqbR500blV2rU/JhGjx2vhJYsXkhdO4f4EU+N61+/+uqr4X5cwbMscjt4OgL+P2rcTJ8V2bMM/t+0BSLWh/+PPvbPunJkcwb+P3rsBv8fPdxxVRDwhgASvN5QwjEgEIAEODCeMWuulSzkIWzcsI5aNm+iRuNaWXX82FGqUa1ShCMM2r2fOPnBZRySJU5gHcersjjhxf+9e+cOZcuSIQApRU+XmzZrST169bESI7yxVO4cWVRnNm7ZQRkzZqLff/9d1aOMqA0cPJQ4wc6tWZOGKlHsar379KfGTZurP7G613sbcx3Q9Ru3UqJE/5Ui4frH69etJffXyIcNGUyTJo7zKMx1kYOvfEcvvfSSShTmzZXNOi5X7jy0YtU69XfQzu3UoN5n3nfO4Uc+a87oPssY7dbtuyld+vSq5nXBfLno5s0fHE7cu+HzPb1g0TKVnOXG/LJn/VD9uNGpSzf6ok179XmOrBnp119vexTlH0P4RxFu69auoS9aNcOzzDv8ER4F/68J0ODp8P8G4WpIw/9rwDN8Kvy/YcBRlIf/jyI4nAYChgkgwWsYMORBILoJ8A7mvXr3o1SpUlOBfDlV4pCbq67VhvVrqVWLph67mTpNGtoRtE99F7ZcwLgJU6hK1WrqO34V/fixI/T06VOVDHNPNkb3+O16fX6Ntk+/gVS0WHFq2ri+qk/JzbWJl3vSN+wYOHi/cOlbVeeVayOnSZlEJeC58WvOJ09/be1Mv2P7VvXvy5cv0eyZM4h3sEd7NoGaH9WiFi1b05OnT6liuVLqYPe50LJ541Cb3rmrtWvfidp37Kw+CrtZm3ttRd6g7eefbtHt27dp/tzZdO5cSEkVtIgJRDRndJ9l5cpXpCnTZqoLc4Jy+7Yt9MILL9D+/fvUmw9PnjyBWZ5BgH/U4Dc9eN5sXL+O+vXtpY52f3U27Nsf7nKuOu/8mXs9cTzL9G87+H99hiYU4P9NUJXRhP+X4SitAv8vTVRGD/5fhiNUQECSABK8kjShBQIBRMBV1+ratW+paKF8Hnt+8MgJSpgwZPMc96RWkiRJae+BI9YK1LAnc9KxScN6tHt3SC1ZNO8JuOq38ivOaVMl9VjzeOy4SVSteshmRWET9O6v5nq66onjx9SKbVdC2PueOftI97qWCxfMU2VJwrYECd6n/YeOqdW7zDdThtRW7Wv3Gn+eSP56+zaVK1NC1cxG842AzrOMr+T+am7YK7Mdp06ZSEMGh9QhR/OegPurtR/XrEpHDh8Kd3KlylVowqRp6vOwP2rhWeY9a1+P1Jkz8P++0vb+ePh/71n580j4f3/S9u1aOs8y+H/fWPtyNPy/L7RwLAjIEkCCV5Yn1EAgYAi4v8bvaYOcqdNnUdlyFdR4wr5q7r7Z1N49u1VN0vfee49y58lHceLEUedwYqRRg7q0c8e2gGFih45myZqN1m3YorqybetmatKofqhufVyrNo0YNVZ9xhu1Fcqf26oZ6n4ub6q3edMGtblRrlx5KE3atNaq3mdt3mYHBnbtg+s1fv4Bo0rFsqE2yOOdnLcH7bV+EHF/1fzll19W5Uz4NXaeF2tWr6IHD+6rDdu4hjWXOeH26NEjKlG0IFZZ+3gD6DzL3FeZ8o9dvJKe7ZEvfwHLltwdrpnsWpnqY/ccezi/OcC1dfn+Zx/C97brDRKGwqviN28NUj+IcGvTujmtXbNa/RvPMrO3jc6cgf83Zxv4f3NsdZXh/3UJmjlf51kG/2/GJqwK/2+OLZRBIDICSPBGRgjfg0AMJfDaa6/R6XPBVu1E3uRr5Ypl9M8//1Db9h2tOqSczOIkouvV/hIlS9OsOSG7pf/ww/dUIG/OUITadehE7TuErG68eOEClS1dLIYSNDcsV5kGvsKNG9dpxbKlqsQC19zNX6CgdeHmTRupJK6rHTh83LIb13flOq+uxqtLN27erjbW41a6ZBG6FBxsbhAxUJnZ86pCLpHBK6w5Ac8rqJMlS0Gt27RTJTO4ff/9DVXH1dV4YzV+7ZPbiuVLqWP7NtZ3/D/BvGorb7786rMpkydgtaiP905Un2VvvfUWnTxzgfgVQ7Zn9iwZ6MGDB9bVCxcuSrPmLlAJSH4Opk7xX21mH7vo2MO79+xNzVu0VuPnH53WrF5Ju4J2UomSpejTOp9bb4GEnRd4lpm9ZaI6Z+D/zdqF1eH/zTOOyhXg/6NCzfw5UX2Wwf+btw38v3nGuAIIeCKABC/uCxBwMAF+7Wzz1p1W0i8sCk+lFk6fvajqvHKrXLEsnTl9KhxBV61RrsnboV1rSpo0uVrFtXHjOrpy+bKDiXs3dE4gLlm2ykr6hT2LV4FOGD+WRg4fan3FyZIhw0aqv7m+K9eyDNtKlylH02fOUR8vX7aETp86Se8lSEDXv/tOJV44yYX2bALuST9PR3KphVIli6iNB7nxhm1ctoFtyvOByzbwvHJvnOT99vqP6pgrly/RxAnjKGnSZPT48WNatmwx3b93D2aJhEBUnmVzFyymokWLK2XeNI83zwvb3GuNt2vTSj373n77bTp25Ajt2bMLdvGCgPuPfp4OP3rkMH1UowqeZV6wlDwkKnMG/l/SAp614P/NM47qFeD/o0rO7HlReZbB/5u1iUsd/t8/nHEVEHAngAQv7gcQcDgBTrwOHDyUKlWuSvyaOTd+9X/P7iBq07pFqFdqO3TqQm3bdVTH7N+3l+rU/sgjvfMXv6HYsWN7/I43ZBs2ZBAtWhiyChgtYgKNmjSjli2/sBLwvAHUN1cuU/NmjenqN1esE3kFIpcA4BWknPwtXCCPWvkbtvFOxD179/V4QdbmhG/dzz6x6sbCNp4JJE6chIYOH6US8MyeGydjZ0yfQqNGDAt10vpN2yhz5izqsz69utPcObPCibrX9/N0RV4p37RRfZW4R4uYgC/PMi6Pwa+ac+NnUpaMaT0KL1+5lnLnyevxOy5/wj+MdOnUHmaJhAAnRvr0G0CpUqexVu3yjyHdu3VWK+FdDc8y/95KvswZ+H//2gb+37+8vb0a/L+3pPx7nC/PMvh//9oG/t+/vHE1EECCF/cACICARYBrT74WK5bHFYOcsD119qJ6XZlXeubMnonu3b0bjl6FipVo0pQZ6nNOev148wdViylJ0mRWMoy/w6vo3t94vKInXrz4EW7AxcnG2p9+pgS5vmvbL1p4FD964gy9914C9R0ngB///lit4I0bN651PL9GXahAbo+29b7HzjmSX/Pjlbmc7AvbihQpRvMWLlEf37z5A+XPk8MjmImTp1HFSiErGDnp9euvv1LsN2PTBx8ktJJhnIBvULcONi708tZ61rOMJXbvO0TJk6dQas2aNKQtmzeGU44TNy6dOnNBPb+Y//XvrtEff/xJyZInt0rb8Ennzp2liuVKedkzHMY/aNy+/YvHjR7xLIu++wP+P/rYP+vK8P/2tAv3Cv7fnraB/7enXbhX8P/2tQ16FnMIIMEbc2yJkYCAUQIzZ8+jkqXKqGvMmDaFBg7wvBL0xKnz1orTsCUcWn/Rjjp16aaSVpwwyZA2BT158sRov2O6ONfWPXT0pEpCcZKRSwB4SjbWqPkxjR47XuG4cOFrKlc65NV0bu+//wGtXrdR/Zdb2HqYMZ2hqfG5z4Ua1SrR8WNHw12K7cclTXhOsN14TrhKZXCQMmX6LCpevKQ6z1PNa1N9j8m6XA+Z6yJze9aGg+7PvLAlHAoWKkyz5iywNsir91ltJN81bxo8yzQBGjwd/t8gXA1pzBkNeIZPhf83DDiK8vD/UQRn+DQ8ywwDhryjCCDB6yhzY7AgEDUCadOlo2079qiTeYUnJxG5FEDY1rJVG+Jdabnxpm01q1cOd8zYcZOoWvUa6vOG9T+nnTu2Ra1TOEsRWL12I2XPEbLR3aCB/Wj61MnhyHDyl0s4vPHGG8pupUoUDlcLmV+N/ubaDyrR+KzVpsDuHQH+MaNz1+7q4MOHDlKtj6p5PHHl6vWUM1du9d2XgwbQ1CkTwx3n2nCKbZcsccgKbLSoEeC5wCVkuBwN8yxRrFCocicu1dRp0tCOoH3PfOa5bzi1etVKatemZdQ6hbPwLLPxPQD/b1/jwP/b0zbw//a0C/y/Pe2CWMa+dkHPApMAEryBaTf0GgT8SmDthi2UNWs2dc3WLZvS+nVrw12fd7I9+/VltZkar87NlT0z/frr7XDHjRg1lj6uVVt9HtEmbX4dXABfzD0J9fPPP1HuHCG1XsO2/gO/pPoNGqmP+VV0fiU9bOPELm/0xf8DzBt9lSxeOIDJRH/XL31zXb3G/6y5kCdvPlq2Yo3q7C+//KzmjKe27+BRSpIkqaqNnSp5ougfXAD3wH3Dj40b1lHL5k08jmbnrn2qXiw3LnnCpU/CNq4rN3/RUvXx7FkzqF+fkB+30HwngGeZ78z8dQb8v79I+3YdzBnfePnzaPh/f9L2/lrw/96z8ueReJb5kzau5QQCSPA6wcoYIwhoEnj7nXdo0uTp9FacOKFe7XeXnTRlOlWoGLJid/68OdSrR1ePV+UkMNct49fQ06dJTn/++adm75x9Otfe7dm7HzVpVI8OHTwQDgbbjl8V5MQts86aKV2ojfNcJ9Rv2Jj6Dxis/ly6ZBE2jtK8rbJmy05cW3f7tq0RJv7cayLXrlWDDh7YH+6qiRIlpv2HjqmV1Vw3uVD+kNW+aFEjwPNgwKAhalPJvLmyeiwRU6lyFZowaZq6wLdXv6FiRQp4vNiiJSuoQMFC6rvPP61Fe/fujlqncJYigGeZPW8E+H972gVzxr52gf+3p23g/+1pFzzL7GsX9CwwCSDBG5h2Q69BwFYEkqdISbv2HFBJqN9//50ypk+lVi6GbU2btaSevUNq9wbt3E4N6oVsDOZqxYqXpOYtWlHiJEnozz/+oMuXL9GI4UPClROw1eBt3pkly1ZRvvwhCaqRw4fS+HFjwvWY7cYlHHgjPX5tPVuWDKE2WUuZKjX17NWHUqRMpVZo37h+nWbO4OTlFpuP3r7da9KsBfXq3U918NTJE1S1cnmPnV2+ci3lzpNXfde5YztatnRxqONatW5LpcuWowQJEtD9e/fp2LEjNHLEUI8bJdqXhn16xnOBf4R68803VadKlyxCl4KDw3WQn3m79x5Un9+9c0fNGfeGOSNvU4lnGT/jevXpT1mzZqc4cePQrVu3aOvmTao0iiefJT+KmKcI/29fm0rMGTzL5O0L/y/PVEIR/l+CohkNiWcZ/L8Z20DVfgSQ4LWfTdAjEAg4Alu376Z06dOrfnds30Zt0hW2cWKQa1/yxlGcRCyQN6eq9cqNVynOmDWP0mcInSRxaezbu4c+r1PLY93fgIPlxw5zbVeu8RpREsrVle49e1PzFq3Vn0FBO6hB3Trq3/w/u7PnLaRixUp47DXbr2ql8qq8AJr3BHgOcELdNRfy5c5Ot279GE6AaytzjUVP9uMfQ8ZPnKKS8mEbz68xo0bQV2NHed8pHKkI9OzVl5o2D6mly/XBuU64p7Zl2y7redWlU3u16h1zxtxNpPss457x67lftGlPXG88bHv69Ck1avA57d+319wgYqgy/L89Das7Z+D/zdgV/t8MVwlV+H8JivIaus8y+H95m0DR3gSQ4LW3fdA7ELA9gdJlytH0mXNUP69f/44KF8jjsc9jv5pI1WrUVN/xKkRejciN/2f36ImzFCdOHPX37V9+oQ3r11KixIkpT9781ko6TiYWK5yf/vjjD9szsUsHDx45QQkThtRsrfdZbdq9Oyhc1+LEjatKOHDSg2u8Zs+SgR4+fKiOc189ygmQTRvW09///E2FixQl3vGWG9ujWuXy9PXX5+0ybNv3w32jwSWLF1LXzh089tndfvXr1qFdQTvUcfz6Jyd++XVDbsEXL9Ke3UGUI2cuypwlq1plzS2iesu2BxRNHeTSMSfPXLDmQrbM6dWmkmGb+zMvbNkMzBkzxtN9lrlvAMordTmRe/WbK1SwUGFVa5mTWfzDSJ9e3Wne3NlmBhEDVeH/7WtU3TmDZ5kZ28L/m+Gqqwr/r0vQ3Pm6zzL4f3O2gbI9CSDBa0+7oFcgEDAE3n//A5oyfRZlyZKVKpQt6THRlzhxEuKNojiIfvz4MWXKkFrV4OXmvoGLe+LXBaBr957Ezpnbs2r7BgwwP3a0UZNm1LVbT7p0KZgqlS/t8crzFy5VCVtuXL6Byzhw+3LoCKrzWV31b05icXLdZTP+rETJ0jR1+ix66aWXnlmn1I/DDZhL5S9QkMaNn0yvv/FGqLngPoDP69anQV8OUx+dP39OzS1ucd9+m44eP2MlccNuesiJ+qXLVxOveOD2cc2qdOTwoYBhE50d5cT48BFjqGr1GjTuq9E0euRwj905fS6Y4saNq77jeXX27BnMGcOG03mW8bNq1pz5qof8g1TJYoXUM83V+A2S9Ru3Etea5R+5MqRNgdrwXtoT/t9LUNFwmM6cgf83ZzD4f3NsdZTh/3XomT1X51kG/2/WNlC3JwEkeO1pF/QKBAKOQPz470X4qv7GLTsoY8ZMaky8+RonarmVLVdBJQld7cGDB2o14+ZNG0KN37WZEQfnaVImCTg20dlhXiH96quvErMN2zJlykwbNm9XH9+/f5+yZEyr/v3666/T18FXVUKeGyc9pkyeYCV/XTruG7OVLF4ItZJ9NHREc4aTtFzCIVasWGpVIW+s9v33N5T6+IlTqXKVqtaVrly+RC2aNw7H3rWZoXty2MfuOfbwZz3LOnXppl7z57Z3z25VOgZzxj+3SlSeZdyzw8dOESciXW3H9q3Urk2rUKuz3TczdP+hyz8jC/yrwP/b04ZRmTPw//6xJfy/fzj7ehX4f1+J+ef4qDzL4P/9YxtcxX4EkOC1n03QIxCIUQS4VuiceQvVmLjMQv48Oazxrd+0jTJnzqL+5iQirwblxq+ct2zRRL1Cy+3TOp/TkGEjVbIrWeIEMYpPdA6GV1UnSZJUdaFJo/q0betm9e8OnbpQ23Yd1b///PNPa7XovXv3VGkN1+ZqnAD+7vuf1HERlYCIzvEF6rWHjxxDtT75VHV/9aqV1K5NSE1Ybpe+ua4S9vyaOfN3vVrOtmvftrXa5JDb3AWLqWjR4vTDD9+retdo+gR44zUu4cDPKV7NniNbRmszO8wZfb46ChE9y1KnSUM7gvaFe5axv5kwfiyNHT3SuqxrZTbXkOda8mj6BOD/9RmaUoD/N0VWTxf+X4+fqbPh/02R1deF/9dnCIWYRQAJ3phlT4wGBGxH4NSZC+rVV27VqlSgkyeOq3+/9tprdPHyNZWg4tq9/Ar62HETqWSpMup7TuZu2rheBdq86/lnn9cLl+Dl+rH7Dx6j1atWUN/ePbALug/W5wQiBxLcOKFeplRImQZuR0+coffeS6B4pk6RWG1OxJuwuRLwFy9coGZNG1L8+PFpxap16py6dT6hPXt2WRqjxoyjPHnzUasWTenM6VM+9MzZh/JKw0NHT6p5wSvWM6ZPZb0uXqFiJZo0ZYYCxLV7Z0yfQpOnzKDUaUJWXnPS6qsxo1Spjd17DxLvbs8rfwvmy2VBxZyJ+v01e+4CKl6ilBKYOnkifTl4gOicYZvdunWLWrVsSnfv3Il6Rx125rOeZRMnT6OKlaooIrVr1aC33opDw0aMJq63yO3e3bvUoX0b2r1rJ1359ntVf3n5siXUqUNbiyLXmR09djwN6Ndb1Y9H854A/L/3rPx5JPy/P2l7fy34f+9Z+ftI+H9/E/fuevD/3nHCUc4igASvs+yN0YKAXwlwEnfNus2ULn16OnhgvwqwXY0TTWfOBas/J00cR8OGDFb/TpsuHU2ZOpNSpEyl/uYVpNy4PtatWz9S3lzZLA33+rED+vehmdOn+nV8gXwxTpj3GzBYJTSKFMpH17+7Zg3n/MVvKHbs2HThwtdUrnRx9TmvXvhqwmQqXjykFiwn4HkDKv6cE8GciHStHnWvuczH8Hdo3hHgshnzFy1TNV779+tNs2ZMs05s2qwl9ezdV/3tXhKjUuUq9OXQkdaGhJy04lq93NauWU1tWjfHnPEO/zOP4o0iuT4v39OZP0yj5oCr6c4Z95rLhw4eoE8+ri7QY2dIPOtZ5tooKmx5H67tzvOJn3/cfr19m96NF0/92/1tBv7bveYyv4HCb6KgRU4A/j9yRtF1BPx/dJF/9nXh/+1pF+4V/L89bQP/b0+7oFfRSwAJ3ujlj6uDgCMI8Aqo48ePhlqV5v56/4xpU2jggJDElatVqVqNBg8ZoRKNrvbloAE0dcpE9SeXduASD9w4wThoYD+VFLsUfJE2rF8XKvniCMhRGCSzLVqsOK1ftzbU2afPXlQJwrAre/mgDBk+pElTpqvVoa527OgRqlm9svW3e83lXbt20umTJ9Ur7WtWr1QlA9AiJ/BxrdrhVgu6r1QoX6ZEqA0NeT5179GbeDMKV9KKr8LlGVzMMWci5x7ZEfzKf5w4cYnvefemM2fcay6zJq/A5uTxnTt3aPnSxdYPJ5H1zcnfR/Qsmz1vofpRile3p0qeKBQiXsU7buIUVcrE1R49ekQfpvvv2eZec/nnn3+iObNm0muxXqNdQTutt1GczN2bscP/e0PJ/8fA//ufubdXhP/3lpR/j4P/9y9vb68G/+8tKRznFAJI8DrF0hgnCNiQwLUbt+j555+nb69+Q8WKFAjXQ05a9ek7gHgzLw7Q06VOZpVhcK+5FPZETibuCtpBLZs3wW7oUbC76/V+Xj2dNVM6jwmmatVr0qAvh9Ebb7xBlSuWtcowuNdc9HTp27/8Ql06d6CgnSGbu6F5TyBX7jxWSQzeqJA3LAzbeGX8hIlTqVDhIqFWYPNxmDPes/b1SJ05M2LUWOKA3lPjRO+l4GBq3LCutdGer31z8vGDhwxX5X248apoXh0dtn34YUaaPG0mJU2aLNTbJO41Fz0xfPz4sSrVMXbMf3V8ncza17HD//tKzD/H6zzL4P/N2Qj+3xxbXWWdOQP/r0s/4vPh/82xhbK9CSDBa2/7oHcgEKMJuP+PzbNKLPBq0jRp0tKRw4cUD/eVjA8fPqTLl4LphRdeoAwfZiTeadXVFsyfSz27d4mUYY2aH9Oqlcux6vf/SbkHaWFLa7jD5OR8iZKlrU3X+Dv3motff32eHty/T0mTJaOECf9bPccJeF5N5/6Kuycj8cqvY8eOqDqZaCEEXElaXrVeuUIZOnfurEc0vFr37t271updyTnDqyUKFylKGzesh1k054x7zUX+Eev8+XP0x9OnlD7Dh1adWL7EtW+vUtHC+SPljTkTGhEnaU+dvahWtXNd4yKF8hL7jIieN7yBpOu55F5zkVfB//D99/TOO+9QylSp1Q+TrsZvL4Rd0R1Wn5PI7KPOnj0TqQ2dcgD8vz0tDf9vT7vA/9vXLlGdM/D/Zm0K/2+WL9TtSwAJXvvaBj0DgRhPgJOxZ7++TK+++qoa68YN66hnj67PTOhxYM31Ll9//XUViIetH8sbUY0cPU7V7M2WOX2EwbwL7szZ89TGblcuX6KSxQvHeObeDnDT1p3ESQluvMK6aZMGdOXy5Wee3rZdR+rQKSShHjYxzK9Dcw3fYsVKqNIDnTu2e6ZW3XoNaODgoWoFNtc7ffLkibddj9HH5cyVm1auDkmscpJ35PChqmwJJ80japJzhutq7tl/WG3CN2f2TLW5IVoIgajMmTXrNlG27DnU+WFrLvProLPnLiSuaV2/bh31VsKzGuaMZzpcb7dlqzbqS64T/kWr5rRzR0h5n4gal6LZvC1Ifc0JYfeayzyfuHQDa/ImhoXy545Ua93GrWqTyjq1P6L9+/ZiyhCpH2Ph/+15K0TlWQb/b96W8P/mGUf1ClGZM/D/UaXt/Xnw/96zwpExhwASvDHHlhgJCAQkAV7ZuXb9ZooXP77V/xs3rtOe3bvox5s36cqVy6FWiLq/csO1Y1u3bBpu3Pyaeu7ceWnb1s3qOy71sGzFGho5Yqi1Cpg/Hz9xKlWuUlUlESuWL6VehXYdH9nq0oCE7UOneRnlu/cAACAASURBVMXbwsXLKW++/1YN3rt3T9nlmyuX6eHDBzR3zixLkRPuZ85fUkkMTjzmyJYxVM1l14G8SdWGdWuthOSoMePUKtQ5s2ZYWvy6Oq/u4sYrsHklNuzyn/GKlyhF02bMVqy5MW9e+XnowH66f/++Kn8RHHzROiEqc4ZXKX45ZDi1a9NKbW7IjX802b3vkFqNzZ8VKZiXePMq2CYEta9zpmChwmqOcfvpp1uUJ2dWjzO05ke1aMXypdZ3mDM+PMj+/9Au3XpQq9ZtrRP5vj106ACdPXOa/vzjT5oxfUqoH5Fcr9zyCexjwtYp58+zZstOT548tvwGJ9gzZc5C3bt2sp5vnKTftGWnmjtbt2yipo0b+N75GHwG/L89jevrswz+3392hP/3H2tfruTrnIH/94Wu3rHw/3r8cHbgEUCCN/Bshh6DQIwjwP9jNHPOfCpSpJhKxro3DpYXLZyvPoof/z06cvy0ej3Wl5Wd7dp3ovYdOyuN48eOUotmjalz1+6q7iWvfKxWubz16iy/ajVj1lyVHObjnN46du5KLVp+YSUTXTx27w6iep/9Vzd0+sw5xK+Hc5s9czr169srUnSc/NgRtE8dxwlDXlmXIEEClXjn+8B9RSPbPmjPAfrl55+oerVKdP/evUj1Y/IBnBhZuHhZqM3ueLz8w0TBfLms0gxRnTNr1m+mbNmyK72lSxZRvz491YrG5MlTENdR5lfdeTUkt959+lO9Bo1o2NDBNH3q5JiM3auxeTtnjp88Z/2w5c1r/nxxzBmvTODxIH62fzV+UqjSF3wgl4DJmjm9dQ7XFx87LmQzT1/e7Lh4+RrFihWLnj59SoMH9qPdu4Joe9Be9YbKnj27qG6dT5QmP9s2bw2ihIkSUcP6n0Va3iHqIw6MM+H/7Wsnb59l8P/+tSH8v395+3I1b+cM/L8vVPWPhf/XZwiFwCGABG/g2Ao9BYEYT4BX3nbq3I2KFC1GCRK8r1a1ub/+umLVOuKNJrgN/XIQTZ403ismvHpqyLCRxLV2ObjmpBX/l1c+flSjikr6cstfoKBaUccJ5CmTJ9CQwQO90o/pBzGPxk2aK36JkyRRyd6c2TLSgwcP1NA56bR9517F9LfffqNMGVJHWl/Xxaxh46bUrXuvULWT+bsRw4bQhPEhq3i5BvOefYdVYoZXqlYoWzKmI/d6fMy+a7eelDlLVooXL76qJd2xfcjr6NyiOme4NtzkqTOs8gGuOcOruIsUzGPZnoOZNm07KHtzwp8TWWikniHPmjP8o0m3HiE/gnD9Vk7wetswZ7wl5fk4rhvestUXlCp1GvVMadSgrlWygZ9h5y5cIa4zzfd0qRKFIy1N47pKvvwFaNyEyeqHSG6uOXP0yGHlZ1zN9VouPyuLFspHv/56W29AMeRs+H97GjKyZxn8f/TZDf4/+tg/68qRzRn4/+izG/x/9LHHlf1HAAle/7HGlUAABDQI5MmbT5VZ4MYrCHNmz+SzWqJEiWnL9l0qeOfGr+n27tlNrVDk2mbLV65ViZl5c2erz9G8I7AjaC+lTpNWHdy2TUtas2qldyf+/1Fci3H1uk1WzV9OjHBZhj69utMbb7xBe/cfUUleXk1XqkQRr5PHPnUiBh4sMWcKFy5K8xYusVbW//LLz9S4YT06c/qUeuWdX31je/Gr566SKDEQpeiQuI4x1x7lH574RyYuzcBcfWmYM77Q8v7YfgMGU4OGIW9uRLWkQveeval5i9bWRQ8dPEAtWzRRJWuWLl+tyt7w6vcSRQta5U+876Ezj5R4lsH/m7l34P/NcNVVlZgz8P+6Vgh/Pvy/PFMpRfh/KZLQiW4CSPBGtwVwfRAAAa8IHD1xRm3sxK12rRpqE69ntSRJkhLX8nVvrtWGnFS58+uv1uvRvEM6a/PK1OXLllCnDv/VavSqcw4+qFLlKjRh0jRFgDdjK1akgM92cV85zTZj23F79OgR/fXXXxQ37v+x997xURxJ+3h9fu/3fL4722dscDhjchAZkUUQkhBZ5BwEEgghEYQIJomcgwCRJRAIJEQUEiAyQhI555xMso1tOIN9d8a+e+/e3+epvRnP7s7uzu7OCmm36x8bbU9P99PTXd3VVU8VoocPv6RA/0ZWk4l58DCodt2eOYNLj9+99ZYZb7LkbYixQCi1lBDx9q1b5FWhAht3hw2NpJ07MgT8GhFYvnIVBbUxeHSmJK+jCePHiDmjETtXFvvgww/pwqXrMgVQ9SpeMg2J2nthMPzmm6/ZSC+JMtrgu+++ZW9eKVrk8eNHTHECCoemAb5m+smVfSvodduzlqGvQv/nzYgL/Z83ODvyFnvmjND/jiDs2DNC/zuGm6ufEvrf1QiL+vMSAWHgzUu0xbsEAgIBhxBQhgBeuniB2rdtZbWe4D4hNGPWXDpx/BgNHhTOHItSSBQMUqF9e3NG+v4DBjI9ADzpIDBiNfCp5fH8rvYM0qYt25naAtI80M8ouZdpPZ9/XoyOnTzLmecHRwxg3mMkKtqekcnGw1XxK2jmjKlc39Jl8VS4SBG5ig7tWtPFC+ftaZpHl7V3zqSkbiEk/UDivKmTJ7DhVhpbzAt/3/r06tVLmjtvIXXo1Fn26MUYtm3dXHhV2/G1gQLgvffeY+Nh5QpljAyEYs7YAaTORcMHDqKYiZO51th5c2jpkkVW3yAllUSkAZLgYUylaIObN29Qq+ZN6C9/+YyWx69mPmtJFi2cT3ELY3VuvftWZ+9aJvR/3n0LQv/nHdb2vMneOSP0vz3oOldW6H/n8HPV00L/uwpZUe+bQEAYeN8E6uKdAgGBgN0IIKkEsscPHzbEZlgrQmQHRgyWPadg6G3kawjtR+K0fXt38/thcMzKOSZ7JeJvSLq2ZnUCzZ413aLRCh5Z3jVq0qNHD808Hu3umBs8AEN5iRIlbdJaIPtzwuq1skEd3JTAEZ7ToGSIGTea0QBNBhKqwdtNKUjsFjU4QuZ/VYMO3LGFCxemGzeuWzWcuQHsNrtgz5xJ37GbataqzXXCoAuP6SpVqtLPP//MntNff/0V/waPLSkJntQAcInGjPvCqhcvsqxXqFiJbly/Rq9fv7bZdncugAslGMqPHM2xSWeSF3PGy6sCvf7lF3r86KE7w66pb7hcwmVgcK9uVssXLlyEDh0+QvD6gcA7949/+CNHhTy4f48CA3zl9Wde7CLq1r2nUX0Pv3xAEeH9rV6IibXsN8jsWcuE/tf0qetWSOh/3aDUtSJ75ozQ/7pCb7Uyof/zDmt73yT0v72IifL5FQFh4M2vIyPaJRAQCDiFQMlSpSk+YQ2HkUsCLyspARUOz4dzjxMMT0gMNXXyRIpPSKRy5b24OMqhvFKKlyhJ61M2sjETRl4IjFvxK5bJCcGcarQHPAy8YxcuppatgmQMQZHRoF4t7j1w3X8wh8cNXMutWgTSzNlzqWmzFvzb4ayD1C8k2AypiZOmUo9ewTyeEBjzL1+6SMOiBgvDlcbvCskncIkCSgxJ4O2effgQ/xNjgGzpGIepUybSV0+f0vwFcfT+++8z3t7VKrK3vFJaB7WhmbPmMYeyJBjvSRPGy4mtNDbPY4u5Ys7gkLk+ZRMnrcQFCwR0KPv37aUR0UPon//8p8fibU/Hh0WPpKHDhssY4oKwpndlOQpk6vRZFBLany8OO7RtRYHNmtOgwVFcHpy8mDOmItYye0ZAvazQ/85j6IoaXLGWoZ1izjg/WkL/O4+hK2pwxZwR+l+fkRL6Xx8cRS36IyAMvPpjKmoUCAgE8gkCHTp2prgly41aA+7QCTFjKGl9KidbM81gD4NU7+AQ5vlVCgySy1YkMJWAmsBI3KdX93zS8/zdDBy+D2blyp68aO3Lly/pi5HRNGz4SPYcffXqFfk2qCN76yLkcP6CxRQW2sco6zw2qki+B09gNYGhqmf3zjzOQmwjELdkBXXo+Nu3D8Mtkk1tT9vG3tfwrjYNX0eitXfffc/Mg3vylOnULyzc4ktnzZhGCfHG89N2Cz2zhJ5zBhdVOzP3GRnylaiCO7ZZoJ+gqtHwqUEfHD1xhuAtJwkM5cuWxNHv3/49G3PB0du1c3t5DYLegV7akbGdMnftlJ8Ta5kGwO0oIvS/HWDlYVE91zIxZ/QdOKH/9cVTr9r0nDNC/+s1KsTnQaH/9cNT1KQfAsLAqx+WoiaBgEAgHyEAg+zKhET2NoQh6d333uXM5pK3GpoKY2/zpn42W61MJILC4AGOX7mcPitalPqHhcuHe1Njsc2KPbAAEhMdyj5Kf/zjH5kjGUmm5s5fSH/+859lNMBN6tugrpEh1xJUJ06fJ9QJAZ3Alk2plJV1kDp36U7tO3SUaTrA4QuPXiGWEZg5ex71Du7L3oZ9g3tQaL8wCmza3OiB+JXLaPbM6TZhXBS3jDp27sLlYCQGLUrqhmRCVu7efUJkT+v5c2cL73cbaOo5Zz755FPmwZZ4x7/99hklxK+g599/R3369qM6detxaxCZULVSOY+nObE2NLjsyMo+SqXLlGVv3NCQ3hS7II7KlisvP4Zvv2/vHhwlYkvEWmYLIe2/C/2vHau8LKnnWoZ2izmj3+gJ/a8flnrWpOecEfpfv5ER+l8/LEVN+iMgDLz6YypqFAgIBN4wAv4BgZS0fgMb9xYtmE9xiwwJbZBZG7etEr0Ce1otjbOa8Ob9QoXo3IWrskHENOs96tq97xBVrlyF31GlYln66aef3jAC+fP1yCifc/QkvfPOO3Th/Dnq2D6IGwoML1+7zaH+EBhFDh7Yx3zLMPZaEulAgt9h3A1o3MCIn9nPL4CSklMNnL6HD3FyPSHqCCDENSw8gg163bt2pDOnT3FBKWGR9BQ8rUePGs7jY0kw/9Ylp8pjGR4WalQehwxwX8OT0VKYuhgnAwJ6z5ncoycJ3kCQ+/fuMlcs5psk4C/FRRgEHvVbt2wSQ6GCANasvQcOU8WKlTjaoHGjerLHc+qmbZywUBJcJA6KHMDcvGItc/3nJPS/6zF25A16r2VC/zsyCkL/64ea62vSe84I/a/PmAn9rw+OohbXISAMvK7DVtQsEBAIvAEEwPV5/uI1Dp1JWLmcZs2cxq2AMQkZzpEUBwlx/vPvf8uGDvCGBrVqRuAGNZV9B7P5EA/JyTlMIcHGyXLwd3hwZece5zJasq+/AVjyxStPnrnA3s5IgIYM85Js3JxGDRo2YiMtvKPx/xAY4IcNjaQ9uzPN2g/u0LT0Xfx3GCUD/BoSEheZyp79WWx8R90VypXMFzjkt0aAlmRFfCIb+vB9I5kdpFp1b0LyFcwleFtXrVad5xHk2rWrFNSyqVlXwBd3/tJ19tCGjBszijamppiVA63D4CHD+O8NfWrT06dP8hss+aI9es6ZMeNimDIA8uL5c6pbuzp7a5vK3QdP6Pe//z3PxfZtW+ULHPJbIxYvXckRAvB09mvkI0cbSJm4pUsq8Fpi/uDf65LW0JRJMWItc+FgCv3vQnCdrFrPtUzofycHQ/G40P/6Yal3TXrOGaH/9Rsdof/1w1LU5BoEhIHXNbiKWgUCAoE3iADCwMHJujhuAbfiD3/4Ax05fpo+/vgTNiThQM5Jbzp2phmz5rIHaeUKZczCkZEdetJkg4EYBsJqlcurJh+Ch+jDJ8+4HMLQx4/94g32Pv++GqFmg4ZEUcy40bLX4JqkZKYB+PXXX6l5U3820oKDd3n8aipevAS1bBZAN2/eMOvUtZv36L333uO/Y5wXxs5T7bhUP4zAJYt9mn/BecMtg2Hq4cMv6dDB/dwSL68K7JkOSpOM9O0UHTWI5wnmQ0i/MLpy5TK1b9PSrNWbt6aTT/0G/PerV69Qm1bNVHvWqXNXWhi3lH+Dx/CpkyfeMAL58/V6zRlcQh3OOSZHL2BcMD5qcuHSdSpcpAh/D1grhZgjAAP4pCnTacWyJfT1119xgT59Q2n6zDn8/9FRgykjPY0QAbJseQI18m1sFE2irFGsZfp+YUL/64unXrXptZahPWLO6DUqhnqE/tcXT71q02vOCP2v14gY6hH6X188RW36IyAMvPpjKmoUCAgE8hEC8J6CcRcbJfBNgtsVxkRJYJxF0gE178/rt+7LHosR4f2ZR1RNJA8I/Ibw9S2bN+YjBPJvU6RbcHjqtm4ZSHdu3zZqLBKr3bt716wDSsM7jCv166onWMODZy9cYcM+vLSrV62Qf8HIRy1DCP+BQzm8iQUVw4D+IUatg5ccBJgq5fPPi9HxU+f4T7hAqV2zKlMwqMnylasoqE07/qlsqc9VL07yEST5pimOzhml4X1HRjp7xqsJuHnhwQtjfnZ2FoX26ZVv+p6fG6K8sMAF1oaU9UbNxQFbjaJBrGWuHVWh/12LrzO1O7qWiTnjDOq2nxX63zZGb6qEo3NG6H/XjpjQ/67FV9RuPwLCwGs/ZuIJgYBAoAAhgAPekmUrOdy8RVN/DqnVIkruUVvJ2NZv2ETge4X4+dY3MxbDUNmrVx/yqd+Q/vW//6LzZ8/QwgXzPJ6rF+Hi4QMjqU/v7ha9CdXG6vLVWyQZGdu1aWkxeRq8565cMxiNr1+/Rq1bBBpVh8RuwX1CKaBJIBvyb9++zXzN1rgytXw7Bb0MLkMS1ybTt989U6UksdS/dSkbyd/fQL2xKn4FzZwx1SIU4FwuVKgQX7aUK13MrBy88Dp26kJVq1WjH374gfbt20NrE1cZ8cUWdJwdab8jcwY8frjogNEWeFcsX0qVmgHt6dkrmGbPNXCWL12yiClnlCLmjPqoNW7sTwsWLaGEhBW0OmGl5qHVay3DC3v07E3NWrSkEsVL0NOvntLa1atkuhXNDXKzgkL/598BdWQtQ2/0mjNiLVP/NoT+d685I/S/68dT6H/XYyzeYB8CwsBrH16itEBAIOAhCEhhyugu+GLBG6sm4PRFWXgCq/G89gsL57B2KbGbVAcoA+DppcZP6iEQO9TNNm3b0bIVq/hZNaOtstJViUnUvIWBQxQUDhJlB/5do2YtQjIkiStW+dyunTto6OCBDrXPUx/CYfnK9Tv8nf/yyy/Md4xvXE3AXQpPFIgaz6ty3JTPI+Fe5w5tVCk7PBV3Lf1eEb+aWge15aJqRltlHeAvL/LRR/wn8ForLzvEnNGCtvYyeq1luMjK3HOAk4iaypcP7jO/vLVkldpb7Dklhf7Pn2Ot15wRa5m+4yv0v7546lmb0P96oqlfXXqtZUL/6zcm7lSTMPC602iKvggEBAK6IAAPhhOnz3Nd1nhE8fvadSmERDoQZVI3/BuGSChxSX766Sd6/fpnpgyQZPmyxTRvzixd2u0JlYAXFhy9kGaBjc1oHSQMlF4L//znP6l8meKywRHe2eDKlIzuoIh49uwbAsWA9LeLF85Tx/ZBHu8xqvWbGvnFGIoaNoKLW+NExu+XrtzkZIcQJRcsErTtP5RjZKjCuLzzzrsyVQqoH/qHBHu8Z6LWcUG5O/cf09tvv82Gd6+yJSx+0527dGMvVIhp1IKYM/Ygrq2sHmtZpUqVKS0jU76oQjK3J08e06ef/oVAtwF5+fIlR6+AokiIbQSE/reN0ZsqocecEWuZ/qMn9L/+mOpVo9D/eiGpbz16rGVC/+s7Ju5UmzDwutNoir4IBAQCuiCgpGewxqkLrrKcIyfYKAgjIUKfYUyERA4aSmPHT+D/x6EbHqGZu3byv3GAhCELtAAQNVoHXTrihpVI4Zm2OHU3bdlO9Rs0ZATAhwlvaUjFipVo74HDsiE3JXkdTYwZy2OEcN5dew4QNk0QW4ZKN4TX4S4p6RmQsNASFUpo/wE0ZeoMfg94r/HtS5KWvouQHR3y97//nT0PJW7sZs1bUsLqtewpD0MlDPZCbCMAHmVw6kKscepiDYMHNjyxIMrEd2LO2MbZkRLOrmUw4F64fENONgmjfOeObeS5h3mG+QaxdVHpSPvd9Rmh//PvyDo7Z8Ra5pqxFfrfNbg6W6vQ/84i6LrnnV3LhP533di4Q83CwOsOoyj6IBAQCOiKwNLlCdS2XXuu01oCqKMnzlDx4iW4XHraNhoePYT/H0nbco+eZGOUqXFXamjhwkXo/KVrbGjctHEDjR09Utc+uGtlD588Y1wP7N9L4WGhqt30Dwikdcmp/BtoAmBwRIgynkPoreQ9imR4MOArBeOBMPXCRYrQw4dfkl8jH3eFUtd+5R47RSVLlqLn339PtWpUUa0bxkMYpH73u9/x7/1Cgulw1kH+/97BfWnm7Hn8/zDgBvo3oqdPDYZJSZQepl07t6czp0/p2gd3rMynfgNCghXIkEHh8iWTaV/nzl9I3XsYEqp99dVTalCvFv+/mDOu+yqcWcvQKqVRBWtVQOMGZrQoUoQJ1sFSxf8iIhI0DKfQ/xpAekNFnJkzYi1z3aAJ/e86bJ2pWeh/Z9Bz7bPOrGVC/7t2bNyhdmHgdYdRFH0QCAgEdEVgZUIitWrdhussWexTVS5RpYcuqBdqVq8ke++eOX+ZPvnkU37emvEWHnPvv/8+h9Q2ql9H1z64Y2Uwvj56+i137dDB/RTWr69ZN+GFiwReknf0nFkzaOWKpVxu+cpVFNTGQJlhzXibnLqZkDQBRhGMvxDbCCCJF6hHXjx/TjW9DR7QpqL00D139gx17mjghUU4+fFT59iDGtK3dw9VCoY//OEPdPveIy6zdcsm+mJktO2GeXgJJc9bcM9udPRorhkiXl4VOKIA8wsXUuAcv3nzhpgzLvx2nF3L2rXvQEuWxXMLETVSy7sy/fjjj2YtVl6cWBp/F3azQFYt9H/+HDZn54zQ/64bV6H/XYetMzUL/e8Meq571tm1TOh/142Nu9QsDLzuMpKiHwIBgYBuCDRs5MsJuCBTp0yktYmGpF6SwEM0af0GOcy/U4c2dP7cWf4ZmaHHjIvh/wf3oXfVCha9pm7dfcjciZcvX6J2QS10a787VyR5TQNbnzre9Pr1a7m72DTtO5BNFSpW5L8pk7CBTgNe1RAYsRo38qHHjx6qQrVj117yrlFTUAHY8SFJHqDAtnlTPzNu5ImTplJYeATXiGSEMEhJiZ/Sd+ymmrVq829Hj+RScK9uqm8GRzIMwZBFC+dT3MJYO1romUXhtfbg0dfsiXvi+DHq2b2zERDgqs45epLeeecd/ruSE1zMGdd+M46uZWjVjdsP5DEDxUzy+iTVxg6LHkkjRhnoaRr61DbzindtDwtm7UL/599xc3TOiLXMtWMq9L9r8XW0dqH/HUXO9c85upYJ/e/6sXGHNwgDrzuMouiDQEAgoDsCkvEVFS+MnceGj3//+98cSj5txmw2mEDA4Tph/Bj5/Vdv3FXlsTRtYNly5Sgr+xj/WXgjah++oVHDadTosfwAkgZ179qJeVph/EtITJL5c3/99VeqXaOK7NUGgz0O7hAYQ2AUsSTgLAV3mfCs1j4upcuUpezc4/wAPApBn5GTnUVInDZpynQ5/B+/9+nVnY4cyeGyyoRGeK56FS/Z8Gv6dlyc4AIFIrwRtY+NdGGBJ3JyDlN01GB69fIl1a3nQ4lrk2UO1y8f3Cf/xg3kisWc0Y6xIyUdXcv6hvRjHQR5cP8eBfgZuMbVBHzj4BQX0Qj2jZDQ//bhlVelHZ0zYi1z7QgJ/e9afJ2pXeh/Z9Bz3bOOrmVC/7tuTNypZmHgdafRFH0RCAgEdEMAYcsZu/YaZSf/3//9X5k/FC8ypQno0LEzxS1Zzm1AiHPLZgEW26MMAx05PIrStm0xKgtj5MhRY6i8VwXOhv7ixXNKTUlmQzMO654sCE1GiJIk8AiFJ7Qk4HDt1aOL7FVd6IMP6NKVm+xxDcMvkuFhLNVEGdIGfljwxCoFdAKz58VS9Wre9O5773FCI5SbMX0KIfGbJ0uPnr1p9txY2bMdBlvw7QJ3CLx7p0+bTGtWJ8gwKXlEVyxfQnNnz7QI4bmLVwkepxCvsiWMvLfxt/4DBlKPHr2YAxtz5OmTx7Qgdh7t27vbk4eFjez7DmbLfOEAw3TOgHe3dcumbPiF6DlnxFpm+fOzdy1DTeARB0c4pE2rZpxATU0whhcv3+DLyB/++lfyrmaIbJAEf581Zz75NvZjehWsm9euXqFpUybKFB2eOnGE/s+/I2/vnNFzLRP63/J3IfR//pwzQv/nz3FBq+xdy4T+z79jmd9aJgy8+W1ERHsEAgKBfIMAeHS378hkL0OlwFA1c8ZUWp2w0ujvJ89coM8+K8p/ax7oR7dv31LtizLBGg7VMFahTkmih4+i6BGjZMOYspKvv/6KWjT1J/D+erIg7Bg34JIntYQFDFVBrZoZGVvjFi+nDp0MoemL4xawR7YlURpPTMfQ19eP1qxLYYO7qcBw3KVTO7py+ZInDwtzF69ctYaNikrBd967Z1cC964k4Ny9//Ar/s5hcKzkVdri5YXy8kRJvYG68A2kpG6RPbRNB8ASX7MnDRQwBkaNfBubdRv4DOgfYrQG6TVnxFpm+yuzZy0LaNKU6YEgMOzCwGtJEteup6bNDNQ/S5csoth5c+Si0G279uxnw66pQBeBmihpzWrbjXfjEkL/59/BtWfO6LWWCf1v+3sQ+t82Rm+ihND/bwJ1be+0Zy0T+l8bpqIUkTDwiq9AICAQEAjYQKB2nbrUrn1H+vjjj+nEieO0c0e6qrcmEoBhI2Ua6mxafVJyKgUEBPKfk9Ym0pRJBs5eiDIRCP597+4dunjxAhuvJOMxkukE+jei77//zqPHDkm3QkLDqGq1avTXv/6VMnftoDOnT5lhAt5WUDjAa7dMyaIWOZG7de9J82IX8fPAPTDAQOkAMfVOAfY52YepWjVvKu/lxeMOr9HQPr1UE4R52kDBIIvD3v/3P/9Dhw7uowP798lJCCUscGBO2WjwXDelOjHF6/LVW+xVClFyXsO4i/GV5gbG+OyZ0/Ty5Q/k29hfTrZnyxjmKeODy6rgviFUpkxZI4SyCQAAIABJREFUunHjOu3ckcFh/qaix5wRa5n2r0rrWha7cDF16drdbB6YvgnGydPnLvG6BE/6CuVKylELoAfau/+wfFEFLuzDWYeoSJEiVKt2HTlKxZZHvfbeFeySQv/nz/HTOmf0WMuE/rfvGxD63z688qq00P95hbR979G6lgn9bx+unlxaGHg9efRF3wUCAgHdEFAmgLJ2MK5W3Zt27d7P74UxqnKFMnKoeafOXWlh3FL+DV5U/UP7cPi/JDETJlN4xCD+55bNG2n0qOG6td+dK7pz/zG9/fbbVmkzwLl7+dptmerBlCf22MmzsrewqVEet+prkpL5d8Hbq/1LGhczkSIih/ADzQIbmyVmk2oC5zK8tSGm+K5KTKLmLVrxbzBUBTRuwNzMEBi3du87RJUrV+F/g7bj+LGj2hvowSWdnTNiLXPNx7Nz936qXt2bjbZlSxlHlijfuGd/lvzdKzneMSeQ8V6iOrl75zY1C/STL71gGM7KOcYXI7iwKl3iM4+nBNIykkL/a0HpzZRxdi2DUUzof/3HTuh//THVq0Zn54zQ/3qNhHE9Qv+7Bld3rFUYeN1xVEWfBAICgTxHQBlC3jaohcVQ/fMXr1GRjz7i9im9FkHbAI8rcJZChg2NpB0Z6Wb9yDlygkqVLkMvnj+nmt6V87yfBe2FMGjAsxqSnraNhkcbDIqmogxnNvXAPnH6vEzTsWvnDho6eKDZ8zNmzaXgPoYw9yoVyzI3rxDrCIAyAPyfwKzE5+ah4nganrnwwJKoOJTJ1Vq0bE0Jq9fyS2DwauLXkA3ApvLg0dcEOoisQwf40kSIdQScnTNiLXPdFyZRyICKpkG9Wqov6tylGy1YtESeFzWrV5IpffB3/A4B3Y9vg7pmfOTw4t2ekcllRkQPpe1pW13XITepWej//DmQzq5l6JXQ/64ZW6H/XYOrs7U6O2eE/nd2BCw/L/S/67B1t5qFgdfdRlT0RyAgEHgjCJQsVZpyj57kd0+ZPEGVvxDh/6ABgDx79g3Vq+0ttzUr+yiVLVee/52dncWh/moCT9HAps2tGsXeCAD5+KWSN8KF8+eoY/sgs5Y2a96SVq9Zx3+HVzUMJ5IX6JRpMym0Xxj/ppaoSKpM6bHQt3cPQdOg4XsAz/TwEV9wydo1qppRjuCgceT4aTk5GOgEooZEcPn33nuPzl+6TvC8howdPZI2bTRwk5qKlk2xhuZ6VBFn5oxYy1z3qUgePPBWR7JIU0ESKMwZaV4MGRROmbt2crH6DRrSpi3b+f/hnQvj7tOnT8zqwGXKwycGL3gk/0QSUCHWERD6P/9+Ic6sZUL/u25chf53HbbO1uzMnBH631n0LT8v9L/rsHW3moWB191GVPRHICAQeGMISDyh8CZsF9TCKBP5mHExNGiw4aCMw3XjhvVkb0M/vwBav2ET/4ZkVNWreMm0Daadyc49TqXLGDxEQe8gxDYCSs7jCePHsOe0JOCJXZeyUfYQVRoKwYt1/dZ99v6EdGjXmi5eOK/6wukz51CfvqH8W7UqXvTq5UvbDfPwEn/+85/p6o27jAK8CeGB+/r1axkVZZg5PNZr1agih5Iruchu3rxBLZsFWERT8uA9dfIEde/a0cNR19Z9R+eMWMu04etoKSVP+P59e2jggH5yVfCcyj12Suadzj58iEL79pZ/V3oiWqMRqlGzFmXs3MPPTZs6idasTnC0uR71nND/+XO4HV3LhP537XgK/e9afJ2p3dE5I/S/M6jbflbof9sYiRIGBISBV3wJAgGBgEBAJwQQoo9QfQg8QU+cOMYGwfbtOxI8fCQx9fA9nHOMypQtxz+DVxf8umoCzyoYq/Bf0yRgOnXBLavx8qpAmXsPykmFrl27SlkHD1Aj38ZUs1Zt5mqF5OQcppBgg4c1ZOr0WRQS2p//35pXNX4HR1+xYsXpX//6FydyMxWMmX9AIPn5B9BXT5/S7sydbNT0dAHFAqgWILi0wLi8evWS2nfsTIUKFZLnUqsWTWSOXhjcb997xHQmoHeAJ7zkcW2KpzKRmyl3slQWNBDtO3SiwoUL05kzpwmGM08XR+eMWMtc++VgHQGVz8cfGyhNQNWwJ3MXfVa0KCES4a233uK/40Kkbu3qMv1C3Xo+tDVtB//28ocfqHrVChYbOn9BHHXt1oN/t0Y35NqeFrzahf7Pn2Pm6Fom9L/rxzM/6H/X97LgvcHROaOn/gcPfKvWbahK1Wp0+9ZNpgpSOgAUPFSdb3F+0f9Vq1ajoDbt6Nd//soJWi9fuuh850QNuiIgDLy6wikqEwgIBDwdgTZt29GSZfGyR6gSDxh9o6MGySGz+K1Spcq098BhLvb8++/ZS9GSjB47ngYPGcY/qyVZQwK3//vPf+jq1StyFfAaTt++zaIBzFPGq3iJkrRn3yHZu8203+uS1tDkiePlP8PoizA1hDrD4xp8x6BoUBPlGKolWYOxZO78hWbfBIz/Pbt39vhNq8RfrIbtq1evqH3bVvTwywfyz0pv+AP791J4mMFzWk2UXsCmSdZwgEhLzySvCsbGLoS/x4wbTRnpaZ4yPVT7ae+c0XMtAwWHf0ATAi2HJFhbv//+ezpz+pRHjwuMuJl7Dpp9txIoWP87d2hDv/76q4zTgUO5cnlL/O4ojAPkrbsPOSmlpSRruJA5f+4svXjxnOuHp2Pk4KG0JG6hGZ+vpw2U0P/5c8TtXcuE/s+7cXxT+h89FHtmy+Ns75zRU/8rI7SkFkIfpW5IJkThebK8Sf0Pw/+29F1MkaYUOFj07tmV7t01ROQJefMICAPvmx8D0QKBgEDAzRAoW64cTZ8xh71DoYxBu3Dv3l0aOjjCyFCFbqdu2kYNG/kyAhHh/Wnf3t2qaMBr8eadL9ngCK9FeGCZ0gBcunKTPvjwQ+ZVPHfmDFWuUoXKlffigzroBTz9lhWbkslTZ7DH6DvvvMPGCGC1YP4cI6M7BqBvSD+aNmM2j4WlxGrSQBkZT6IG0Y50A88lROkNh39j7CSPYfwbnnbNm/rLxhI3mwqauwPvw3HjJ1Cx4iWYEuPHH3+kc2dP06CIAUaGKlQIWgeEd+K79q5W0SIdBg5vu3bv5zaYXp5go5qWkWlk8Ed9UjI3PLMwdh4tjluguQ/uWNCeOaPnWpa0fgMFNGlKMPCfPHGM3n33Pfa4hyxaMJ/iFsW6I9x29WnI0GjmB/+wcGF+7vvvv2Mvp7mzZxrVowyFxkGsbq3qFt8zPmYSDYwczL8fPLCPBvQPMSoLjt9TZw3eOjduXKe7t2+Tf5NA9rb/+9//zrRBWOM8WYT+z5+jb89aJvR/3o5hXut/qXdiz2x9nO2ZM3ro/z/96U+UvmOP0eWl6b4MVFs9unXyeD2T1/ofyVlxnlHukZXnGUQv9undnU6eOJ63i4d4myoCwsArPgyBgEBAIOBCBGDMs3bgPXvhCofb/vzzz1ShXEmLLVGGCx49kkvBvQyZ0CWB0k3esFk2gih/g7GsWuXyHr8hUmJia1xWxK+m1kFt+REkXUMotJrUrlOX0tJ38U8wRgFnSSZPmU79wsL5n/gGYJiKX7mMjVUTJk2lDh078W8wzCDJmBADAtbGRpnh+dLFC+zda0mU4YJK7mUcWs5dvMZeipAH9+/R8OihdOXyJWoS2IwWL10hG36HmRjsPXmMbM0ZvdYyYDxq9FiOVlAeJqR51LiRDz1+9NCTh8Ks79bGBl6ly1as4mdi582hpUsWqWIHT1xcnuBS0hL1CWhoNmzaKic+VFaEgx0O3kJ+QyCv5ozQ//Z9dbbGReh/+/DUs7Sr9b/UVjFn7Bs1W3NGD/1/6PARdkqB4MJw7OgR7HxRsWIl3pdJv+3dk0mRAw3Jj4VY3zProf996jegzVvTZaj37N5F06ZMopcvf6C+If1p/IRJ8r4dZyCcOYW8WQSEgffN4i/eLhAQCHg4AvcffsVcotYOx59/XoyOnjgjGzt8G9azaOAAN9Ly+NXMByvJoIgw2rM708ORtq/7klfuTz/9RFUqllV9GBteeIAU+uAD/n3OrBm0csVS/n94j+7M3CdvegZHDjAbA2VoorUxta/l7l1aGQY4dcpEWptoMFyZSs9ewTR7rsHLEweFSl6/cWDvyNxH3t41+LcvH9ynJv6N2BtYko8++pg5lWEAvnTpIrVv09K9QdWpd3qvZZhXy1esogYNG8ktxGFvyCDDpYkQbQjMmbeAevQ0JFuDx7slqhkkm/T3b8Llzp09Q507Gi641ATePIhwgMcVxBaNjbaWel4pveeM0P/6fENC/+uDo9616KH/Tdsk5ow+o+TsWhY9fBQNH/kFNwYOL00DfI0cK7DfxqU9kkzbcojRp0fuUYuz+h9Roxev3OSoRwhoMsaPNYyTJEhWnZy6mf8pIqzyx3cjDLz5YxxEKwQCAgEPREDpjQiuyaghEaoo5Bw5QaVKl+HfbHGOogy8RuE9ChHJ2Bz7sC5cuk6FixShZ8++4SReaqI00MILt07Nauz5BoqBC5dv0Pvvv8+PWfKaQ9b7C5evcxlTDmDHWu3+T3Xq3JUWxhmM6O3atFSlHYGHLvCXEk6NiB7KoeumcwOGX++qFeif//ynGXDwyoZ3Nmg8Spf4zP2BdbKHrlrLwAN45NgpvijBOFWtVM7jOavtHar1GzYRsptjbSrxuSE5m6mAJgghthAYaxvVr2MxakF6dtOW7VS/QUP+Z9Ka1YTkoUK0I+CqOSP0v/YxsFRS6H/nMXRFDc7qf0ttEnPGudFydi0Drc2hw0dlh4jWLQKZAshUIgcNpbHjDXrG0v7PuZ6439PO6n+lnrcWNXfj9gM2At+/d5edJoS8WQSEgffN4i/eLhAQCHg4Apev3mIPUHgS+jduYIbGlGkzmWcR8vLlS6pRraKRt6HpAzBqXb91X+bqbdrEVxDfO/CNJSWnUkBAIIFXCt6fyoRFqA6h/GuSkuUNqRLnRXHLqGPnLvxWcPw29Kmt2gIk+cJYQRJXxdP0aZMdaKlnPaLkE1UzKuGgcTArVw7lO37sKCG5GgR4X752mw3wkLB+fenQQQNHr6mkpG4h38Z+PP5lShb1LJAd7K3eaxmasf9gDlWoWJFbNGvGNEqIX+5g6zz3sW7de9K8WAMtQ6cObThBmlI++eRTyj5yQvbGnTwphtatTbQKWI2atShj5x4u87e//Y2jHDyde9eRL0zvOSP0vyOjYP6M0P/64Kh3Lc7of0ttEXNGn1FyZi07cfo8FS36OTdk29bNNGqEIZm0qQT3CSE4VkBaNW+iagTWpzfuU4sz+h/nnLXrUhgM7IVr16xKL3/4QRWcK9fvsFPL7Vu3qHlTP/cBsID2RBh4C+jAiWYLBAQC7oEADt5QwBDTpDbjYiZSROQQ/g2H5zatmtG1a1etdjxu8XLq0Kkzl9Hi7eseKOrfC6VHG7x4m/g1pH/84x/8InjD4QAo8YMqPXQRzoRkeDAiYsxwkw2OVzUJ7T+ApkydwT8JGg3tYwj6BImCZGLMWEpen8QPYzx27t5PCLmEwEMXFyKScX7WnPnUq3cf/g2JOrp37Wjxpddu3uNMwd999y17ZguxjYDeaxkS76xes45fbJokz1JrwNv744+v6HDWIfa+F2KYFw8efc3/hRd0u6AWdPPmDYYGdCSHc4/LWbFt8VpLeJ48c4E++8xw8aGFp7q8lxd17NSFjuTm0OlTJ61eUnrSmOk9Z4T+1+frEfpfHxxdUYuj+t9SW8Sc0WeUHF3LEAUCL1EIKNHA4aqkzFK2TulNimgUcaloe+yc0f+5x05RyZKl+CXTpk6iNasTVF+I5N6gq4PsztxJgyMFjZbtkXFtCWHgdS2+onaBgEBAIGAVARiR9h/KkQ/Lv/zyC926dZPKlSsve1ShAi3ea+DqxeZXCmeuXsVLNkqKYbAfgVWJSdS8hSGJFzacd+/coUIfFOKkeJLk5mZT39495H8rPa6zDh2g/qEGg6Ka7DuYzckjIKbcmOC2RGI9HDT/9Kd36NWrl8zTPGf2DIs36Pb3sGA+AQNuWkYme6lD4Nn++PEjqly5iuydC0MWEj5J3orY5N65/1hOIFXLuwq9ePFcFQCMCcYGosZF2rRZCxozdjx9+pfP2Kvh66+/otWrVtKOdMMhxVNFz7UMGMLbulChQgwnxtJWdmZfXz9K2bhFhv/F8+eUtDaRExuCasOTJaRfGF8mQTdA8M3+/I9/UJmy5eS/gWYmoHED9si1JkovKkuRJ6bPKw+KWEsxljOnT5ENzZ46NnrOGUf1P/iZm7VoSSWKl6CnXz2ltatXEfSap8ub1P+ejr21/jui/y3VJ+aMfl+ao2uZxHeNlijptExbhj3c7XuPeN9nmlcBZUHnNGduLJUtW45+99Zb9Pz77yh9exrrf0sGY/16n79rckT/I4/Irt2GCDfspWp6V7bYyTHjYmjQ4Cj+XctZNX+j5R6tEwZe9xhH0QuBgECgACOAjUvGrr1Uvbo51ysMVQP69dV04NqzP4uNXBBr2dILMFR53vSYCZMpPGKQ6nuXLF5IC+YbwsUkufvgCW9AsaGsUb2SRWMsDimZew/yY6ZeokOjhlP0iFGysVJZP+r9YmQ0pW37zZCV56DkgxcinA/fu8RzrGwSvD3btG5u5MEJPIePMCSGQAbgQREDLPZCaXg39aw23SibvrdTx7YWEyDmA9hc3gS91rJRo8cS5gFEq1epkqtc2VEkZBkYFkpHj+a6vP/5+QW4mIhftUZ1XYHBFVQmtg7CiEyAd/sf//hH7mrzQD+6ffuW1W77BwRS0voNsiFZWTg7O4v1mycb4PWaM/bq//cLFaLMPQeMErJKYwPDfVCrZh5/Qfwm9L80BjCw9OsfTpUrV6aPP/mUfv3lF7pz5zZt3bKRdmT8ltE+P685rmqbvfrfUjvEnNF3hOxdy8C9m5V9THUfbNoypRHR1EtUolRR6w0uLDt1CKI7t2/r29kCVpu9+h/RcNKZFIltkeBWTbAnQNSidO6BBzY8sZUCD98RI0dTde8ahEsVyKNHDyk76xAtX7bYo/W/qz4jYeB1FbKiXoGAQEAgYCcCCP0fEhVNxUuUoL//7W906tRJWrp4kaZQYxyi1yWn8huRJR0eoY4KFHXfkP7UslVrilsYS0eO5DhalVs8V7JUaYqZMIkqVqrMYc4XL5xnz0B4dyqlSpWqtHvfIf4TuF3B8WpJlF4LMNhu3bKJi7Zr34GWLIuXH/vqq6fs7ebtXYOzB0u0EIvjFtDC2Hluga+jnYA3IpKjdOnSnYoUKULfPPuGcnMOcxZfU0MVsi/DWxEhfdiA/vjjj6qvVXKLms4j5W+oB4dsJJRoFdSGKlSoyGMDQ1X/kGBNFzKO9rsgPOfMWgZPIGRt/t3vfsfj5VOnhqY1ELhgDHBo7NGjN7Xv0In5zSWZOX0qrUpYURDgc1kbge3osTHUoEFDevfd9+ju3TuUvn2b5gsjZRju4ayD1C8kWHNbMRb16zegsAERfNCT1jJ4B9WvV9OM51xzxW5S0Jk5Y6/+r1SpMkdBSIZ6zLMnTx7Tp5/+RU5OiciIFk396dtvn7kJwo51Iy/1v7SGLVi4RObxV2v1q1evaPLEcR5t6LVH/6thKOaMY/NBy1Na1zJEqYWE9ucqo6MGU0Z6mmr14ElGEi/8F2uVMgJr8dKV1L7Db3RbuBB+9OgR1fPx4fUMgv1gz+6dmZrLk8Ue/Q9aJxhvbXnvTpw0lcLCDQnCsw8fotC+vY0g7hvSjyZOnsb7OTVBFFzK+iSaOmWiJw+N7n0XBl7dIRUVCgQEAgKBvEcA/Ee4JYWAMsDeEEtslpGhGLywCFGXDt+ob8XyJTR39sy871QBeyP4P0ePHc+t7tOru0XDuJJbFDfdSFAEwRjc+/KpvBFCaNnsmdNlFOC1AgMywtaxYYUR/9XLlwUMpTfTXCSzQ5I1a0nv0DJlsg9sONcmrpIbHLdkBXXo2In/beq9DSMAwtmwgQZXM+hR4H0vxH4E4O0Z0KQpP7hl80YaPcrgyeuIIPwc3MtYz7TymDvyHk94BoflU2cv8jqFQxn4rU09dbTigGRJW9N2kleFCvwIqFSQAE6IYwjYo/9hJLlw+YbMu4ykOJ07tpGpOUDlgX0A5OrVK8z9L8Q2As7qf7wBl1Pbtu+SqWnwt3t377Dn7gcffEhVq1XnTPWSpG5IpvFjDZEpQuxDQMwZ+/ByRekt2zKonk993s+WLvGZxQgSZeJiODyAsglSq3Yd2p6Ryf8P/d67Z1dCYl1JkCQMVCswVOKiqm6t6q7ohtvVieiOK9cMHs/Wkt7h0vbchavymaVBvVoEpxQIMN+15wDhMlES0EBdvXKZ9xCVKlchJHiVRCvdk9uB7aIOCQOvi4AV1QoEBAICgbxCYFj0SBoxajS/DknYgloajCNaBIaU8IGRvFFSu2G1lShMyzs8pQyyzWJDCcyQAEJNcLgGtyg4diFKr8IOHTtT3JLl/HdLB2ull3DG9jSKHjbYU+B1qp+Pnn7Lm8qM9O0UHaVOuaGcRwjrq1yhjNE7ldQNDX1qs7FYKdjI7j1wmP9kapx3qvEe9LCXVwU6kGWgUgC1Ai4/nA3fb9+xEy1eYvDcNeXM9iBone7qjl17ybtGTa5HjZ7G3hdgPuJwWOSjj/hRzDdb/L/2vsMTytur/9elbCR//yYMzcOHXzLvsmnEg6TL8PdSxf8ikhlp+JCc1f8wiJy/dF027sKjOmJAP7px47rR2+ERN2nKdDagbN6USmO+GKGhdaKIEgExZ/LH93D63CX2sgUnfP26Bt1iKthXgUoD+gJ766ZNfOne3btcLHHtegL1AMRSVJuS2gERJ4g8EWIdAaUTCpIRW/J8Vu4Jzp45TV06tZMr3rg5jRo0bMT/htPDuDEjaeeODKMX165Tl9YkpRAufJFHw7dBXTE0OiEgDLw6ASmqEQgIBAQCeYEAuFsTk5Jp7OhRHA4DQ+GV63fkcGYYnqQbVEvtAbfb0KhoauTrR2+//bZcDF5ZUNIfflhY9qzauyeTIgeG5UXXCvw75sxbQPAYhFQsX0qVv1CZuOXundvUtEljud/KzVLnjm3NKCCkguC7wrhj04XNlxDrCOBg8OXjb9iL89jRI+zlYSrwjkaCQslzXS2pV+SgoTR2/AR+dM6sGbRyxVKzeiRPYaWXiRgfdQRgoDh64gxtSt1AS5cs4kK5R08SvKEhMeNG04aU9brA9/DJMx5bW+GGurzMDSoBZ3WLFq1pYHg/5pRGssfUTdu4Zwjdh4e6HqKkfLAWoqvHu9yhDmf1v5ICCBEGtbwrq9LV9A7uSzNnGyiAgnt283j+ai3fjrP6X2kQsWR4l9qBi7C16zewQcTZCzAtfSvIZcScyb+jJyXfBOUIqLNMBXu3sxeu0Ecffcw/IaJKGcp/6+5DppnBHChb6nNVD2A8e+7iVX5+2tRJtGZ1Qv4FJJ+0zKd+A9q81cDzbYl/V+mQguTgtWtUkSN6QJ02eYoh+hC/NfFraPFcCkrAw7nHOU+C6WVWPoGjQDZDGHgL5LCJRgsEBAKeikBW9lEqW86wEbp+/Rq9/vlnwi0oJD1tGw2PHmIRmukz5zAvJcLIJYGHDrxFk9aupp0Z6UyAD6MLNlY4AOIgj9tXIbYRgGEKBirIgf17KTws1Oih8TGTaGCkweMW2NatXZ35kiUB/QI8dK15APO4/5duAFzAHdq1NmsYuGK/evqUEA4lxICAlDACuCPkWJkYqnDhIoSDBigcIOBDBi+yqcAgeef+Y/acAocv5obS8w2eKPBIkeZm6xaBchXhAwdRSL/+NGzoIIuGe08bqynTZlJoP8PlEebBnj2ZFNwnhP+NSyqE+9kr8PYxPST4+vpRykZDUkLTSxV76/eE8kqqGKxFuzN3kY9PfSpcpAh3H9zi4Bi3RxCKiUP4ixfPjR7DpUqxYsX5b4g8QQSKEMsIOKP/USt4LKUQ/4kxYyl5fZLqy5QejmrRCmKMzBFwRv8rDSKoGZcoP/z1BeVkH6a4RbHCs92JDy6/zBnJA9WJrrjdo8rkt6YXusALnrtSiD882hvVr2OEAfZjcFJ59uwbqlfbPEk1CivpBubPnU3Llsa5HY6u6JASW3/f+vT69Wv5NeBYRiQIxsh0T1Dey4v2H8yRnSWw5wY9xvVrV2nO7JkenYTYFeNkqU5h4M1LtMW7BAICAYGAkwjgEBGfsEb2sJWqwy0pwpkt8X52696T4C0FwaH9wf17lJqaQhuS1xk9o8wqbGkzhBtXcPjhwA7epJTkdRaTIzjZ3QL3uNJggWQPSxYvoufff8eJjXwb+8n9GRY1iHakbzfqHzym4DkF6dq5PZ05fcqs/zCG4B0Q1N++bSujMvBSlLLcb0xNIRziTcNvCxyoOjS4Zasgil+1hmvCHAGFwuaNqdSufUcaPHSYbPT47rtvqU7NavIb8a0nJCZR9WrefFCQNrQooAz3x6XJ0RNn5fBapYcvaDlglEddEHjJwyve1NilQzcLVBXwQl8Yt5Sat2hlhCs60a5NS7p86aJd/cFFV1r6LjaO5OZk04aUdcxZiYsViX4GXOLgFBdiHQGEvc5fEGfEBYonbt28SS2a+dsN36HDRzjJ4c2bN2h72lbm4Rs7boJ8OYlLREQ9CLGOgKP6H7UitH/ajNn8Auj/AL+GFl8GqhkYVqA7Shb7jScRDwj9b3mMHNH/0A+IypHWKOzPlHoG/4Yu18q1C297OAE8++YbOnPmFL384QePnlb5Yc6A0xrc1vBUvX3rJi1cME91f+dpA4XQfJwlpG8fTioJ8cupdJky9MWY8VSypEEn4KwBb3VQOShFivjB7+XLFFf1Zh80OIpA0wBBYmJQOSgF+5DWQW2pSJGP6Natm3Tq5HEjY6anjYnUX+j/rt168D+ff/89XzRhXxU5eCj17BUsG3B3Z+6kwZHhMkzZucc5ITSinVM5AAAgAElEQVTEdC3D33BuCe7VTVxaufjDEgZeFwMsqhcICAQEAq5AoEXL1jR3/kJ6//33uXrQK8yeNV01/AhGPxiYsJGBwh05PIoP2aYCPl4kOIJYC2U2zVqL8jigr0lMoAXz57qiuwWmThx+9x04LG9wTBuOAzMOaps2GnBWCjxvM3bu4T/BSOXn62OWRE1J8YCw9th5c4zqgJd2n76/eQ5jXKZOnsDJqjxdEFK2aPEyM2OihMv9e3fZYC7xgCKBxKGsIzJHKMbum2++5sPIxx8bOJYPHthH7777HmHsJAMukuK0ahEoX5xg/mFclJti1AX6gckTx3u8AR6JhVbGJ8qRCcAVB70xo0fYlahOmZxN7Vu3xGsNw71pskIcUGAE83QZ+cUYAjWJdACHsWhQ5AACBYlWgfcuPNuVRivlszicI9pBcCNqRZTIHv0v1Xrh0nXZCxtRDJgPaoJ17+LlG3yAh2c9knkqReh/y+PkiP5XRjKcO3uGQM+ENTF6+CgeZ0SMQJAMr3nT3y6JTVsxYGAkwfNaikSRfkekV1hoH/Zy9GR5U3MGBnxcuivp0DAOMJqNGjHM7oTI7jaG+NZ3Zu6X81KY9u/vf/87de3UTjV8XxkVJ80d0+fPX7wm7+FwqaXU60gsvWDREiPdhL3Z0aO5FDU4QpW+xt3wt9YfpZFXrZxpHhBl0jvso6tWKseOEQPCIyi4T6i8NiG/QgOfWkYRjJ6Ea170VRh48wJl8Q6BgEBAIOAiBEaPHU8DIwbLhwB4IEaE9yeE70vyhz/8gVJSt8jeUtJhIWJgf3r45QO53OWrtwiHO0ifXt3pyJEc1VbjNhwccJ9++hmVKVvWKDkbjGSdO7XzaK8RGDIWLlpKbdq1N8IGRvM+vbtb5ZlSHp7habp40QL2NoURxJRvuUb1SkYbJFANgGtM4pFVDh7C2wZHDLB4qHfR55nvqoWXJxLZgXNXEmzo4U1tSm8iJQBBOcwr8Ihh04pD/Omzl+iDDz806h/qQQZnjDEuUkwFhq7lK1dxQkNJcHiZNGGc6oVLvgPPxQ1qHdSGZs9dwAk3IIhKmDFtMkcIaBUYJIdGDecDGy43vv7qKb148YI2piZT5q6dZtVIh++f//EP2rRpA507e5aTTtZv0JApcEAboDaWWtvjDuXgnY45gwSSksALJzSkt+Z1HpEHm7Zul+cdjFX/+b//0I3r12j61El2H6RBh+LpBiuMhRb9j3LKy1tLFx3S2CoTF6ldIgr9b31W26v/kXS1UKFCXKmpAQr7sZ2Z+6h48RL8+6r4FTRzxlSzBoAvE7yZkph6zmEvAb1kKVmSO6xTWvuQ13MGaxWoiDCWFStVpooVKxnt0SyNqdb+uEM57KXWrE3mJJ7SRSC+YXjUwrhrLfnmyTMX6LPPijIMoCWbNmWirOuNuON/+IGqV60gwwXarJiJk432YthjS++HERJzBoZjTxZ4n48cNcbo4gh7symTYswcVdZv2ESgb4CYeksD12UrEiiojSERm60LK2uYC/1v+4sUBl7bGIkSAgGBgEAgXyMAg8jiZSvlzNjw0E3bZuCcVAqMW1CwMDRBsIFCEjWUh5F4+Mgv+O+XL1+idkGGzLS2BEobYTwIt5UMXo7yZ9p6V0H7HZ432LB+VrQohzaZegla6s+sOfOpV+8+8s8w7oLDCsYoKdmEWrKwbdt3Up269fi5pLWJnJUW46L0HDl6JJeGDonQ3JaChrnW9mIO1K5Th549e0bnzxkoL5SCb/nSlZv8J3gt+tStYRS2BwMxeHvh2YjxQfZg5aWKtXbUredDS5fHy17AKIukOjDAe3qSCawnSGQXNiCCL62yDh2g/qG/zQUt44t1DnMBdUUNiTDL3Kyso7p3DaZ1kDxUlb+JdcwYbVzqrUxIpFKly7DXuU+dGrwu2SMSzzieq1uruj2PslfjkKHDqUlgUz5sYs4MGhjGtA+eLFr0f+zCxdSla3eGqVOHNqprHn5TelvDKFihXEmrSbyE/rf85WnR/zD64WJd0gF+jXzMKsQFPYzA0OMwdFWuUMaoDC61ooaN4L9hXsKwAsM8jCBhAwZS/wEDeS3Eb+CNB3+8p8ubnDO4IEZUxNBhw2XHjAnjx9h1kemu44d1vXadeowLkkhrSSCIZzZtTef8FZLAOPvts2/ok0//wknYIErOccyHuw+e8J4aMmxoJO3ISOd/d+7SjSZPncHzDWekxo18BG8sEYFbt3LlqnT+/DmLeMBTHRfCGDfoDjXKwH0Hs/mSA4LoEGUeEmvftdD/9s16YeC1Dy9RWiAgEBAI5FsEwJkX0i9MNUGUstFI6AHDnxRSDiUMr09sqrChQXIjU64rW53Ghgm8fZLiXr5sMc2bM8vWY+J3Cwhgszp+wmQ22EohmlJRbJ6Q+EbpwSbxj6IMDoHgY8ZYYsM6d95C6tCps+yZgOcTV8fT7JmGLLdCzBFQ8rbhO8b3bCrK8EBHvHBw8B4zNkaeh6g/J+cwDRsS6fGHcIT1zZw1l8aOHmnkvYN5gWgEJCj89ddfLX66SADi799ENcTc9CEcEOGhGti0udFPbYNa0JXLhqR5Qn5DoH3HTvTZX4qazYkdmfso6+ABq0ls4CEFvlEIEhkioaE1gcERHNlBQW3NPObx3KIF85kbUAgxZ64l/a9MMols85ZEycFvKdmk2rNC/zv2BeKi8MRpQ7TVrBnTmH9UTXAJJSXTxfgpDSeYT5hXELWM9/DshYcvRC35q2Mtd4+n3uScAQ0QEsBh743xLFe6mMdHizjzVbVr34EvOoCrKR0QPHtr1/jNAKycd2rJ23Dxcvb8Fd4/I8+If+PfvOOdaaO7P3vr7kM2qFuiy0D/cbmBS3zIiOihVqPXhP53/IsRBl7HsRNPCgQEAgKBAosANi7z5i8iHNaVmyGEmPfq0cWhfsFQAq5fiMhWrw3Cxo396a3f/95qVnrcXB/MOiKH9al5aCvpBNQSuGFDG796rezlYI1jWVvL3bsUwvxHjR7LnQzr11d1fDCHsKGFAd70AKEVHVyyzIuNo/YdOsqPgFcZHlhCzBE4euIMhyurebArSy9dnkBt27XnA3OJzw18ybZk2YpV1KatIXzQmXXQ1nvc8XeEZSI8E16CgQG+FvmLMVfuP/yKdQ54lk1pUYANPIDCwiPYk0oKvZUwg1FfupiEZ70y5NYdcdWrTxL/rjWvdOANPkoIDE41q1ein376SXMThP7XDJVcELRKFy5f539PnhRD69YmqlaSufcgVa1qSP7p51tfptZCNMjWtB38d2vUGzlHTrDnPbx3wYspxDYCeTFnJD2F1jSqX4dgbBRiHQFEG+7amWGVogf5DmbPNVz8waHB37e+Ebbw4L5y/Q7rIUtnlXExEykicohdewhPHzvpsunE8WPUs3tnVThGjBrNXOEQNQogof/1+YqEgVcfHEUtAgGBgECgQCKg5OaTOnDp0kUOF7fXixcH7zv3H/OmSS05S4EEyMWNRuglNptjvhih6s2GG+wDWblyMj1QakQODDNqFby2pk6byX8D7ygO5q9fv1ZtOQwx8xfG0ajhwyxyLLu4ywWieniKIpwckpG+naKjBqm2G8YqhPcD94rlDRmf7RF4qiasWkv1fOrzY0iuhzBaIeYIwNPpxu0HcsjluqQ1nKTOVLD+IFQQBietBl4lfzUOhLVqVNHMLyvGikh5aINREN7PSn53CSMl76HSwAvDb3DfUOrVK5jKlC1ndOmIZETI1L1i+VLauz9LTpjTLyRYJGbT+PFJHryW1imE8x85flo2nqt5gtp6ldD/thAy/11pFN+2dTMn3TIVlLl64y5f8JqO34xZcym4Twg/YomaC79JHsDgfK/kVdr+hnrgE3kxZ+IWL+foKsiA/iGctFWIZQTgqHD81DmSEq+p0fP4+vrxZaOUi8KSl6iSKgDevbikVwq4xhHJBQkMaET37t4VQ2MDAaxTOM88ffqEowzVROmMgmhRXDoK/a//pyUMvPpjKmoUCAgEBAIFBoHs3OMc0gTB4UEK9Rs3ZhRtTE1R7QeUMTa/qSnr2Sgp8WQhdNq3sSHL8/59e2jggH5mz8+cPY82bkj2eK5RAKPMOIt/g1NyzeoEOn78GH344YfUPyycWrYKko0d2DTBy8M06ZMyrBb1/Otf/+LkbFq9QOGJ2rxFS+YJtpbMosB81Do1FJQjCOGEV2LXzu3Nkm0gJHDJsnh+G5Kw1alp8LDSKvBiiIoeIVNwYB71Dwn2+Kza1vADD9ze/YdlzC6cP0c9unUyomuQ6BlQDw6ALZsZkn5Yky3bMmQje+KqeJo+7bfkK7aeFb8bEEhav4GTeUHwLeMiSmmwMB275oF+dPv2LaZeQDiskgcZRmLQPSxZskg2FCtpU8BV3ap5E1Xoq1X3pmtXr/C8FWJAoFv3njQv1hAVYKqbcbkBPnEYEiHgvgzt29sidM7ofzEe5ghIUQmYM80C/cy83/cfzKEKFSvyg6YXvMh/gEz3kCmTJ1DSmtWqEB86fITKlffixJXlyxQXw6ABAT3njNrrkE/h2Mmzco6EalW8PD43gq1hmTxlOoFiDoJ9MPInrElcRdevXeXvG3zU2LNJkrE9jaKHDZb/jctf7LsDmgRS06bNqWy58vybqRcvKBqOnzxH77zzDr8Hc8aUEmrAwEhCJFxGepqtZnvM73PnL6TuPXpxf9UomCSvaPwuRb3prf89BmwbHRUGXvElCAQEAgIBD0VAaaCCt279ujU5dMbPP4A6tGttEZU58xZQj56GAyA2P/DUKlzkIw6tlf7WvKkf3bl926gOhD8jDBqSm5tNUYMjPJ5rFIcIeOFIyR7UQAfGMLbHjBttkaOtRs1aNG3GbKNEE7du3qRuXdrbxFiZgAcG3p070mn+vNkef9iAt0jO0ZM8NhgDJOFYl5RIly9dJIQATp85RzY0WuLpVRtPJPZalZhklGTt0sUL1C80WHPCCQ9dsrjbwC910zY+fEFgyANXLtawRr5+7EEirUMw/trKHK+8aIFhESHMppconoy3PX1X0lzgORyAL1w4R0WKfGSUIV1poN20ZTvVb9CQMT+cdZCWL1tilrAQiabgHSTNRd8GdVXDmXsH9yVcIqIuJLXckbGdFsTO9fiLK3izwXPq448NdCXwmtqTuYsTgDZr3lLWPxgv8FtbS27kjP7v2KkL/fnP79OTx49pz55Mq9RE9nx3BbmskmYBuKdv30YbUtbzhce8+QvlC3jQZuCCV5nYEEbCcxevcvdxQayWpE1ZRkRWaf9S9Jwzpm8tVqw47T+UIztU3L93l5r4NzJrHNrgHxDIe/Kvnj7lSAZ7I+u097hglIQREftmU55dZesxV5C4bsvmjfKfcYGFaDhT2h+pAMqOHjWc4AG8aPEyKlykCP+EvVn7tq2MwIFREhQeGB+cfwZFDPD4ZJ8ACFEciJ6SaJSOHMmhDcnr6fatmzRl2gxqEthMxlHyWNdT/xeMLzhvWikMvHmDs3iLQEAgIBDIVwgow5jRMGuZtU0bDkPt3PmL5M2p8nd4MkZHDaaTJ44bPYb34YAuGYHxIw4zqxJW0NzZBnoBTxUYLeB50K17LypUqJAMAzxxv3r6hIYOjqBr1wyHOFsCnr6UjVtlSge1BBLKOhCae+rsRbPNMgwkKcnrOPOwJwvw2bl7n5ExFtgoDxc7d2RQ1JAImzDBO37p8nijTS5CDRFaC686NYGHFg78ksEFXpB16tTz+IzbwHLjlu1Uvbq3Rdy1ZiZXhgxqDU2Hl+j//ec/zHspCTxMMVZKA4zNj8INC4DXPXbBYiOPXGU34bmD0EwcwqEPoBek+QTjRdSQSPbMUsqK+NXUOqgt/8nSfINnKQ6XUtZ06XnM1+1pW3meebJAz2TuOUheFSqowoBvuXOHNlaTF+JBR/S/qeFfagAoaQZFhJntFzxtnFoHteFoENOEqhIOuMTq27sHHT2aawaNMvrg8uVL1LtHF6MLjUVxy6hjZ0NeBVOPRqmy4iVKUmDTZlSvng+9996f2bMe3sJnTp/ytKEw6q9ec0aqFIYvJI0Et6tkBFPjiEV56H4YMyWqAamOixfOM7+pJRouTxgwUJdNmzGLL3SV6/3PP/9MV69cpvCwECPHBhhks3NPyPtrXHTEr1xOe3bvoq3bd8hGX8wzJd7Xr1+jNq2amUWDSEZJJdbZ2VmcINce3nJ3HCusJbt275fPIGp9lPJM6Kn/xVpmjLQw8Lrj7BJ9EggIBAQCNhBQcu+ePnWSunXpYBdm8KjCJse7Rk0+TGBDhTApS5ub8TGTaGCkIVQKYYJvv/22/D4k/gAH7b69u+1qgzsWBq4VKlaib77+2mFDEQ6J2UdOcDIqCMI2Eb6pJjhklCxZiuDlU6dePYKHldLD4fatW9SyeYBHhztjw//FmHHUOzjE6IICBqrNm1I1GcH7hvSjCZOmyp5ykkfwqBFRFr3lpBBRvAdZiV++/IGat2jFhjNrWYrdcV5Y6hO4kr8YO57q1vXhAzMOywjPh3EXXqK2RMlfbcmLSq2OS1duMrUAaFPOnTlDlatU4RBRHBAR/QAvb08WGEYGhEdScN8QvhyBARfr/Pp1ayhuYazReoIkkivjE+VwWeAGr+tBkQPYo71kqdKEJFGoA2GyVSqWVTVCYt1r7BdARYsW5bFo1rwFr2uSPHv2DYEWAu3wZBkyNJpC+4XRh4ULMwwwuMMAbs9Fqz36H9EKWLcgmJ/wiCv6+eeEyzMI1kLQCS2YP9eTh4UwD+bOW0iIxpEuPCSv9lEjoy1ygmMswJ8seWdjDYIhOG3rZnr86BFl7NrLhmPU5VOnhlFyKjy7KnGdTK1lOgBIZAgPeFz2erI4M2fgrdujV29q1qwFJ7pTGhCxF+4fGsxJPZUC2g0YeCUxvVSGp33zpv704sVzTx4W7jv0cKlSpenO7VsWIzWUUWrQA038GjIlHQQRP6fOXpIdVnDphLNMVtZB1aSHmJ8ZOw0X8nDCwNyS5iv+Hb9yGcGA6cmCdQXJg1u0bGUUnfjg/j2aNHG80feul/4Xa5nxFycMvJ48A0XfBQICAY9GAKHOOFD06tHFbKOIDUvf0P4WszoDOJQ5e+EKH6Jzcg5TSHBPVTyRSArhTNgI4fCBQ0bFSpVp4aIlBK4rSWBMxKEemwAhlhGAARbYI8zWkihDyCT6Da2YgpN5y9Z0OZmRFLqm9Xl3LgfPUXy7P/30oxkFiVq/sXldk5QiG9tRBuPRr29v9pKyJk2btaC4JctlKgJl2alTJtLaRAPdiRDHEIAREh6f0mWT1kQqOKAnb9hMjXwbm70YxsNqlcsLigcHhgSeobPmxMqXKNAVyeuTqH79BmywhcyYPoVWJ6zUXDs83hPXJhOMLBDoGNAHCTEgAD2iRkeil/5XJl6DcTfAryE9fvSQ3419Qdr2nbJhXyTN++2rxPf6u7feoi8f3Ne0lmC8Fi1eTqDdMvX4lGo9eiSXgnt1k1/SomVrDkVXekBi/frll9f0wQcfGnngY960ad2Mve49XSzNGeACz1LkofDxaUDVvb2p6OfFVOm3gOOe3Zk0MWaMmVHSlGd20YL5bDR89933+JK4Q8dOPAQSh6mnj4eW/l++eovPGljrQMFk6oiiNNra4u0/eeaC7ASBBG7nz5/jRLkSTzba8+rVK+agFUnzDAb4Tz7+hO7fv2d1/XBG/4u1zHwWCAOvlpVBlBEICAQEAh6GwJSpMyi0/wCydeiSPA1wc12mZFFVlJTJ1zZt3EBjR4+Uy0UPH0VDoqLlwwQ2YOvXraXJE8d7GOLau4vsv4ULFyZk/rUmML7Dq8fa2Fh6HsZ4hE7DoIkxwdha42XU3nrPKAn8YhcuofYdOsreHcBvYew8Wr5ssWYQcJicPHUGwQNYOriDAqBureqa6xAF1RFYsGgJde5iMHgcOrifwvr1tQsq0KEsj18tGw/xMMLNcXAX4hgC+N7HjZ9I/QcMNAtXd8agAQ9geM9BbOk0x1ruXk/ppf8Rrnv0+GkGx5JxHRyyuCSGUQSXI0JsI4DLKTVjKwzqCP+vWbs21apVR/ZKROh63VrVZMMWeMfT0nfJugnRDiOGDTG6dOzTN5TGxUxiAzD2AI0b+cjGedst9LwSx0+do88/L6baceCH9Qve61s2b+JEhmoC6p+dmfvki5fBkQPM9AlyNgT3CeHHfRvWE2Oi4VO7cfsBX5TDe7debXVap6zso/JlEyiE1BwogDvwh5hyXuNCHuchJc0aKB5atwjU0EJRBAg4ov/FWqb+7QgDr5hTAgGBgEBAIGCEAAxJ9758ygdshJD51K1hMfnT3gOH5ay1xYv+Fg4rVQgjSObeg/xPHDIQXmtqKETyA3iSYIMEgQEMSauEmCOAhBvrklP5B0t8evgNB8C7D57whgneCsDdXlEeJFo2CxBJJDQCCKMuPBFhHJfkwvlz1L9fH4thttaqNuWv7tyxLVM0CNGOAJJ71Klbl+bMmsHGCiTQw4Ec2OICxLtqBYcScSGjNzyuIPfu3qHAAF/tjRIlLSIA785lyxOMvKRhIAEPKTys7BWM/9p1KfxYeto2Gh49xN4qPKa8nvofe4g79x/zXsKScSVy0FAaO95AIVS6xGfiItHGlwb9MmPWPE6oZilEH0kLN25Okw2FXTq1k3UG9NK5i9dk/QT6BVDaqAn2Zodzj3MSSyRFEqKOgFIPoASoLWAABFXPoUMHmHLGVuJOzJELl2/I3KUST6npGwsXLkIXLhvoh9YlrRHOEBo+Ssn4bu0SCRz6Y8bFcG3YJ6xcsdSoZlOO91bNm6jSQCGfBtY0UGkJA6+GwVEpolX/i7XMMr7CwOvYtyeeEggIBAQCbo3A4qUr2fsQAiMvOHpNeSVr16lL27bvtGpEPHbyrOzhhhvx7l06Mm+lmiCcffSY8eIgYeXLgkcUPA1gwIUg6zw80kwlce162WC+IyOdhg2NtPt7TU7dTI0b+/Nzal5vMARg0yvCNg3QwmgIOgZlEiMkURs+bIhToXrjYiayVxZEcO/a/RnzA/BGB9ceQpDHjRlJ4RGD5QRtCIGNWxRrd8WYg9dv3WfuXxzemzbxpXt379pdj3hAHQEctnHoNhUkfgR1gz2iNCI6uh7a876CXlYv/Q8c1qVsJH//JgyJ2uWU0pNeXCTa/nKw5sDwCr07c8ZUIxot6GR4wIeFR8gRH+A3VnKC7t53iMBdDsFle+aunXTjxjVan7RGVZdL7wL/tRB1BJAgD/QYksDAOzx6KOVkZ2mGTJkMD3vkhj61VZ/FeOAbgCSuiqfp0yZrfoenFlQ6K0SE91fN96GMNJw1YxolxC83gkvJi4y5EBbaRzXpIR5C8jCUnzFtisXzjqeOhdZ+a9H/Yi2zjKYw8Gr90kQ5gYBAQCDgYQhs2LhV9qCCAQMeo0i4AUOtadIoU+oFQAUDyI7MfVSxYiWjpCEbUtZb9BjxMIgd6i64k7dnZMohzOB0nT1zGh/UwDMWuyCOAps257odNTwhCd+apGQ+JIILE55V+K9S5sUuovYdOvHhcVXCCof64k4PgcctYfVaDjeW5svIEVFOJagz5a8GNQM8GYXYhwAOzx06dZbXIeVBvHrVCvZV9t/ScYuXc52QA/v3UnhYqEP1iIfMEYAx/uKVmzJvO9YYZJ9HIhVrc6BDx840Z94C2rUzg5NLwtsXF5FICAqPKoglD3gYTv7n//0/evXypRgSInJG/yNUHUlVsSaCTxbYQpCQtXaNKvT69Wv+N8Zma9oO1jNqVELgZRw8JJquXLlEe3dn0pEjOR4/NvDMbdCwkYwDjE3gNf73v/9DpUqX5gsnSfeb7rV6B/elmbPnqWII/Q6qmiGDBmq+tAW/5uuff5bH05MHB17Ti5euMErsCA/OiAH9bBr5MGY373wpJ8Nr4t/IYi4KUKeBQgWiRgmEtQ4cypgzKeuT6Nq1q548LNx3rC+45MU6hEuNwZHhtH+fIVGatA5Jzir4N2gcEHGgFOj7oLbtjLipL144T316d7cr+kfMGdufoxb9r/daZrtVBauEMPAWrPESrRUICAQEAnmKwIhRoylq2Agzw4iyEU+ePCbfBnUthqDB6Dhj5hxq1bqN7FUCIzG8dUyTHZh2rmEjXxo5agyV96rABmOEJKamJDONg6nBMU+BecMvw6E5LWOXnDlbOtBJ2Xyl5o0bM4o2phpCk7UKPFHgwSXVlZubzaHRSkEG9FNnL8plYHSMGhLJoYieLrj8OHP6lM0kalpwUnqVWAul1VKXp5eBh3X86rWy9xrwwAG8a6d2ckZtrRjBgIXoBMwReNJVr+Jldx1a3+WJ5ZRen6kbkmn82C9Yd9SsVdsqPcmV63fkEGfgBqOhZNiVxtuUExHr3ey5C+SQdRgAbt26SVMnT/B4KhRH9D8uIGEskaJMgDvomaRkXqAyiRk/hvmvO3bqIl9Umq5vmFtIgigZh1EPPPBTN6yn+XNne7T+B3YxEyZzAiM1efH8OYX06Wlm3Lt87bbMEQovxdevf6aAwKYcqSNxvAPjoJZNCfs6SwKPyO49eslzC0bmI7nZNGXSBE4i6skyMGIwjRo9Vv7+cdmLqIExXwwnS17QU6bNpNB+YQxb1qED1D+0j0UIkYMBThMQ72oVjejTcCGybIVx8lWMx4L5c2l72lZPHhamktuStkNeT3D2OHf2NCevw0WTtN+1FuGBOTJ85BcUNiBCXs+wtiF54flzZ63iK+aM9s9Pi/7Xay0zbRXOq7jktUWpor03b6akMPC+GdzFWwUCAgGBQIFBAF44s+fEGoWeS42HgaR7lw6abrBhlNy6fQfBOAi5dfMmtWhmoABQEyRgix4xStW4jE1ri6b+Ng3EBQZkBxqKDen0mXP4kKzke0VV//jHP2jOrOl2hTKDAzkqegSBN1mSly9fUp2aVc08enbs2kveNWqatRoeDZEDw4rv9sUAACAASURBVAiJwIQ4hwDCaBGCJo1n5QplNBk1QOGBEM8Z06eyFxA8fsaOm0CrV600CtV1rnUF92k/vwDm/JaMIzDQLolbSAhl1ip79mdR5cpVuLglrkTTunD4njRlOi1dvIg2b0plb1RwmMMDLjIiTNA7/BcwGC9gxIBY4m23NE44qK9OXMeRDBDQC/3P//wP/e2nn5ivcnHcAqNHBwyMpAkTp1gc9m1bN9OoEcO0fhZuWc4e/Q/dsXP3ftlYeOzoEUKmeVwArl6zjpo1b6mK0YrlS2ju7JlGv8HoODd2IRtgoN+Ul5c//PWv1LVLe4+fM1jLEEVToWIl+s///YduXL9Gx48fpR3p281wRtn1Gzbx33HBjkRSksCDNHFtMvk29uM/YX9Vv665fsdvSuOL6Utw6T7mixG0dYvhPZ4qWNvnxcYR1nzpu4Vxd+6cmbRmdYIZLMiXgDEAfjWqV7LI1a/MafHdd99SnZq/7dVQKYyIdevWI/D0Yg1UzpmcnMPUr29vTXsIdx03rCOpm9PI27uGahcz0rdTdNQgm93HWCWtT5U96aGnsE9GhIKaiDljE1K5gBb9r9dahpdirsYtWU516tST5wyMu8+ff89Rq7Hz52iOaNDeS9eXFAZe12Ms3iAQEAgIBNwCARhE4GVQrFgJ+uGvL2jDhmSLYWSWOowN55nzl2XP09GjhtOWzRvNii9fuYqC2rST/w6vn4sXLxA8ej/7rCj/HZ4mgf6NRMg6EYFSoUXLVryhv3rlMiE009YNtJdXBWoV1IbpHMqVK2/k6QZ8kfW8W9cOZiHLGIPUTdvkMchITyNk3JY8gHBIwZgicYtpQj23mAh51Aklf/UXI6M1HZrr1vPhkGdJ8A1IhzwY/SuWL5VHrc//rxkaNZwvNCRPQ638n8pEhzA0wYtKi2TnHqfSZQzJDpXjgn/DI3HZ0jgt1bh9Gazv4LKuULEijR09kkD/Y49gHQKFDQyTuKCq5V1ZdR365JNPWRdJ44HEnvAOhcGsZ68+8oUmEiR2bB9kTxPcsqwW/Q8DIg7fkIMH9pnx6ecePUklS5Xm30GfsSk1hTIzd9pMPgmDyoDwSOoTEirvHaBbkNTw4ZcP3BJvvTulNLDHjBvNewRTUUaMwDBv6vWp9BDF5cmgiAFsVO4b2o969OgtX6w4ymuud5/fdH3ImZCwai2vZZIcP3aUevXoIv9beZELioywfn0tNvvAoVx5XbK1JwC9U3T0SOrWo5fsbSqSfhmgxRo0bNgIKlu+PP3pj3+kp0+fUtLaRMo+bLhQ1yorExI5MhGSnZ1FoX16mT0q5oxWNA3ltOh/PdYyvKtFy9Z82S9Fl6i1FFFA2J+ZcjLb16u8Ly0MvHmPuXijQEAgIBBwWwQQngaDnzWeUOUNrVo4WqfOXWlhnCGDLQwhCFdDMjFJEJoYHmG4ZYchEUZiIdYRwEEjKKgt1apdm8qV9yIYN5AgzVSA953bt/nWGocNNTl/8RoV+egj/klKWIHD/4qVq8mnfgP5EXg1TJ86yW6KCDGWRN269yRwHEMQKtuofh3NsMDzDfOncJEiRs/YOhBqfoEbFYRHDzb4b/3+9xQS3FNTzy5duSl7/4K6BBQmWgRGqvkLFlPbdu3NvBG1Gom1vMddysDwocYfCS9Q7xo1zDw+lf2GkffW3Yf09ttvW8w0r8yarmZYUeoZSxeR7oK1Xv0AjyjmFIyvZUoWNbtkhJ64ePkGf//2XI4o2zd5ynTqFxbOf8I+o3YNQ8IwIdYRgGd19ere7I1WttTnqoVxAYWLKAi816KHDTYqp0y8Gh1l2OtJgjm3d/9hNmbikhc6C57CQogT3iLpVqFChWjIoHDOlyDJ4CHDaPTY8fzPPr26W+SZxroHwxYE9AJVKhouC20JEn7tP5QjO0aYjput5z31dzgy/P73bxudPUyxwDp25/5j9r4GLUpN78pmcIk549gXZEn/ozY91jLsr7HPlgQe8cnrkuj+/XtUtmw56tKtOxUvXkL+HREmiDQpKCIMvAVlpEQ7BQICAYFAPkcAN68nTp9njxr/xr8Z+kybDY+5e18aNv4PH35Jfo185CIILTt97pLsTTpsaCTzl5lKzpETVKp0GYubqnwOVZ42D3iDyxDGDlPBQQzJJC5fusiJonDwsMZtrMxGDw/f5k0NIZ2S1Kpdh5YsWykfJvD3AL+Gdnt65ylA+exlOCgjS7ZEuwE+REcSpSgPFvYaifMZJPmmOcOiRxJ4SSEYE4yNvYLLliPHTslGXnuMxPa+yx3Lg2cXSVjgVQtKGEsiecCb6hipvHItA3XDwljz5FPQRaAUEvNH25ckcSCbUgAon1Z6iXbq0MYmd6Xam5UUKaAS8HTeVy2jk75jN3NYv3r1iqpVLq/6COYVklFBbty4Tq2aNzEqJ9WBPzb0qW2WPAzPgxsTOkxcvptD3DqoDe3ZnWn0w9p1KdQksBlfhpT4/BPVccEeDrhKe4KZ06faldgW9GhYDyHgisW8E2IdgctXb9Gf3nmHatesajXxpuTwgH1zyWKfmlUq5oz+X5qza1n7jp1o8RJDYmjMO1zgqtHK4FIF0aTg8ceFFajPCooIA29BGSnRToGAQEAgkM8RUCPGV2syvG/ghQPZuSODooZEyMXAH1q2nOHwYSnkCb+tSUpmagFrm+J8DleeNW/BoiWc0EaSSxcvUNahg5wUxR7DIbiqcPiTQtqtGW6RaGz8hMl0/dpVcZiwMdKbt6bTDz/8lUYOj+Js5MhyjgzBEGSNh1ePvaKXkdje97pTefAdJiYl09jRozh0E4drGLCw2ce6AwOHIx5qoIZAEh6Io0Zid8LZnr74+vpRysYt/Aj4DpsH+qka97BGwbMK88CSlyfG88btB2xot2QETkvfxQl4EI1QoVxJe5rqkWWli1eE73uVLaFKEwRufSQqgjhKTaLUaY7QeHji4GzZlkH1fOpzoq9ypYupQjBmXAzBsx2iltQTIc0Jq9fy76BOAfamgjn1zjvvEPYZ7du28kSo7erznHkLqEfP3vwMKJRApWQqqxKTqHkLA5Z379ympk0a2/UOFH7w6GuO2oKRCrpLiGUEMB4YF8iXD+4z3mp0Y0qaHzhK1KvtbVapmDP6f2nOrGVItnvk+Gk5gtGSE5HUauwDW7RqTaBwKkgiDLwFabREWwUCAgGBQD5GoGy5crTvQLbsfXvyxHHmGlN6hMLLN/fYKVXeSyVxPg6IyEwPg5eaSHyWOOQj+ZQQywj0HzCQk2xJhlkYp5A8aNyYUXZx5JqGNCFMcMqkGIvZmfE+GMOkAwu+j+0Zuyl23my7kr+589jC4xl8oRCEzq5ds4rCBw5iwxQOFDWqVWSuaXsFyVaC+4TwY1qNxOAs/erpU8Fp/V+wlZdN4C5EMjQY+yDpadtoePQQe4dFNyOx3S92oweUvIeYM32DexB0jVK2bd9JderW4z+pJc6BURdzb/HSFXK0gWnoNOgEzp6/wmuY0DPaPiClYSRh5XKaNXOa2YNILIiM9pCJMWOt6gKESRcuXNgoiufdd9+lU2cvEf4LqVurukjqqWF4oFdiJk7mkrNmTDPjlPzoo485AkvaJ5h6RuOCt36DRgRjIwyF4KaEoVCZUFW5hzt96iR169LBqGWYd7ZyA2joilsVAR8suKkhiKIKDws16t/4mEk0MNJAlYH1rm7t6kxvYo+079CRFi9dyY+oXSqKcTFGE3Pg6IkzckLo599/T0Gtmhl968Ds+KlzBIMhJH7lMpo90+C4Iomzc0bsmdW/cmfWMikqR1kzLr3OnjlNc2fPsMvpxZ45mNdlhYE3rxEX7xMICAQEAm6MAAwgGzenyYcEHIy3bEqlI7k51KBRIwrtN4D5qiCmIf6Hc45RmbLl+DdrnIcwfsEbAf9F8jUkWlETeGghuzSSgFgyFLvxUBh1DViAlxVeIFLSLRjRZ06fotnYikNd39D+FBE5mHAYlATGlZA+PdkzyJooE4QgpHbIoIFWQ6w9ZWzg0TYkKtosyZ3agUELJhgbJI+SjMTghXv18qXVR1EWNB5INrExNYUNL9aoOrS0o6CXwcE7PmGNnNRG6g/mDfgPcdi2V5SeWGocl6b1Ya28cPkGG/vhSQSvOiXvpb3vd5fyScmpFBAQyN2BwQhGi62bN/IahPVJmcwOdEFSIi6sg+k79lB5Ly8jHmTUA4NVQOMGTMeAUPMjx07LSaP27N7FCaXUBMkqX//yCz1+9NBd4HWqH5IXLyoBvRJ42F+8eM51Ro8YRcNHGLx3sb7Ay9ea3pAoH1AGye4ePLhPbdt14PGBQI/AEClEGwKIwJGwW5e0huIWxXKCO3iprU/ZJHOLIwEekk5C8H0jyqTQBx+YvQRei8AfY4kLE1ysSMlWTS9MJGoaeMM/ffKE1q9bI/j5/4uoMqEqPJ+XLF5Ez7//jkaPjSHfxr/RYA2LGkQ70rdrG+z/lmrZKohwKSbt+xAplLbNEAUhyaYt29m7G/MUhi4YKh2JTrGrYfm8MOZJVs4xea8L/QCu9q1bNlOxYsUoatgIOc8Bvul6tavLl/F6zRmxZ7b8kTiylsHpAc4PEOiUv/30E6950pqFv+/ft4ciB4Zp3v/mV/0vDLz5fIERzRMICAQEAgUNAfDopqXvlLNlq7UfHgj16njLhzt49MCzB4Lb8lo1qljsNhJSIDEFRI3nDTxnM2fNMzqQYLM6acJ4qwkTChrOjrQXHgEr4xNlGgzU4YixFRjHLlwiZ59FGHSdmtWseuf07BVMEydPM8pYC+Pw4EHhdnukONL3/7+984CO4si+/tv1eh2xkf/GNiYnkUEimJyjyTkHIXLOiJxzElGILBGNAZMzCJFtkxE5mmRwAmPjxQbW+51b+rrpGU1qaRRGc985e9aoq6qrflU93X371XtJuQ680ZDsC8lYNDtz5rR06djOdHxJbVs52nFVJB4zbqK0av3Kcwhe16NGDFXXl7cbtlhOmjJdUqZMqVDgRW/C+DGyeOF8U2hw7e3Zd1C9aLsqEsPrCt5XRsPcLF40X6ZNiX5R8VZr07a9DB8x2uLlzJqFUczAi9y+iEO6iAWOXx87IteuXZVOnaO9sfG3P/54avEBCx8iq39e0WK3Azy8IIjhgyY8fLV1sXPHdunTq1usxP/kMo/4KLFm3Ubx9y+gDwn3+9f//W/d6xaifFD/Pg5/X/Chak/EQf26s+aD+1aj+nW8Xogys27wYQMfOBBCQTOIU8Ys8vgoX+wzf+W1XrxESUHMZC0hKwTdI4cPKZFYu1fh3v/WW2/rc4t2l4UvVR8JjbZz936VgM1o+B0MmTNLEAPbmw3XzI5d+/QPU9YsIKAPHthfhcVw1SBa4Tm5b/8gXdy9ffs7KV0ieheKZn7+BWTTlh0xmsXvXmBAC9PPH672zxPK4V4dErpQqlW3H7MYc1O9akXBRxGYO68ZPjPbXyVmf8vQkjFBLnaXHj50UP224f7fpVsPPca1s9BZnnD/p8DrCb8w7CMJkAAJeCABCEaBbdtbCL14GELc3WFDgtQLhGYrV68VbMeEderQVnZs32pzxLgZI1M3HojxkuiXL6eFd6Ixw7atBmxtTfRAtHHuMgTaCZOm6d48aPDY0SPSpXN7l8VWeMNt2bZLfymxtb3QuqOYP8SYRfZazaMEayI8bIkSFL19+yZEQHiNap7sWjiN/n17uTTnEJwg8MIQ2gHJdJwxxQeZ46fO2RTK4M3YtVN7OXfurEvnT86F8GGpY6euutiBrMv4rXKU6MvIwxjyYeSIobJ08UKnuBATEx4iqVOnkazZsll4eV+/dlUa1K+tPPC81dKlSy+DhgxTYpO2tRwsIERhd4IxW/2W7buVpyIM28orliul34O6de8l/YMG6Rjxm/TTTz9K5P4ItZvEaPBEhCDi4+NjEzvWReWKZZ16zSf3OYO3LrbSaomhtPGCbZ9e3V3yRMc9YnrwbKnXoKGqvnvXDpXl/OujR1XoGbOGhHlYG95s7733nixbucZCgAcP3CfgoTigfx/9NwXPWtr87d2zS9q2aaWjQ2gheO1qhg9f9+7ekfDwpTZ/2yA0+vh8IFmzZhOEA9J2cqE+vLObNKrn1R9GtLVes3Ydi9/5n3/6SVq1aKKS3jkz/AbCw71+g0YWH59QDx9ZypcrGeN+AUGyXLkK8knqTyW/n59kyJDRYk6x0wpejd5sYNS3X5Bat0ZvT3hb9+3T0yKJsDuvGTDnM7P9lWfmtwz37YOHv1aN2YrLj3Aau/ZG6ut/+NBB6r3E2jzl/k+B15t/sTh2EiABEkgAAhCQ8uX3k99+eyJR587a3JL57cmz8vHHnzhNZjNqzHgJaNNW9frggUhp2fxV8rDgGXP0F0G8rEAkXrlimSAxT4tWAfqLSmwTuyQAqgQ9BV4oBg4eKu3ad9JFq9OnT0mdmp/r/cALg6Ot6PA8/fbkOeUBhG3kWTKmcWkMeNHGtkH/Aq+210LwHzokyPQWRJdO6GGFataqLeMnThU8wOIFD2EWXDGEZkDiD1iXTu1iZOy21YYxXunSJYsEXj6I2fzmm2/qxXGtde/WyetFK3iuzZwzT70Qw2xtd7XFGPM5J2SBOmQvGYuz+cX12qhxUzU38EaFYWdCiaKFnFX1iuP5/fyV5+2Vy5dUmAWj4SX52s276uUcXoP5cvvGuA8htFCJkqUcXju4trCdWhOTIRTPDw1R26lbtQ7U4/7itwzn8PYwJ4BZvkIlKVS4sLz/fkq5fOmi8to13lPSp88g339/32E8eG2HAbbVIua+mfAo+GjWrXtvqVCxkvIyRUI97IzQPO684uKwMUis5UqVq0jGjJnk/vf3ZevmTRbx18Ftb8QhVfPSxYtStXK5GNcUwsdgZwPu/YUL5nP54zAaql2nrowZN0n/yOxqrPjkPl/4rcJzUZq0adUHJkfhlSA2YV0jjAN2waVK9VGM0DOYmy2bNkqf3t1d+j3Cuhg2YpTUqFlbocazNLx+rX9Tk/s82BofPkrgI/o///FPORd1NsbcxOc1w2dm+yvO2W8ZahqT204cP1bmhcyO0WBKHx85c+6SuoaQdwGe2UbzpPs/BV5v/IXimEmABEggiRG4fuue8lrAlv2mjevb7B28tZD4QPuCXrpkUT3uYbnyFSVs2Ur9gRSJKuDtoxluzIinhRc8eDL457fcKpjEcCRod/BQM3tOqPKgxkvclcuX1fkhSo2bMEUl+rKVQVjrZPiK1YLkKrBSxT8z9SIAzwgkOjLG9EWsUcTAunz5UoJySGonw0MmEqzgxRdbyZxZYLsOAg92mKPY1MZ2jB6/EKUQWxYvdBCwJk2eLnXrN9BfGLEGFi0MjZFIxFm/kuNxvEwHBLYTVzyrMY+IFwexHtagXi05/u03scaC9hDOJleu3KqNuXNmelyG51gPPpYVkQgHCaRg+/bulsCAljFawofIE6ej1Hq35eGDCkiGhNjMMHhQI/670UMe3sRauAesjS/XrI5lj72n2snT5+Xs2dM250SjgDm5deeBmpvpUyc73dKP+33X7j2lRo1a+scQI9HgaVNU/FmafQLYPdClaw9VwN6HLHxwmjJthioDL8+O7QNNIYVgdvTrk3os01o1qsrZM6dNteFthbE1fcWqLwW/V0ZvUiMHfAi5dOmibN60QZaHLzX1QURrp0XL1mq3FcyWwO9t3F0Zb0JcM3xmdmUmYpYxCrxwRLH3TqPFfUcSaTwPG82T7v8UeGO3TliLBEiABEjATQTw0vbd3YeqNYRv6NGtk82WjclbjOEAsIXwxOnzehy5QUH9bCbvMMbuRfbnu3fvuGkEyaMZiN9a2AyjKBURsVfatGpud5DGRBCVK5bRBWIzVLD1HVuktXiW2PpWp1Y1M014VVl47mCL+JnTp9S4Iciev3RdD11SqUJpuXb1qlMmxozCthK4QBgLXbhE8ubNp9oy403s9OTJtAA+jGzbukX3ljJmQYewC4E3roZrFfMNu3rlslSqUCauTSb7+rfv/aDGuH3bFvUByZYZwzjg5Q4veZoZX95xHSCbva2XxKs37qjrkL9hzpcUBERwhTnacYAEX/Csgm3dskm6du4Qo3F8QGnXoZM0aNhY0qRJa3EcgpcWEgAhTRDaieaYAD5gjRo9ThWyTphmrHnl+m212wMhgeC1btYQ43z+wuit0IjFCwGfZp9ARORhi1i92CWA5Gi43x86eEBdH+56ttWeD7DrIXvWDJwWJwQS6ppBN/jMbG45du7SXe1YhGEXiDFEoNaScafP06dPJXeO6I+5ME+7/1PgNbc+WJoESIAESCAeCODlDS9x8N5E1nNrGzl6nLQJjH4pf/z4sfIq1ba/IsNzseLRdRArtGa1yjZ7iLhk02dEb8tBvDfEnKXZJoCt6MdPRekvxfaEd3gRwpsQgrCtL96u8EXd0WMnCDLc4r/hEQdPYHe9pLjSB08rs2//IRWnFx7viJs8YsQY5W0Lc9WTyvgyguRSBf1yy7Nnz2yigIf2lOkzpF/vnrGKfelpfGPb3yJFi8mX6zaqZF0jhw+R3bt3CjwU8eKA36sihfwstkHH9jwQqyCs4HrhjgTXKJ6Juqw+imBu8OJmKza18YNHQb88SjiBZcmaTXDNaXHDcY+xF5ca8/1hqlQqFEDZUsVc65yXlvq8Wg0JXbBYjR7XBxKv2fJ6NoZfWhAaIuPGjlJ1cF21bN1GmjdvqX4PtfnBMSRrhdgVMne2bN+5V1J99JGqA+9teHHTHBOASA6vdzC197EC/LH7CmVwXeXKntk0VoTwWBoenTzM0Qd+0w0nwwr4HYLAqxlClSCpozHWuDuHffSbk+pjCX4rM6b7xJ1NJ8u2Euqa4TOz+eVTt14DmTFrrqpoLwdCr979pHff/qqM8TnaE+//FHjNrxHWIAESIAEScDOByVODVeItGEIrtG8boJ/BuO0VD5p4uUaWUxjCNhw+dlz9t7M4cHPnLdDjimXLnC5W29bcPOwk3Ry8Njdu2aHH54WnYLu2AXpYDBz/Yu0GPSP32i+/kH59epoaE17u8NAFQVmz0HlzGAbAAUU83GPNw7sWBmEEf8P/8MLnlzeHetl2Ztt27pU8efLqxZAkZ2bwNJk9K9hZVR63Q6B1QKDgY5S2dRbzocVrXb4sTIYODjLFDgLKpq07ZeXycCV8aR6jyGyPuIvWLyKmGveywkgsGRK6SI0antSNGtSxiElZpkw5WbbyC3Uc1wLuEZoIbPyIuHHDV9Kze2eb9DDX8ODFtehs54OX4bc73LbtO8rwEaP14+A7fOhA5REKg6fa4KHD9eMIr4SPGohD/e2JsxYJqfCRce/uXTJrVrDcunlD1TF6CSNRVbUq0fGzac4JzJ47X2rVrqMKBk+fIjOmW4a1MH54dzUskPGsuE7w4QQCCmzggL6yelW02EuzTcDPv4DgWVa7/6MUwsV06tjWpV07rnLFR12E34LR691VaiLxfc3wmdn1ubAuGXXxmgqVhR0ddWtVs0hciBj+SJ6qfSQ0hovxxPs/Bd7YrxPWJAESIAEScBMB3HR37tmvb63EljDEEPP1zW6RhXv82NEyPzT6KywsbPkqPeGR0bPHVrc0Dy7c3H2zpHdTz5N3M4g1umrNepVIRTN4Rv39v79VUjzN7t+/Jwh74WpSIbycL1wUZpGFG3EvIexrYQeSN9m4jw4x8oYMG6mHJkGL1pnOnZ0FWaHhPa2FYEB5xNtr3LCOLrA4a4PHLQkgnnRI6EKVjEUzCIUF/HKbSkKEuhMnT5OmzVqoZtAGRKsPU32kx/PF36pUKhursCjeOG/Gj3zYonkgMkJ5DUIsB2cI6jCjGI/5RBJQvPjh3gEvRXvx+5o1bykTJkWLYPhQMnXyRG/EbHrMderWk2nBs3X+WNcIg/H2O+9Y3P9XLA+XIYMGqPZXr1kviEeJsvDInTtnlpw6GR1nWTNkRkf8awjvTBZlelrUDp6IA0d0MRH3+T27d6kEt60C2uix99GyWc9oXGs7d0dINt/sqmP4qILnMlefIcyPJnnVsHX/h3NEn17dbW4/NzN6hBmCUKmJXWFLF8uIYYPNNOG1ZePrmuEzc9yXFO4zM2aF6DsF8cEvYt8eyZkzl1SsVEVf78YQgJ56/6fAG/f1whZIgARIgATcQABebxs2bxc/P/8YrcETrn1ga4mMjNCPwesTAfHxEApBOKdvJrsvB7ixz5w9T9VlbERzk4UXsYVLwpWQbtwCq7WCUArINqt5XDlrvW//IOVVpYkpeKFDRtvJE8c7q8rjVgTAcPzEKYJkN9rcxCZJXb58+WX5qi91IR8ZsxEmgxZ7AhB4Z88NFWS/hmlJ6pDB2VZ4AFtnwov2pCnBFiKXVu6HHx5Krx5dVZgOmusEkIwQHqO2fsvQirWHLsT66jWi4yY7E21PnIrSQwGUL1tSbly/5nrHvLwktjevWLVGMmfJapPEnt07pV1ga3UMH4Qh3GpzCOGxR7fOcuL4txZ1jXPH7f+xX2CIkYtYubYMv2XYubNu7RqXT4BwWYiHaUyuai+Rm8uNemFBW/d/COVzZs2IVRJB3KuCBg6ROvXq69cW7jMILeTqPcsLp8HmkN15zfCZ2X2rCgm5Fy4Os9j5YWzdOk+Cp97/KfC6b82wJRIgARIgATcQwNawbj16SYaMGeXp77/LsWNHZfbMYHnw4HuL1vHQ06NnH/U3Z8k5Tp+9qGfTdhQ/0Q3dT7ZNIJld567dpVq1GvLmW2/Jjz/8oOIbwmvEFYPgNS90kS6AoM7581HSNqClPHz4wJUmWMYOAbyYzZu/SPwLFNRLfF65vFy8eMFlZnhZhLdWhgwZVZ2lixeqWGW0uBFo07a9DBw0VCUigpn9wAQvRHgrYm7hddqhXYCcjzpnkQAsbj30vtqI9z502Ejlgfh+ypRKzICQsWJZuITMnWUBREsihY+IObJltCt0ILnXaO03FgAAIABJREFUtODoupcvXVKe1TTzBNKnzyD9gwZL3nz51Ev4zRs3ZOyYETG81LP5+qr7ieYBijMhrj5ikiOEQ6bMWQSJWTXPayTNgwc2LXYEEG9/2IjRkjtPXkGSR3ywunH9ukyeNF55wTkyfIyv16CR1KpVR/LkzaeHrUEdCIfwdJ8ze0bsOsZa6iOi9f0f1wC2mTvLZVCo8GcqPBp2MXzySWoLmvfu3ZW6taq7JW68N05TXK4Z8OIzc/ysGtz/Bw0eJuXLV1T3f3wUuX37Ownq1ztGbH1Pvf9T4I2ftcNWSYAESIAE4pmAMTyDvayo6AIElpGjxqreYItz2dLF47lnbN5IAC+Dc0MXCmJcavaf//xHBgX1Vd5yNPcRwJblWbPnycv/vpSihS094eEhB7EDL232DNsAkSQK3vTwiite5JVg7L5eel9L2CI+eUqw8ozq3LGd7Ni+VYeAOWndpq2ELYmOD2vLUAZhAuDxtn//PgloGR2vnBa/BLDdFjF1YY5i6mJ+sJtEiyXOJJ7xOy/G1uHlPn7iVD1sCXaELAtfKsWLlxDf7DlU0bFjRsrC+dE7eGjxSwAfgkuULC0lSpaSgoUKS+bMWWzuQICwC4/rQQP7uTV2bPyOLmm3rt3/kVAQH6TwUQO73zTLniOHlC5TTooUKaqEdoTZ0uLFG0eGRMb4wAvHCVrCE+Azc8Izt3VGT77/U+BNGmuIvSABEiABEjBJIPLQMcmUKbPKll2owKtkUcZm8MJ98swFfTuO2ThxJrvE4lYEkEAH3otaoikc3r5ti9paTm+q+FsueEGAt6fRduyOkA8//FAKF8jn8MQQEvHiB6+GrJnSxl8nvbBlW/OCj0/4COXst2nKtBkqFAfnJeEWTrHiJQQJVmDdunSwm61+0pTp0qRpc1UOH1BKFC2UcJ3kmdSHK3hk4X6jhf7RsCC2u7PfPCJ0D4EZM+dK3foN7DaGME4XL5yXzZs2yPp1X/IZwD3YY7SCxIRY9xu+WqeO4cPtN8fPWDyHGSvhnoLfrSOHD8ny8KVy+fKleOoZm3VGgM/Mzggl3HFPvv9T4E24dcIzkQAJkAAJuJGAJkQhGUtB/zw2W1731WY92ZF1bCU3doVNWRHA1jTE7TVmesYLB2Ionj1zmrwSmADijoUtW6nOumH9OunVs6vNHkCIh8ciBBNkpIcHEC3+CMB76trNu0qUgsdVsSIF7CZi275rnyDpISxD2o/jr1NsWScA79A5IQvUv1s2aywHD0bGoJMjR06VIBTXDLwSq1WpYCo0CnG7j0BKHx+ZM3e+lCpdRm8U953WLZpyTtyH2WZLxpAYKIBdOndu35aoqLNy6GCk7N61U549exbPvWDztghoCQm1Ywh3dv3aNeVBvWPHVibpTALLhs/MSWASrLrgyfd/CrxJbz2xRyRAAiRAAi4Q0Lym7GWSHzZ8lLTr0Em1hJeNQv555I8//nChZRaJLQEIhMEz50iNmrX1JrBldu6cmcwoH1uobqiXIWMm2RtxUPfgQdZ5eIxa26Il4VKpclX1Z+tkU27oBpuwQQDJH5EEEgaRt3HDunLm9CmLkojFt3b9JgrvCbyCIMDf+O6+2sYM77ZmTSy9E1XIjINH5d1331U9w+8ck0Um8CRZnS5o0BCVxNPahg0ZqEI30OKHQNNmLWTCpKl6ci6EBpgZPI2xdeMHt6lWj3x9wuJjO2Lzd+rQVm5/d8tUOyzsfgJ8ZnY/U3e16Mn3fwq87loFbIcESIAESCBBCWTJmk0iIqMzyONlokO7NrI/Yq+K9zZ85Bh9yyyOt2reRA4c2J+g/fPGkyF5wdLwleLvX0ANPyrqnAS2bsEkHUlgMfj5F5D1G7boW5gRY3fCuNFq2znmbeq0GVKxUhXVU3w0qVShNGMjJtC8rVj1pe51CPbwsp42dZLaNts6IFCGDh+li/OrV62QgQP6JlDPeJqNm7fryQsR/xjhZX59/FiKFC0mi5Ys02O/3rxxXcqVKUFgiUgAIZlOnb2ofuPwYRHJu7p27ylIVFikkB/vQ/E8N4jzjnj72v0fp0OyL1wzfP6KZ/hOmsfW/6CBQwRxRbV7PO79/fr0YKiMRJwaPjMnInwXTu2p938KvC5MLouQAAmQAAkkTQK2vEaQeRvbZbWH2DGjR8jihfOT5gCSaa9Kly4r76d8327MymQ67CQ/LGSoX7dhs4qxqxkERe160f42KKifrFq5PMmPJzl1sE+/AdKjZ58Yc2Ec4507t6V0iSJKgKclDAF8MET86gwZMuonxI6Qt99+W/83hPjqn1dSwi8t8QgYE6+uXLFMBg/sr7yvkewLIZpoCUMA93/s5PkwVSr9hOfOnZXOHdo6TPKZML3z3rNA3J08dYbUrlNXv88gFwI+hCyYH+K9YJLAyPnMnAQmwUYXPPX+T4E3aa4n9ooESIAESMBFAmXKlJN5CxbHyNSM7c4tmjXii52LHFnMOwhAzB0zbqLUq98wxjWDECYTx4/hVuZEWgoFChaSCROnSo6cOWP04Pz5KGnSsG6M5HmJ1FWvOi2umeUr11jEdtUA7Nm9U9q3DaDonsgrAjEsIcTDIMAjfvjLly8TuVfeffqu3XpKrz799N0H2u6EoAF91K4rWuIQwIdePDPnyfMqOTFiVffo1lmOHT2SOJ3iWUkgiRLwxPs/Bd4kupjYLRIgARIgAXME6tZrIBB7//naa7Jn9w7ZtXMHXyLMIWRpLyNQvkIlqfp5NeXNc+7sGVmxPJxCVRJYA8h63iawnaRPn1Ee/fKzrFixTG5cv5YEeubdXUDSyJatAyRr1mxy4cJ52bRxA+cliSwJhAdYvHS55MyVS4UwQSgTWuITQHiMacGzpFr1mrrX6JMnTyRfbt/E75yX9wD3/+nBs1SIJs3GjhkpC+fP83IyHD4JxCTgSfd/CrxcwSRAAiRAAiRAAiRAAiRAAiRAAh5NIG/efCr2Oy1pEUDOhJB5C9XuBMR+7dalQ9LqoBf3Bl7W3br3ktdee00K+udRcZNpJEACnkuAAq/nzh17TgIkQAIkQAIkQAIkQAIkQAIkQAJJngC8Ro8dPSzPnj1L8n31pg6mSJFCChYsLJGR0WFOaCRAAp5LgAKv584de04CJEACJEACJEACJEACJEACJEACJEACJEACJODlBCjwevkC4PBJgARIgARIgARIgARIgARIgARIgARIgARIgAQ8lwAFXs+dO/acBEiABEiABEiABEiABEiABEiABEiABEiABEjAywlQ4PXyBcDhkwAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJeC4BCryeO3fsOQmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgJcToMDr5QuAwycBEiABEiABEiABEiABEiABEiABEiABEiABEvBcAhR4PXfu2HMSIAESIAESIAESIAESIAESIAESIAESIAESIAEvJ0CB18sXAIdPAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiTguQQo8Hru3LHnJEACJEACJEACJEACJEACJEACJEACJEACJEACXk6AAq+XLwAOnwRIgARIgARIgARIgARIgARIgARIgARIgARIwHMJUOD13Lljz0mABEiABEiABEiABEiABEiABEiABEiABEiABLycAAVeL18AHD4JkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkIDnEqDA67lzx56TAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAl4OQEKvF6+ADh8EiABEiABEiABEiABEiABEiABEiABEiABEiABzyVAgddz5449JwESIAESIAESIAESIAESIAESIAESIAESIAES8HICFHi9fAFw+CRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAp5LgAKv584de04CJEACJEACJEACJEACJEACJEACJEACJEACJODlBCjwevkC4PBJgARIgARIgARIgARIgARIgARIgARIgARIgAQ8lwAFXs+dO/acBEiABEiABEiABEiABEiABEiABEiABEiABEjAywlQ4PXyBcDhkwAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJeC4BCryeO3fsOQmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgJcToMDr5QuAwycBEiABEiABEiABEiABEiABEiABEiABEiABEvBcAhR4PXfu2HMSIAESIAESIAESIAESIAESIAESIAESIAESIAEvJ0CB18sXAIdPAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiTguQQo8Hru3LHnJEACJEACJEACJEACJEACJEACJEACJEACJEACXk6AAq+XLwAOnwRIgARIgARIgARIgARIgARIgARIgARIgARIwHMJUOD13Lljz0mABEiABEiABEiABEiABEiABEiABEiABEiABLycAAVeL18AHD4JkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkIDnEqDA67lzx56TAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAl4OQEKvF6+ADh8EiABEiABEiABEiABEiABEiABEiABEiABEiABzyVAgddz5449JwESIAESIAESIAESIAESIAESIAESIAESIAES8HICFHi9fAFw+CRAAiRAAiSQlAmkSJFCfv/99yTXxffee09+++23JNWvN954Q1Kl+kju3bubpPrFzpAACZAACZAACZAACZAACcQvAQq88cuXrZMACZAACZAACbhIIG3adNK7b3/JmSu34L8hov7jH/+Q//3vf/Kf//xHHj36RbZv3SJzZs+IIa52695LmjZvoc6EMuPGjnJ61mHDR0nVatVVuVUrlsvcOTNt1kEfunbrKc1atBQfnw/k7bffVuXQr+fPn8sfT5/Kwx8eypZNG2X5sqW6IJ3N11fClq1y2g9nBRaEhkh42JIYxVL6+MjIkWMlT9688mmatPLOO++oMn///bf88vPPcuvWTdm8aYMsXxbm8BTZc+SQJWEr9DIvXryQ6lUryh9//OGw3r///W/ZtWe//PuNN/Ryg4P6y4ED+y3qzZ47XwoULOhsmDGOV61UzkLc37UnUt5N8W6Mci+eP5dff/1VHj9+JCdPnJCFC+bJX3/9Zfp8salgPTawq12jqjx58sRuc7PmhErBQoXU8cCAFnLl8mWnp169Zr2kz5BBL7d40QJZsmiB03pt2raXdu076uVu3rghLZs3dlqv8GdFZMasuXo5rPWypYrJy5cvLeramxNHJ7h75440aVTPaR9YgARIgARIgARIgARIwHUCFHhdZ8WSJEACJEACJEAC8UQgaNAQ6dS5m/zzn/90egaITRcunJeB/ftIVNQ5VX7h4jCpXOVz9d/Hv/1GGtSr5bSdrzZulYKFCqtyu3Zulw7t2sSoU7deAxk3YbIunjptVEQ2b9oo3bt2lOIlSgqEubjami9WyYB+vS2aqVOvvkyZOkMgsjqzixcvSLMmDeTxo0c2i5YtW17CV6y2OLZyxTIZPLC/w6YHDRmm5sxoI4YPkbAliyz+duTrE0qwN2uFC+STH3/8Qa/23d2HSvB3ZhC4v1q/Vvr27uGsaJyP2xrbzh3bpGP7QLttG+u0btFUIiMjHPYjS9ZsEhF52KIMuICPM5sWPEsaNLQUdJs2ri9Hj1i2Z93Ozt37JWeuXBZ/zpEtozx79szib67OibESPhzkyp7ZWdd5nARIgARIgARIgARIwAQBCrwmYLEoCZAACZAACZCAewl89NHHsnnbTkmd+lOLhjUv1OcvnquwA7aEzEULQmXM6BGqXnwIvBB3jV6MOA88NH99/Fj+ev6XfPhhKnnzzTdjALl86ZJUqVRWihQtJl+u2xhnYF+sXilB/fvo7YQtXyXlylWwaBeiNwTcJ09+lY8/Sa17GWuF4GkMAXt/xN4Y/bEl8GKcEPSsPTaNlS9dvRXjPO4UeP3z55JHv/yin9KsmLh1yybp2rlDnPk7asCWwIu5KFrYXx4+fGCzqlmBd+bseVKnbkyP1/JlS8qN69ccjs+WwHv92lWpUK6U3XrwPN8bcSjGcXcJvE+fPpXcObLE67ywcRIgARIgARIgARLwNgIUeL1txjleEiABEiABEkhCBLbu2CN5877yRMTW9rZtWiovXKP5fPCB1KlbXwYEDdZFxfgUeOEpevXGHV1YhtA5acI4tf0fAp5miHtbpEgxCWzfQSCUop4m8KIM+m3PTp25oHssBwa0lFOnTtgs+vtvv+lCa+MmzWTy1GC9HITwYUMGyorl4RZ133//fQlf8YX4+xfQ/45YxnlzZbPoPw7aEnjx9/nz5sr4caNt9imwXQcZMXJMjGPOBF6Ei5g2dZLTFQjGENKNZhR4K5YvJdeuXlWHIf6nS59BWrZsLc1btrb4GNCmdQuJ2LfH6fliW8Ao1qLPmocxPGThKWvLzAq8F6/ctOlBvmnjBunRrZPDrtsSeFGhZrXKcu7cWZt14XUO73NrcybwNmpQR65eveIU5csXL5JkXG2nHWcBEiABEiABEiABEkjCBCjwJuHJYddIgARIgARIIDkTqF6jpoSEvtrOD1EM8UEdeY1CzJs+Y47UrFVb4lPgbdkqQMaOfyVEIuSDtehsPTcZMmaSmbPmyp9//ulSjNEb392Xf/3rX6qZ+nVryonj3zqcboSvOH/pui72IclbnVrVHHpxDhg4WMUP1gxxW0eNHGZxHqPAi9i1EK1hGAdEPaOgrVU8c+6SLl7DO1jzsHYm8IbMnaWE8tiYPYHX2FauXLll2869unC+bu2aeA3VYBRrv1yzWho1bqp3xyhCG/toRuAtU6acLFv5haoOr2oI+W0C26l/uxLqwCjwYj41j/Pz56NUnGVrg1f6idNRSqhG3Gst3jTKORN47Y03NnPNOiRAAiRAAiRAAiRAAuYIUOA1x4ulSYAESIAESIAE3EAAYmXUxWvy7rvRSbOwbTtPzqw2xURbp0NisD///Etuf3dLHXZ3iIap02dKw0ZNXBbSYoPErMA7ctRYQdIszVyJ34qye/YdEN/sOVQ1iOcF/fNYeMcaBd579+4qcS9NmrSq/NTJE2X2rFcew/ibUZhHLORPP00jPj4+qnxiC7zog9ErHInmkBwsvsxarJ08LVg+/vgTdTrEh67xeaUYpzYj8Bq9aQ8fOig9u3eRk2fO6222at4kRlI74wmNAi9CVlSrXlMXv20JsnPnLZAaNWurJkLnzbGIsUyBN75WEdslARIgARIgARIggbgToMAbd4ZsgQRIgARIgARIwCSBz6vVkNAFi/VaSIgFb8vYmrsFXnjvwotXs/x5c8QIGRDbvmr1zAq8Rq9ZM8Jlfj9/2bx1p97diePHyryQ2fq/rQXeiePHyJyQBeo4wjpAeDfa4WPHJV269OpPdWtXlyVhK5KUwLvqi3VSomR0jNn79+9J8SIF4zpVdutbi7Wv/etfsiRsuV4efE6dtAy94arAi48g127e1b28teRoB498IxkyZFTnOHb0iENvcaPAi+sLHrkQeWHWyQjfeust5SEOr3J4ZWPeEaZEMwq88baM2DAJkAAJkAAJkAAJxJkABd44I2QDJEACJEACJEACZgkMGTpCOnTqoqq5I+mSuwVe6wRr27dtkc4do7fGu8vMCry37jzQvS/NCuJHvzmpe+Vu3rRRunftqA/DWuAtUbSQGMXkkSOGytLFC1X5wp8VkXVfbVb/fevmDSlburicibqcpATe/QeOSOYs0aL0yRPHpV6dGu6ashjt2BJrIw8elUyZo5OI3bxxXcqVKWFRz1WB1xgmxHiNdOnaQ4IGDVFtwiM7W+Z0gljMtsxa4J0wboweggGhN0oWKyzw2oaNGjNeAtq0Vf+NUBBDBwcJwmJoRoE33pYRGyYBEiABEiABEiCBOBOgwBtnhGyABEiABEiABEjALIGVq9dKyVKl7YpgZttzt8D7zjvvKOFSiy2L/iDmbcS+vbI/Yo9ERu6Ps0evGYEXydogumpWvmxJh7F3rfmtXb9JPitSVP3ZOv6qLYE3ILCdjBodHSv38ePH4pc3OsTD9l37JHfuPOq/A1o1l/0Re00JvIjr+uTJr06nF4JllYplLZJxuRKDt0DBQrJh0za9fcT7Rdzf+DJbYm2hwp/J+g1b9FNaJ3pzVeDdG3FQsvlmV+0YE6ohRvKV67f1hG5IsrcsfKnNIVoLvPgwYPRwjoyMEIT6QFgOtIm2wR7eu5grMwLvo19+kb+e/+UU9b27dwUxrWkkQAIkQAIkQAIkQALuI0CB130s2RIJkAAJkAAJkICLBIwiV0TEXmnTqrmLNW0Xc7fAi7O0DgiU0WMn2O0XtrE/ePC9nDp5UpYsmi/nzp01NQYzAm+lylVl0ZJwvf2M6T5xOV4xKk2eGiyNmzRT9SHE+efPpbdlS+DFwQuXb+gxkvv06i6nTp0UeKfCHj58IEUK+an/NuPBawZQ4QL55Mcff9CrOBN4A9t1kKCBQ/REYkhCljtHFlOczPQPZe2JtUj0lidP3hisHNUxnvv999+Xs+ev6CKudbxcY/vXrl6RiuWjP5ZYmy2BF97F2jzCi7eAX25p2rSFICEfbMvmTdKtSwd1bjMCr6vsXEkO52pbLEcCJEACJEACJEACJBBNgAIvVwIJkAAJkAAJkECCE7h09ZaKBwpbsmiBjBo5LE59iA+BFx1CrOCZs0OUZ6Mz+/mnn6R3z25y8GCks6LquBmBt3uP3tJvwEBVD8IytuWbsT79BkjPXn1VlRcvXkjWTNFJ1GD2BF5jnR9+eCjXr13TY9v27NFFNn61XtWPL4EXIjTEaM2MAi+E37/++kuFrHj33RQCj2vEjtXs119/lZbNGpkW3c0wRVl7Am82X1/ZG3FIbw4C+fp1X6p/u+LBixAMCMUA++nHH6VQgWixWLP6DRrJ9BnRcZQh0ubPk12ePHkSo/u2BF4U2rJ9t+TLl1+V37Z1s5QsVUYgKqMtcH/86FG8CbzuCMlidp5YngRIgARIgARIgASSOwEKvMl9hjk+EiABEiABEkiCBE6ePi8fpkqleqZ5DMalm/El8KJP8GSsXbeetGrVRnyz55AUKVI47OqI4UMkbMkip8MxI/A2aNhYINZpgh48eM3YyFFjpU3b9qqKdeI0ewIvxFNs2zeGqUB9Y8gG/NuMwLt0ySKZNmWi064jTAA8PY1mFHgdNYB4yV07d7Abl9bpyU0UcCTWrl6zXoqXKKlag+AMERbmisB7/NQ5+eijj1X5RQtCZczoERa9wppEArbXX39d/T103hxBfF1rsyfwWife0+ppIRu0dW/GgxcJ5eBN7MzwgQLiPI0ESIAESIAESIAESMB9BCjwuo8lWyIBEiABEiABEnCRwMYtO8Tfv4AqffnSJalSqayLNW0XMwq8ribWQqxWxGyF7dyxTTq2D3SpDxA+CxYqLOUrVJRixUuKn5+/vpUeDcBD1j9fTov4sbYaNiPwZsmaTSIiD+vNFPTLIz///JNL/UWhsOWrpFy5Cqq8deIvewIvyo4dP0mQ7Mto8LaG17VmZgRexMNFXNzYmFHghacp/geD2In/aWb0lo3NeczUcSTWpk79qRz79pTet3FjRsmC+SFOBV7ruQZrCMTWBsHex8dH/RkezQhpYW32BF6UMyaj0+ohwZ6WdM1siAbrMBJmOLIsCZAACZAACZAACZBA3AhQ4I0bP9YmARIgARIgARKIBYEp02ZIo8ZNVU1sLc+X2zcWrbyqYhQiHcUkNZ7EmMQKSaqQrCo2BiFvcdhyPfkY2kAyq3Vr1zhszozAi4aMAqeW4MzV/hrHum/vbgkMaKlXdSTwvvXWW3L+0nU9/IGt+KmJIfAaxcRPPkktB498o4fRgPCLJF4njn/rKp5Yl3PmjTt/4RKp+nl11T6SluXKnlkOHzsuadNGh9hAgjN4zRpt5ux5UqduPdN9siWwOhJ4jfOOk4FX/bo19fNS4DU9BaxAAiRAAiRAAiRAAolGgAJvoqHniUmABEiABEjAewm0aNlaxk2YrAOIq/efMSEa4sV+VjA6vqgjM26DHzo4SJYvC3NWxe5xCHYQ+zRbunihjBwx1GF7ZgVeY9KziH17pE3rFi7197333lMJu+B5DJs9K1imTn4VJsGRwKvKz50vtWrXUXVnzpgm06e+mjf8LbEFXvShUOHPZN1Xm3VvWYQBKFe6uO6N6hKoWBRyJvAiri34aOzhwVyrdl2HAu/FKzdVTGGztmnjBunRrZNFNUcCLwp+ffy04AMFrHLFMnLl8mW9PgVeszPA8iRAAiRAAiRAAiSQeAQo8CYee56ZBEiABEiABLyWQLp06ZUno2a3bt6QsqWLx5pH4c+KKIEP9vLlS8meNYP6f3uGuLKIL6sJb4gfeurkK4E2Nh0xJo6bO2emTJ443mEzZgXe9Ru2KCETBi9VbKe/f/+e067OCVkgNWvV1svV+LySREWd0//tTOD1+eAD6dsvSP773//KqBFDY8S2TQoCLwbTuEkzmTw1WB8XYgWXKFowRixfp8BMFHAm8KKpSVOmS5OmzVWrEJ5/+eVnXVS19uAtU6acLFv5hT7HM6ZPddibipWrSN680aEZbHlXOxN4cd3UrlNP7t65I/ND51qciwKviYXAoiRAAiRAAiRAAiSQyAQo8CbyBPD0JEACJEACJOCtBIxxc8HAOrarPS5FihaT0PmLZfXqFbqICo9HeD5qFjxtiswIti+O9e0fJD169tHL+2ZJb5H4CWIxksD17N5Fzp457XSKrD14a9Wo6rSeWYEX54AorsWbPXfurNSsVtlh37LnyCG79kTqdY5/+40KX2A0ZwKvs8EnFYFXraEx4yWgTVu9y9bxhp2NxexxVwTeN954Q4W5sE5Wh3NZC7xffPmVFCteQnXjwoXzUq1KdNxke5bN11f2RhzSD1u350zgddQ2BV6zq4HlSYAESIAESID+GmPTAAAIq0lEQVQESCDxCFDgTTz2PDMJkAAJkAAJeDUBCF/nLlyVN998U+dw5PAhadumpTx79iwGG8SDDQldKOUrVFLHFi0IlTGjR+jlVq9ZL8VLlFT//vvvv2XggL6y5otVMdpp2qyFjJ84RffePXggUlo2b2xRbtPWnSp5GgyiaLcuHeXhwwc25wtJsTZt2SEpUqRQx//880/lQezMzAq8aG/GrBCpW6++3jQ8eOvVrmGzbwGB7WTEyDH6OMGkSCE/lZDLaMlJ4MW41qzdIEWLvfIGP3Bgv7Rq3sTZdMTquCsCLxoOGjREunTtEeMcRkEW3uTXbt7V4x0P6Nfb5vq1buT02Yvywf/9n/rz18eOSuOGdfUiFHhjNa2sRAIkQAIkQAIkQAIeR4ACr8dNGTtMAiRAAiRAAsmHQIOGjQUilNGwjf3mjRty6dJFefr0d8mTJ69kzJhJUvr46J6oKG8t8CKUwIlTUbpAhjJIuHY+KkquXr0ivr7ZJXeePOKbPYd+OoRxKOifR359/NiiD0aBVzuALfD3792VixcvysOH30uaNOkkT968kilTZou6EBMhKjqz2Ai8EMVPnrmgi8k4B8Zw/do1iYo6K49++UWy58wpOXPmko8//sSiCwtCQ2Tc2FExupWQAi/E76e//+4MjQpBUb5sCfntt9/0ssYkc45iNkMohadzmjRp9bpLFi1QHuLuNlcFXnjDIoaydWxdo8DbslWAIFmgNqdZM6VVHJyZMcEg1kK2zOn0MBoJKfAiWeKL58+ddVfu3b8ntWtUdVqOBUiABEiABEiABEiABFwnQIHXdVYsSQIkQAIkQAIkEA8E4HUbErpIfHx8XG4dQlbf3t1l44avLOpYe606ahAerSOHD5HwsCUxii1eukwqVqricn9QEO0h7u68kNku1YuNwIuG4cm8NHylvpXf2clevHghQf37yPp1X9osmpACr7O+Go8XLpDPwtvYVYEXbUDsP3LshIWgCo/u1atWmOmC07KuCrxoqH3HzjJ02EiLNo0C796Ig5LNN7s6/u03X0vD+q/iJjvqCJKkIVmaZsOGDJRl4UvVPxNS4HUK6/8XsBUr2NW6LEcCJEACJEACJEACJGCbAAVergwSIAESIAESIIEkQWDkqLHSqEmzGF6OWufgzYgwCevWrpHZM4MtYuYaBwDPzSVhKyRHzpx2x3X+fJS0a9NKHjz43m6ZXLlyS+euPaRc+QoWHrPWFSDsRu7fJ31695DHjx65zPL6rXvy+uuvq/KuxOy1brh+g0YybMRoSZkypYVns1YOwu6VK5dV+Al49tqzkqVKy8rVa9Xh27e/k9Ilirg8BhQ0hggYOjhIli8Ls6h/6Oi3kj6985AV1if1z5/Lot+37jzQw00gIR8S8zkyzN+2nXv1Olg/GNudO7dNjc9RYePYmjauL0ePHHbYtjFeMQo2b9pQDh86qPp48/b3+jy2C2wte3bvdLmfR785qXssI4EeEunBkHQOyedgX6xeqYR+V806Bq91nGq0Y5wTV9v9/fffJU/OrK4WZzkSIAESIAESIAESIAEXCFDgdQESi5AACZAACZAACSQcAQhLEOcKFf5MPkmdWn788Uf57tYtOXQwUoUjcNWQ1Cq/n78UKFBIUn/6qTz4/ns5c+aUnDl9yq44bK9thEbInj2HCu+QOUsW1Q+Efjh18oT8/PNPrnYpXsqBV778flKqVBnlBQ3xGrGMrWPtxsvJ2SgJkAAJkAAJkAAJkAAJkECiE6DAm+hTwA6QAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQOwIUOCNHTfWIgESIAESIAESIAES8CACZcqUk0VLl7mlxzl9M5nyJnfLSdkICZAACZAACZAACZAACdghQIGXS4MESIAESIAESIAESCDZE6hZq7bMCVnglnFmy5xOnj9/7pa22AgJkAAJkAAJkAAJkAAJxJUABd64EmR9EiABEiABEiABEiCBJE8AicyyZI17cq+XL//rNMFbkofBDpIACZAACZAACZAACSQrAhR4k9V0cjAkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQALeRIACrzfNNsdKAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQrAhQ4E1W08nBkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJeBMBCrzeNNscKwmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQLIiQIE3WU0nB0MCJEACJEACJEACJEACJEACJEACJEACJEACJOBNBCjwetNsc6wkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQALJigAF3mQ1nRwMCZAACZAACZAACZAACZAACZAACZAACZAACZCANxGgwOtNs82xkgAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJJCsCFHiT1XRyMCRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAt5EgAKvN802x0oCJEACJEACJEACJEACJEACJEACJEACJEACJJCsCFDgTVbTycGQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAl4EwEKvN402xwrCZAACZAACZAACZAACZAACZAACZAACZAACZBAsiJAgTdZTScHQwIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIk4E0EKPB602xzrCRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAsmKAAXeZDWdHAwJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkIA3EaDA602zzbGSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkkKwIUeJPVdHIwJEACJEACJEACJEACJEACJEACJEACJEACJEAC3kSAAq83zTbHSgIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkkKwIUOBNVtPJwZAACZAACZAACZAACZAACZAACZAACZAACZAACXgTgf8H0IBWq5lKGzQAAAAASUVORK5CYII=", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "AI-generated follow-up questions:\n", + "\n", + "* What is the country name for each of the top 10 customers by sales?\n", + "* How many orders does each of the top 10 customers by sales have?\n", + "* What is the total revenue for each of the top 10 customers by sales?\n", + "* What are the customer names and total sales for customers in the United States?\n", + "* Which customers in Africa have returned the most parts with a gross value?\n", + "* What are the total sales for the top 3 customers?\n", + "* What are the customer names and total sales for the top 5 customers?\n", + "* What are the total sales for customers in Europe?\n", + "* How many customers are there in each country?\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "vn.ask(\"What are the top 10 customers by sales?\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SELECT n.n_name as country_name,\n", + " sum(l.l_extendedprice * (1 - l.l_discount)) as total_sales\n", + "FROM snowflake_sample_data.tpch_sf1.nation n join snowflake_sample_data.tpch_sf1.customer c\n", + " ON n.n_nationkey = c.c_nationkey join snowflake_sample_data.tpch_sf1.orders o\n", + " ON c.c_custkey = o.o_custkey join snowflake_sample_data.tpch_sf1.lineitem l\n", + " ON o.o_orderkey = l.l_orderkey\n", + "GROUP BY country_name\n", + "ORDER BY total_sales desc limit 5;\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
COUNTRY_NAMETOTAL_SALES
0FRANCE8960205391.8314
1INDONESIA8942575217.6237
2RUSSIA8925318302.0710
3MOZAMBIQUE8892984086.0088
4JORDAN8873862546.7864
\n", + "
" + ], + "text/plain": [ + " COUNTRY_NAME TOTAL_SALES\n", + "0 FRANCE 8960205391.8314\n", + "1 INDONESIA 8942575217.6237\n", + "2 RUSSIA 8925318302.0710\n", + "3 MOZAMBIQUE 8892984086.0088\n", + "4 JORDAN 8873862546.7864" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABXgAAAPoCAYAAABkvZZOAAAgAElEQVR4XuzdB5QkVdUA4LeIgIFkAFEk5yg5SZSoIKCICUWCqAgKmEUUcwZBgR9FgmBCMkgGCUaQJDmJKEowIEnSL/zn9f7TOzM7u1NdO2+7b9XX53iO7Lx6dd93392uvV1TPWneeed9NnkRIECAAAECBAgQIECAAAECBAgQIECAQDiBSRq84XImYAIECBAgQIAAAQIECBAgQIAAAQIECHQENHhtBAIECBAgQIAAAQIECBAgQIAAAQIECAQV0OANmjhhEyBAgAABAgQIECBAgAABAgQIECBAQIPXHiBAgAABAgQIECBAgAABAgQIECBAgEBQAQ3eoIkTNgECBAgQIECAAAECBAgQIECAAAECBDR47QECBAgQIECAAAECBAgQIECAAAECBAgEFdDgDZo4YRMgQIAAAQIECBAgQIAAAQIECBAgQECD1x4gQIAAAQIECBAgQIAAAQIECBAgQIBAUAEN3qCJEzYBAgQIECBAgAABAgQIECBAgAABAgQ0eO0BAgQIECBAgAABAgQIECBAgAABAgQIBBXQ4A2aOGETIECAAAECBAgQIECAAAECBAgQIEBAg9ceIECAAAECBAgQIECAAAECBAgQIECAQFABDd6giRM2AQIECBAgQIAAAQIECBAgQIAAAQIENHjtAQIECBAgQIAAAQIECBAgQIAAAQIECAQV0OANmjhhEyBAgAABAgQIECBAgAABAgQIECBAQIPXHiBAgAABAgQIECBAgAABAgQIECBAgEBQAQ3eoIkTNgECBAgQIECAAAECBAgQIECAAAECBDR47QECBAgQIECAAAECBAgQIECAAAECBAgEFdDgDZo4YRMgQIAAAQIECBAgQIAAAQIECBAgQECD1x4gQIAAAQIECBAgQIAAAQIECBAgQIBAUAEN3qCJEzYBAgQIECBAgAABAgQIECBAgAABAgQ0eO0BAgQIECBAgAABAgQIECBAgAABAgQIBBXQ4A2aOGETIECAAAECBAgQIECAAAECBAgQIEBAg9ceIECAAAECBAgQIECAAAECBAgQIECAQFABDd6giRM2AQIECBAgQIAAAQIECBAgQIAAAQIENHjtAQIECBAgQIAAAQIECBAgQIAAAQIECAQV0OANmjhhEyBAgAABAgQIECBAgAABAgQIECBAQIPXHiBAgAABAgQIECBAgAABAgQIECBAgEBQAQ3eoIkTNgECBAgQIECAAAECBAgQIECAAAECBDR47QECBAgQIECAAAECBAgQIECAAAECBAgEFdDgDZo4YRMgQIAAAQIECBAgQIAAAQIECBAgQECD1x4gQIAAAQIECBAgQIAAAQIECBAgQIBAUAEN3qCJEzYBAgQIECBAgAABAgQIECBAgAABAgQ0eO0BAgQIECBAgAABAgQIECBAgAABAgQIBBXQ4A2aOGETIECAAAECBAgQIECAAAECBAgQIEBAg9ceIECAAAECBAgQIECAAAECBAgQIECAQFABDd6giRM2AQIECBAgQIAAAQIECBAgQIAAAQIENHjtAQIECBAgQIAAAQIECBAgQIAAAQIECAQV0OANmjhhEyBAgAABAgQIECBAgAABAgQIECBAQIPXHiBAgAABAgQIECBAgAABAgQIECBAgEBQAQ3eoIkTNgECBAgQIECAAAECBAgQIECAAAECBDR47QECBAgQIECAAAECBAgQIECAAAECBAgEFdDgDZo4YRMgQIAAAQIECBAgQIAAAQIECBAgQECD1x4gQIAAAQIECBAgQIAAAQIECBAgQIBAUAEN3qCJEzYBAgQIECBAgAABAgQIECBAgAABAgQ0eO0BAgQIECBAgAABAgQIECBAgAABAgQIBBXQ4A2aOGETIECAAAECBAgQIECAAAECBAgQIEBAg9ceIECAAAECBAgQIECAAAECBAgQIECAQFABDd6giRM2AQIECBAgQIAAAQIECBAgQIAAAQIENHjtAQIECBAgQIAAAQIECBAgQIAAAQIECAQV0OANmjhhEyBAgAABAgQIECBAgAABAgQIECBAQIPXHiBAgAABAgQIECBAgAABAgQIECBAgEBQAQ3eoIkTNgECBAgQIECAAAECBAgQIECAAAECBDR47QECBAgQIECAAAECBAgQIECAAAECBAgEFdDgDZo4YRMgQIAAAQIECBAgQIAAAQIECBAgQECD1x4gQIAAAQIECBAgQIAAAQIECBAgQIBAUAEN3qCJEzYBAgQIECBAgAABAgQIECBAgAABAgQ0eO0BAgQIECBAgAABAgQIECBAgAABAgQIBBXQ4A2aOGETIECAAAECBAgQIECAAAECBAgQIEBAg9ceIECAAAECBAgQIECAAAECBAgQIECAQFABDd6giRM2AQIECBAgQIAAAQIECBAgQIAAAQIENHjtAQIECBAgQIAAAQIECBAgQIAAAQIECAQV0OANmjhhEyBAgAABAgQIECBAgAABAgQIECBAQIPXHiBAgAABAgQIECBAgAABAgQIECBAgEBQAQ3eoIkTNgECBAgQIECAAAECBAgQIECAAAECBDR47QECBAgQIECAAAECBAgQIECAAAECBAgEFdDgDZo4YRMgQIAAAQIECBAgQIAAAQIECBAgQECD1x4gQIAAAQIECBAgQIAAAQIECBAgQIBAUAEN3qCJEzYBAgQIECBAgAABAgQIECBAgAABAgQ0eO0BAgQIECBAgAABAgQIECBAgAABAgQIBBXQ4A2aOGETIECAAAECBAgQIECAAAECBAgQIEBAg9ceIECAAAECBAgQIECAAAECBAgQIECAQFABDd6giRM2AQLNEnjZyxZIa6+zTndRZ515Rvrf//3fZi1ywFcz33zzp3XXW68b5Tln/zw9+eSTAx618AgQIECAAAECBAgQIECg7QIavGPsgEmTJqVll11uQvfGM888k2655eYJnXMQJ5ttttnSEkssWSu0J596Kt15x+21jq160KKLLZ623W77tMjCi6YXv+QlaY455kh//etfO+e99dZb0rXXXJ0eeOD+qtMZV1hgy61elxZ4+cu7Z/nh8celp556qvBZ+zP9gZ/9Qtplt3d3T779tq9LV1/1+/4EU/Css88+e1pjzbXS8suvmJZZZtm04CtfmR599JFOHd511x/TH++8M91y803p3nv/VjCKsaf+8Ec/nvb+wL7dH77z7W9Jl176i5kehxMSIECAAAECBAgQIECAAIFeBDR4x9DabPMt01FHH9eLY6WxO7zh9enKK35XaWzUQe/adff02c99sXb4Cy84f+1jp3fgXnvvk/bc6wPpBS94wbjz33PPX9Jxxxydjv7+d91BOUor32W6+RZbdv/0tFNPTg8//PC4pnUH3HDzHWnOOefsHr71Vpul66//Q93pBvq4pjd4cx4P/NwX03bbvzHNOuus4+bikUceSb/65WXpqO8dOdP+3tTgHTctBhAgQIAAAQIECBAgQIDAAApo8I6RlM232Cp97/vHTni62tDgzXcg5kZV3ddEN3jzHbs/OOHHaaGFFu45pPzr8RddeH7aY/ddej62qQe8f68Ppo9+/JPd5b13j93SOWefVWy5GrzNuIN3t3e/J31y/09XauyOtZlOO/WU9MG931dsnw1NrMFbnNgJCBAgQIAAAQIECBAgQKCAgAavBu+EbqtBavB+7BP7p/ftuXfKj9wY/Xr22Wc7d57mR2fMM888Y47Jx+THASy52Csn1CjyZBq85bLX1Dt4p3VXf67Bxx9/PP3nscfSnHPNlfKjG6b1uvCC89Juu7yzHP7/z6zBW5zYCQgQIECAAAECBAgQIECggIAG7xioudGw8SabTpf77Tu9M22w4UbdMeede3Y65eSTpntMblI0/UuTRjd4f37WGemkn51Yaes+9dST6ZeXX1Zp7HiDNthgo3T8j3461bDLLr0kffMbX03XXXtNyg2moddyyy2f1t9go/T67bZPK6ywYvfPNXhHEs7sBu9O79g5vWLBBbtBHPqtgzpNwSa+mtjgnfdFL0rXXHfTiA9Q8peWHXfM99NB3/zaiFzmx6estfa6aY0110ybbLJZWmbZZbtp1uBt4o63JgIECBAgQIAAAQIECBCYKAEN3pqS+3/qM2mP9+7ZPfobX/tK+vahB9ecrTmHjW7w9sMl37F7zR9uTvPOO++IRu1HPrxPOu2Uk8fFzs3eI486pvNYBw3e/jZ4x01WgwY0scH7jYMOSW/a8S3dLP3nP/9Jm268fvrrX+8ZN3MLLvjK9M2DD01rr7Nu0uAdl8sAAgQIECBAgAABAgQIEGixgAZvzeRPdIN3lllmSautvkbnruAFX/HKdO21V6dfXHxR+vOf764Z4ZTD8p1xm7xm0/Tq9TdM//znP9L5552brr3m6hmed6wJBqHB+5kDP5923X2Pbnj5Tt311l69UlNp+Jo+/8WvpK23fn1aZeXlpmtVMndFkpRSmmfeedMWW2yV1lxr7XT//fel3/3mN+mKK3477t2xM/sO3hlZf24Q5npadbXV04P/+le66qrfp9/8+pfpoYce6mna/IHB0ksvk1ZZdbW0xBJLpn/+85/plltuTjfdeEO67757e5preoOn1+DNe2z99TdMG2/ymjTrc5+bLr7ownTZpb8Y+N8IuOKq69L887+su+wD9v94+sFxx/Rk9rqtt0lPP/2/6fzzzpnmcbPNNltaZpll08KLLJIWXHChNP/886enn346/etf/0o33nB9uvLK3427t/PkM/KIhmj7rackGEyAAAECBAgQIECAAAECAy2gwVszPRPV4M1fAnbCj36acnNgrFd+pMM5Z/887f3+94x4pMDosaedcXZ61Sqrdv443yW33NKLpbe9/R3p4588IM0999xTTZ2fPXvcsUenAz+9f02BsQ/rd4P3ZS9bIP3miqtTbogNvX524k/Sh/f74ISuM082Ubk77Ijvptdt/fpOfLkZvdjCL59urpdcaql0wUVTHmVxxOHfTl/98henWt+Nt9yZcnM/v6677tq07dZbpne/531p3/0+0v3z4QflPZHvuD7sO4dMNVdumufcTut5xqMPuOGG69PWW23W+ePR8R5+2KHpa1/5Unre856XPrDPfmnd9dZPiy++RHrhC1/YWfc99/wlrb/ump1jf3LiKZ07OPMr30291OILTTePs846a/ruUcekDTfaZJpf6JWbvbvvtnP6/ZVXTHeuHPfXvn5wp7E71rrzwbmJeOUVv0tHHnFYuuSSi2doj43V4M37+DuHH5kWWODlY86dz73jDtt1niU9/JX/Pvnlb67s/lFe83gfVAwN/uGPf5bWe/X63WN3fdc70sUXXVBrbTfd+scRe237bV+Xrr5q4r44Lj9ne6d3vCvNNddc040v76tf/+qX6bMHfirdesst0xzba4M38n6rlVAHESBAgAABAgQIECBAgMBACmjw1kzLRDR4c8Ps05/53Ihm5LTC+fsDD6Q37bBduuuPd4455MKLL0tLLrV092e333briP+e1ry56fG2t+ww3YZiL0T9bvDmhs+e7/9AN+Qnnngirbjckp3m4ES+JjJ3P/jhT9KGG27cDW+RV75suvlYccWV0lnnTGm4Hf+DY9OnPvmxqZZ3x133pOc+97mdP//XP/+ZHn3s0c5jJ8Z7nXvOz9N73r3riGFf/+a30o5vfut4h3Z//sc770gbb7he579XWmnldObZ53d/lu/g/Muf/5w+8rFPpHzn5ehXfkbrUCP35+de2H0mcm7SZZtpvVZfY810zHE/HLfZN3T8j390Qvr4Rz805nS7vfs9ndrs5ZX3Wf7ivrqv0Q3eW26+ecRzaKc1b74De8vNN+nkePjr2vyYkhe9qPtHu++6c7rg/HOnG15ulP7hxtu6De2ci6WXWLj23w+/v/r69NL55uue88Sf/jh95EP71CWa6rjTzjwnrfL/H2xVnXR6Dr00eKPvt6pexhEgQIAAAQIECBAgQIDA4Ato8NbM0Yw2ePd4z55p/wM+M9XZc0Py0UceSS968YunavzmuwVXe9XyY/6K+egGby/L+smPf5g+9pH9ejlkmmP73eA9+7yL0vLLr9CN74Tjj0v7f+KjE7K2oUkmOnczo8HbK8Cmm6yfbr/ttu5hX/36Qektb3175WnuvOP2tMlGr+6MH93gzXebDr/DevSkdRq8a6y5VjrplDNGTJXP889//CPd/8D9aZ555uk8KmCo4T00MDeyc0N7+Cs37vJco+/azfP9+8EH05xzzTXVPPn4iW7wVsZOKQ33Hjpun30/nPb90Ee609x8001py82nfJAw1vwHfu6LaZddd+/+6JSTfpb23WevXkIZMfbU03/eeUTG0OuRRx5J66616gw1woefYKwGb/4gIP8Ww3Oe85yUvzBzdB7z36ObbLjemI+/qdrgbcJ+q51UBxIgQIAAAQIECBAgQIDAwAlo8NZMyYw0ePNdizfcfEen+TD0ys/a3f71r0v/+Mffu3+2zeu3TQcfctiIZtJFF56f8q9Mj35Nq8H7m1//Kp133jnp3LN/3vl18i23em365Kc+M+LXpvPdrcsuteiEPM9zdIM3N1r+89hj6TmzztoJ+YknHk/33Xtvuu22W9MhB3+z5+fijpeum2+7Kz3/+c/vDttvn73TySedON5hlX9eInczs8Gbm1+/vPyydN65Z6czzzw9PW+O56XXbr1N+tQBB45ouubHF7xx+226Lnmvzjff/Gm33ffoPKph6PXZAw9IF5w39V2hDz30724Tb3SDdzR2/lDjz3f/KT39v/+bXvrSl3b26bprrdYZVvUO3tHPes3x77brOzsN2aFX/nX6XE+v33a77p/9+9//TiuvMOXO9/yDX1z6q7TY4kt0x+Qa+tIXPpv+8Ifrun+WHwWyxZZbpb0/sG/3DtVSDd58137O1fnnnpPuuOP2zuMnPvyRj011h35+JMb11/+hG2Peq7ke8rqHXmut/qrpPjc4/70055xzdobnvbL6KiuO+DupcqH8/8DRz2zOf5wb+PmxKfmxFjP6jPHcQF5xpZXTDdf/IZ16yknp9NNPnSrn+c7zz3z2C2mOOebohj/WXer5h1UbvE3Yb73m0ngCBAgQIECAAAECBAgQGFwBDd6auZmRBu/oX3fPjaNtXrv5mJHkZ2lecvlvRjR5R99dmQ8c3eC9++4/pfftsVu68cYbppo3/9r2pZf/dsSzeb996MGd56/O6Gt0g3e8+XJ8n/jYh9N1114z3tBKP7/rz/eOaFRutMG603ysRaUJRw0qkbuZ1eC94/bb0u67vWtMj3XXe3X68U9P7q42P7P1VSstOxVRnS9Zm1aDN39Ysf8nPpbuvfdv00xFlQZvfiRHfjTH0OvMM05Pe+055Uv2Rk9+wo9OTOtvsGH3j/PjLfJjLoZewx9tMS2H4XPu8KY3pw/u+6G06cbrd5qXdV+jH9Hw6KOPpv0/+dF02ilT8jJ87tF3x15zzdVpu222GnH6o489Pr1m0yl/t5x68klpnw++f8wQ8wdK3zn8u92fXXvtNZ3nNs/oa/RjGobPlz9cyl9Ul/fm76+8MuU9kb/Aruor3wk++vnDYx079Bzoobt5c9M8/90w+lWlwduU/VbV2DgCBAgQIECAAAECBAgQGHwBDd6aOZqRBu/wBlI+/QavXjvd/ae7phnJ6KZi/jKnnXca+TzU4Q3e/MVsiy/yiumuLH/ZVr5rc+iV76Qb+mKrmiSdw3pt8OZjcryv3fI10/3yo6ox3X3P/d2h4z2zteqcw8eVyN3MaPDeddcf00brrzPdJQ//Qqxp7aGJaPDm59Tuvus70+9++5txU1ClwTs87oceeqhzR27O/bRe+QOO/Hzaodepp5yc9vnAnp3/zF/8dsvtf+r+LN+Bnu9unxmvsb5kbXpfSJa/eO23V075YCQ3OhddaIERoS6+xJLp4kt+2f2z4Y+/GL2m0R8SvWXHN6R89/KMvvIjU048+fTOl+hVeeW9l+9EPvw7h6bzzzunyiGVxlx1zQ3pJS99aWdsvms8P1t49KtKg7cp+60SmkEECBAgQIAAAQIECBAgEEJAg7dmmuo2ePOXGF1/0+3ds950041pq803mW4U+Vem8zFDd5+N1YzttcGb73y7/Y9/6f76dm665V8xn9HXm9/ytpSf15rnu/++e9O//vWv9O9/P9i5q/alL52v8+vs+a7k0a/cSFtvndWn+qKoXuLJTvlXzIde02tm9TLv0NhSuZsZDd6xntE62uC8Cy4Z8aVe+UOC3Gwb/pqIBm/+krUD9v94pRSM1+DNjx+4809/7c510s9+mj6075Qv2ZvWSYY36UbfQT/6LvBDvvXNdNA3vlYp3hkZ1GuDN58r392/6KKLdU+73NKLpccee2xEGKPHjL5jOQ9+5SsXSr/8zZXd4/KXOq6+6oozspwRx+bG+dHHnpDWWXe9qZ6JO72T5C+O2/FN2414HvR4QS233PKd5/6+YsEF08tfvmCab7750lxzz52WXHKp7mNxpvXhz3gN3ibtt/Ec/ZwAAQIECBAgQIAAAQIE4gho8NbMVd0G74YbbpxyQ2/oVbUhNfzZmLmBkxs5w1+9NnjzscPvaBvr7r+aNOMelhu8n/vCl0b86ng+6OKLLki77LzTuMdPb8DwO3jzuEVe+bLp3s3Zy8lK5W5QGrz5i8Xyl0cNvZZZcpH0+OOPjyAatAZv/kK0k089sxtj/pX/hx96aNy0Dt3JmQeObmb+6re/n+pDiPzlYL/77a/TJb+4OF1w/nnTfY7tuCefxoA6Dd6jjj4ubbb5lMco5Ocm5+cPD3+9cYcd00Hf+nb3j+655y9pvbWnfPFZ/sERRx6VXvu6Kc9c/sqXvpCOOHzKMXXXNPq4F7zgBWnnd+2W3vDGHdIrF1p4xHNxp3WO/HdTvpt4end8599IePOb35qWWHKpSg3kug3eJu23icqpeQgQIECAAAECBAgQIECg/wIavDVzULfBm7+UKd8lNvT6+le/nL7z7W+NG8XwptNYzYk6Dd6LfnF5pyEy9BqroTduYDMw4LAjvpu23mbb7gz5Waxrr7HKDMyY0ui7L/OzjYd/OdaMTF4qd4PS4D3mBz9Mm2yy6XT3w6A1ePd4z55p/wM+MyNpTbl5u8KyU75U7dXrb5B++OOfTXfO3Ei+84470gnHH5t+9MPjKz0Hdrwg6zR4P//Fr6R37rxLd+r8POscz+jX8DuW888233TD7iNR8t31t9355+5zvvPa8uMLqjzbdrw1jffz3PBde5310gYbbpRWW32NtPjiS4z4ksSh46d1R/Hcc8+d8rOI86MoennVbfA2ab/14mUsAQIECBAgQIAAAQIECAy2gAZvzfzUbfB+46BD0pt2fEv3rPt84P2db38f75Wfozm8iZEfp5AfgzD0qtPgveCiS9NSSy/TnWOl5ZdK+RmmM+uVHzmRG7JDj56YiLuIb77trhENos8eeEA6+qgpXxw1I2srlbtBafCO/kKuCHfwjn4+dZ38jvV4ks232CrlDyBmm222caf897//nXZ665s6z42dkVedBu8Bn/5s2n2P93ZPO639/sUvfy3t9I6du+OGP8f7fXvunT7+yU91f3b6aaemD+w1Zc4ZWVOdYzfYYKN08CHf6T4vd2iOd7ztzemyyy7pTpkfxXDyaWeN2RDOf4/9/YH703333de5Q/vvf3+g8/dufv5yftVt8DZpv9XJjWMIECBAgAABAgQIECBAYDAFNHhr5qVug3ef/T6c9t3vI92zfu0rX0qHfeeQcaPIz8fMz8kceo1+9ECdBu+vf3dVesUrFpxuw2PcwGZwwDXX3ZRe9OIXd2dZd63V0l//ek/tWc89/xdp2eWW6x5/5hmnp7323KP2fMMPLJW70Q3e/EVZ07t7csUVV0pnnXNBN7Tjf3Bsys9VHf0a/oVwVZ7BG7HBu9+HP5o+uM+Huks/+JtfTz/4wTE95fvpp57q3MU7+pWft7rzLrulnXZ6Z1po4UW6z6sea/J81+uqKy835jxVg6nT4B3dcNx9153TBeefO9Up55l33s4Xyw3/MCXfpZvjvvLqP6T55pu/e8xaq7+qyCMoqjrkcdn+DzfelvIdvkOvnNtvHfyN7n+P/lK43LT9xcUXpn332Tv9+8EHpzrdaWecnVZZdbXp/n033jN4m7TfesmHsQQIECBAgAABAgQIECAw2AIavDXzU7fBu8lrNkvHHHdC96x1nsGbv5Bs2aUWHRF5nQbv6G+Dz3fwzuzX8OcA53PnZ4PmZ4TWfX3sE/unPd8/5Uu28peE5cbbRNyZXCp3oxu8q71qhfSPf/x9mgSD1ODNzfPcRJ/ea6WVVk5nnn1+d8hEfsna6Ocil7z7dMmllkqbbrpF2mjjTTqNwtlnn33Esk895eS0zwf2rLt1U50G709OPKXzxWVDr5VXXGbM5mb++SmnndV5DMLQK3953OWXXZrys5eHXjfccH163ZZTHtNRezETcODh//O99LqtX9+d6cSf/jh95EP7dP47f2nbLbf/qfuz3Nx97RavSflLK6f1mogGb5P22wSkyBQECBAgQIAAAQIECBAgMCACGrw1E1G3wZvvpLvu+lu6Z80Nia0232S6UeS72G685c7u3XdjfUlSrw3efDdwvit46HXLzTenLTbbqKZG/cPu/NNfu3dG5mbs4ou8ov5kKXXuch6+rjzZLy+/LL39rW+qNW/+Ff18l2N+lcrd6Dtnt9h0o3TLLTdPM95BavDmhltuvE3vVbLBm2sjf1Ax9Lrrj3emjTZYt1auezko3wl77PE/ShttNKV2/3jnHWnjDac0W3uZL4+t0+Adfvft008/nZZYdPId+WO98hfoDW/mPvivf6U777wj5S8OG3qNfgxCr2sYPX54/fQ61+gvfjv8sEPTV7/8xc40r1pl1XT6med0p7zyit+lHd4wpRk81rkmosHbpP3Waz6MJ2yyO4YAACAASURBVECAAAECBAgQIECAAIHBFdDgrZmbug3efLrhTc383xu8eu1095/ummYkX/36Qektb3179+e/+uXl6W1v2WHE+F4bvD/+6clp3fVe3Z3jlJN+lvbdZ6+aGvUO22W3d3eaWkOv++67N+VfD5/R1/BGztBcb33zG9Ovf/XLylPnBt73vn9sWn+DjTpfODX0KpG7zxz4+bTr7lMeI/GFzx+YvnfkEdOMdeVXrZLOOGvKr+HPzEc07PCmN6dvHnxoN7aDvvG1lO8End6rZIM3n/f2P/5lxLNy99tn73TySSdWzvXogTn3+Y7Q8V75sQa5wTr0euCB+9Maq6403mHT/HmvDd7XbLp5yh8ODL3uv/++tOZqK0/3/L+/+vr00vnmG3PMv/75z7TKylMeb1J7IcMO/NNf7kvXXnN12mvP9/R8Z/7oWPMHYUN36G712q3T/3z3+90zXXzRBWmXnXeabsgT0eBt0n6biPyagwABAgQIECBAgAABAgQGQ0CDt2YeZqTBO/pXj6+99pq07dZbjhnJy162QOeO1Oc+97ndn2+91WZTfaFTLw3e7d7wxnTIoYd358t3zq62ygrT/NXuqkTveOe70t4f3Dd959Bvpfxr+NN75Tttf3HZr0esa6J+vX6ZZZZN517wi+4dzzmO3LDLjdAD9v/4uMvJj2L4+jcO7nzJU757d8nFXtk9pkTuRjdNp3cn6Dt33iV96tOfHfF4gJnZ4M2251045Yuubrzxhs6vxk/vVbrBO/oDkJyz12z06vTnP9893bjyIxeOOe6H6cLzz0sHfmbyl4wtvcwyKT/HOe/FT3zsQ+nxxx+f5hxzzz135zmxQ6+//OXP6dXrTHkEwrgbbdSAXhq8+U7SSy//7Yhmbd7b49VdfnxJfozJWK9vfO0r6duHHtxr2NMdf/c993d+nuvv52edkT764X3TY489Nu45Rt/VPvru5NHN9ek1p3PD/vNf/ErnS+aGnkFc90vWcuBN2W/jJsEAAgQIECBAgAABAgQIEAgjoMFbM1Uz0uDNzZnrbrh1RHMzN/W23War9PDDD3cjyr/+/b2jjxtxd2K+CzXfjTr6NfoLh/IjF4479vvp1FNO6jap8p2fe75/77TlVq8bcfiRRxyWvvTFz9WUmHLY8C8oevTRR1N+vvCll/wi/e63v+42dfLaP33g59Ob3/K2EQ3Y/FzhV624THryySdnOI48wV5775M+8rFPTDVXvsvyf444LP3y8kvTrbdMeVTGQgstnN7+jnembV6/XfeL5/LBoxu8JXKXz335r68YEWu+S/vjH/1Qp0mZf77tdm9Ib37r20Z80d7QATOzwTvLLLOku/5874hYDz3koPTNr3+1+2cbb7JpeuELX9B9Nm/pBm9u2l17/S1pnnnm6caQG3innXJy+vQBnxhRU8stt3zKDfyc52WWXbYzfvhzsIc//iI3FU/4wbHp+OOPS/lL6oa/8gcUPzvl9LTAAi/v/vHwRwjU2cSjG7y333Zr5+7os848Y8QdxfnvhcOPPGrEF5Dde+/f0tprrDLuafOXl+Vn1w7/wCgflNe6zJKLpPxhz0S+hhq8Q3Pm81x+2SXp9NNPTWefdWb38Sf557m2dtn13WmXXXfvfLgy/DVW83r4lwjmsddcfVV6//v26H5JY953m22xZXrXLrunueaaa8R8M9Lgbcp+m8g8m4sAAQIECBAgQIAAAQIE+iugwVvTf0YavPmUH/rIx9IHPrjfVGfPXwb2xBOPp3nmmXeqL3F65plnOr8CPtYXcI1u8A6fOB+XmxJDd68N/9mDDz6YVllp2Uq/kj4e1ehvoB8+PjdK8/lHN5aGxrx3j93SOWefNd4pevr5Nw46JL1px7dM85jc5Mlx5eeEjmWTDxzd4C2Ruzznqaf/PK262upTxZpjnFZsQ4NnZoM3n/O0M89Jq6yy6ohYc5y5OZgbiDne4Xchl27w5kDWWnuddOJJp42Z69xUzB8gzDnnnCk3qEe/ptXgHV1Due7y3ae5Nuedd94R0zzxxBOdL/OrcnfqtDbk6Abv0Lhsm+fNvvmu4bH2w447bJd+99vfVKqPI7939FQf8uS7a/d877srHd/LoNEN3tHH5jXl/+UaHCs3efzZPz8zve89u0912q994+DOB0WjXznfz3nOc6Y5Xx4/Iw3epuy3XvJoLAECBAgQIECAAAECBAgMtoAGb838zGiDN582N0TznabjNfDy2Hxn705v2zFdd+01Y0Y8vQbvtJaY7/LdcYdtU24qT8Rreg3eac2fmzFf/tLn0/e/d+REhDDVHG99206dX8+eVmN5eifNTcFjjv5e+tpXvjTVsInMXZ58wQVf2bmLd1pNrqEAcmPq91dekfIXZg29ZnaDN9+9mmOd3r6d2Q3ebPHq9TdI3znsyDTvi17U01764Qk/SJ/8+Ec6x4x+BEWVifJd56/batN0+21THtdQ5bjRY6bV4J3eXLk5+qF9906nnXpK5VOOdcf4umut1r3ztfJEFQaed8ElncdeVPk7bvR0+YOpn534k85jHab1uuKq69L8879s3EiGGslzzDFHZ+yMNnibsN/GRTOAAAECBAgQIECAAAECBMIIaPDWTNVHP/7J9P69Ptg9+ktf+Fw68n8O63m2fHfjccf/OL3oxS8e89jciPjl5ZelXd+104hfZx49eHSD94Lzz00bbfyaMRub+W7A/PiGoW+k7znoaRwwz7zzpt3f/Z70+m237zxWYLymTv7m+91323mGn/07Xvyzzz57+vgnPpW22/6Naa655+7cZTqtV24433rrLenoo7477hd1TVTuhmLJZj8+8eROs3es1z33/CXt9q53pGfTs+n8Cy/tDsmxfvbAA6Y6ZPiXj+Vm/habbTRdqtF3di61+ELTfGRGfn7tsT/40TRjHf5c6dFN06O++z/p85/7zHhp6/x8+Bdj5YbfogstMO5x+Rmzu+62Rxpq5o11QM5zbpR/77v/ky668PwRQ/JjGvb90Ec6X7CX7yyd3l75yY9/mD7/2U9PyKNFPrH/Aem975vyRYeXXHJxWm+99af54UR+LMOb3rBtys/+7eW1zrrrpZ+cOKUhXGVv9DL/6LFDj17YYcc3p0UWWXTcvxdyM/bSSy5O++37gXH/bsi1fdgR302bbT72M8zznrn88kvTB/Z6Xzrq+8d1PxiZ1l764D4fSvt9+KPdJVS5MzrqfpuRnDqWAAECBAgQIECAAAECBAZLQIN3QPKRnxG54UYbp7XWXjfNPfc86a677kyXX3ZppwmVm7zjvcb6krV8N+jyy6+Qll1u+bToYoul2269tdPMGv6c3/Hmrfvz3NRZZdXV0uKLL5EWXWzx9JKXvDT997//TTfc8If0u9/8uvMlcVXWVff80zsuN9PXWmudzmMG8pc13f/Afenee+9NV/7utyl/aVivrxnN3ejzrb7GmmnttddNSyy5VHr66afSZZf+Il180YUz9Ov/va6p6vj8JYBrrLlmZ4/957H/dO4C/c2vf5Xuu2/kc3qrzjeR43JzNj93evXV1+zs/xzTzTfdlK7/w3UpN8urvPK+XWnlV6X87N48xyMPP9z5AODGG65PN9xwfcqNwpKv/GHEppttkVZ+1avSYostnvKzrfOjGM4//9xxm5/Tiuvn516YVlhhxe6Pd9l5p3TxRReUXMaIufMHGEsvs2xaaqml0yKLLppmn232dOedd3Tycs01V9X6jYKFF1k0bbrZ5mnFFVZKs80+W7r3b39LN910Yzr9tFMm/LnC04Jqwn6baZvAiQgQIECAAAECBAgQIEBgQgU0eCeUs3+TjdXg7V80zkyAwCAK5Mdr/PI3V3ZDy8/gzl9u6EWAAAECBAgQIECAAAECBAjEFdDgjZu7EZFr8DYkkZZBoKDA0ccen16z6ebdMxzyrW+mg77xtYJnNDUBAgQIECBAgAABAgQIECBQWkCDt7TwTJpfg3cmQTsNgaAC+bEpN9x8R/eL/PKzbpddatHpPts76FKFTYAAAQIECBAgQIAAAQIEWiWgwduQdGvwNiSRlkGgkMCBn/ti2mXX3buz5y9i3H3XnQudzbQECBAgQIAAAQIECBAgQIDAzBLQ4J1Z0oXPo8FbGNj0BIIL3HzbXen5z39+dxXrr7tm+vOf7w6+KuETIECAAAECBAgQIECAAAECGrwN2QPHnfDjtPba63ZW88jDD6fVV12xISuzDAIEZlRgpZVWTj875YzuNDdc/4f0xu23mdFpHU+AAAECBAgQIECAAAECBAgMgIAG7wAkQQgECBAgQIAAAQIECBAgQIAAAQIECBCoI6DBW0fNMQQIECBAgAABAgQIECBAgAABAgQIEBgAAQ3eAUiCEAgQIECAAAECBAgQIECAAAECBAgQIFBHQIO3jppjCBAgQIAAAQIECBAgQIAAAQIECBAgMAACGrwDkAQhECBAgAABAgQIECBAgAABAgQIECBAoI6ABm8dNccQIECAAAECBAgQIECAAAECBAgQIEBgAAQ0eAcgCUIgQIAAAQIECBAgQIAAAQIECBAgQIBAHQEN3jpqjiFAgAABAgQIECBAgAABAgQIECBAgMAACGjwDkAShECAAAECBAgQIECAAAECBAgQIECAAIE6Ahq8ddQcQ4AAAQIECBAgQIAAAQIECBAgQIAAgQEQ0OAdgCQIgQABAgQIECBAgAABAgQIECBAgAABAnUENHjrqDmGAAECBAgQIECAAAECBAgQIECAAAECAyCgwTsASRACAQIECBAgQIAAAQIECBAgQIAAAQIE6gho8NZRcwwBAgQIECBAgAABAgQIECBAgAABAgQGQECDdwCSIAQCBAgQIECAAAECBAgQIECAAAECBAjUEdDgraPmGAIECBAgQIAAAQIECBAgQIAAAQIECAyAgAbvACRBCAQIECBAgAABAgQIECBAgAABAgQIEKgjoMFbR80xBAgQIECAAAECBAgQIECAAAECBAgQGAABDd4BSIIQCBAgQIAAAQIECBAgQIAAAQIECBAgUEdAg7eOmmMIECBAgAABAgQIECBAgAABAgQIECAwAAIavAOQBCEQIECAAAECBAgQIECAAAECBAgQIECgjoAGbx01xxAgQIAAAQIECBAgQIAAAQIECBAgQGAABDR4ByAJQiBAgAABAgQIECBAgAABAgQIECBAgEAdAQ3eOmqOIUCAAAECBAgQIECAAAECBAgQIECAwAAIaPAOQBKEQIAAAQIECBAgQIAAAQIECBAgQIAAgToCGrx11BxDgAABAgQIECBAgAABAgQIECBAgACBARDQ4B2AJAiBAAECBAgQIECAAAECBAgQIECAAAECdQQ0eOuoOYYAAQIECBAgQIAAAQIECBAgQIAAAQIDIKDBOwBJEAIBAgQIECBAgAABAgQIECBAgAABAgTqCGjw1lFzDAECBAgQIECAAAECBAgQIECAAAECBAZAQIN3AJIgBAIECBAgQIAAAQIECBAgQIAAAQIECNQR0OCto+YYAgQIECBAgAABAgQIECBAgAABAgQIDICABu8AJEEIBAgQIECAAAECBAgQIECAAAECBAgQqCOgwVtHzTEECBAgQIAAAQIECBAgQIAAAQIECBAYAAEN3gFIghAIECBAgAABAgQIECBAgAABAgQIECBQR0CDt46aYwgQIECAAAECBAgQIECAAAECBAgQIDAAAhq8A5AEIRAgQIAAAQIECBAgQIAAAQIECBAgQKCOgAZvHTXHECBAgAABAgQIECBAgAABAgQIECBAYAAENHgHIAlCIECAAAECBAgQIECAAAECBAgQIECAQB0BDd46ao4hQIAAAQIECBAgQIAAAQIECBAgQIDAAAho8A5AEoRAgAABAgQIECBAgAABAgQIECBAgACBOgIavHXUHEOAAAECBAgQIECAAAECBAgQIECAAIEBENDgHYAkCIEAAQIECBAgQIAAAQIECBAgQIAAAQJ1BDR466g5hgABAgQIECBAgAABAgQIECBAgAABAgMgoME7AEkQAgECBAgQIECAAAECBAgQIECAAAECBOoIaPDWUXMMAQIECBAgQIAAAQIECBAgQIAAAQIEBkBAg3cAkiAEAgQIECBAgAABAgQIECBAgAABAgQI1BHQ4K2j5hgCBAgQIECAAAECBAgQIECAAAECBAgMgIAG7wAkQQgECBAgQIAAAQIECBAgQIAAAQIECBCoI6DBW0fNMQQIECBAgAABAgQIECBAgAABAgQIEBgAAQ3eAUiCEAgQIECAAAECBAgQIECAAAECBAgQIFBHQIO3jppjCBAgQIAAAQIECBAgQIAAAQIECBAgMAACGrwDkAQhECBAgAABAgQIECBAgAABAgQIECBAoI6ABm8dNccQIECAAAECBAgQIECAAAECBAgQIEBgAAQ0eAcgCUIgQIAAAQIECBAgQIAAAQIECBAgQIBAHQEN3jpqjiFAgAABAgQIECBAgAABAgQIECBAgMAACGjwDkAShECAAAECBAgQIECAAAECBAgQIECAAIE6Ahq8ddQcQ4AAAQIECBAgQIAAAQIECBAgQIAAgQEQ0OAdgCQIgQABAgQIECBAgAABAgQIECBAgAABAnUENHjrqDmGAAECBAgQIECAAAECBAgQIECAAAECAyCgwTsASRACAQIECBAgQIAAAQIECBAgQIAAAQIE6gho8NZRcwwBAgQIECBAgAABAgQIECBAgAABAgQGQECDdwCSIAQCBAgQIECAAAECBAgQIECAAAECBAjUEdDgraPmGAIECBAgQIAAAQIECBAgQIAAAQIECAyAgAbvACRBCAQIECBAgAABAgQIECBAgAABAgQIEKgjoMFbR80xBAgQIECAAAECBAgQIECAAAECBAgQGAABDd4BSIIQCBAgQIAAAQIECBAgQIAAAQIECBAgUEdAg7eOmmMIECBAgAABAgQIECBAgAABAgQIECAwAAIavAOQBCEQIECAAAECBAgQIECAAAECBAgQIECgjoAGbx01xxAgQIAAAQIECBAgQIAAAQIECBAgQGAABDR4ByAJQiBAgAABAgQIECBAgAABAgQIECBAgEAdAQ3eOmqOIUCAAAECBAgQIECAAAECBAgQIECAwAAIaPAOQBKEQIAAAQIECBAgQIAAAQIECBAgQIAAgToCGrx11BxDgAABAgQIECBAgAABAgQIECBAgACBARDQ4B2AJAiBAAECBAgQIECAAAECBAgQIECAAAECdQQ0eOuoOYYAAQIECBAgQIAAAQIECBAgQIAAAQIDIKDBOwBJEAIBAgQIECBAgAABAgQIECBAgAABAgTqCGjw1lFzDAECBAgQIECAAAECBAgQIECAAAECBAZAQIN3AJIgBAIECBAgQIAAAQIECBAgQIAAAQIECNQR0OCto+YYAgQIECBAgAABAgQIECBAgAABAgQIDICABu8AJEEIBAgQIECAAAECBAgQIECAAAECBAgQqCOgwVtHzTEECBAgQIAAAQIECBAgQIAAAQIECBAYAAEN3gFIghAIECBAgAABAgQIECBAgAABAgQIECBQR0CDt46aYwgQIECAAAECBAgQIECAAAECBAgQIDAAAhq8A5AEIRAgQIAAAQIECBAgQIAAAQIECBAgQKCOgAZvHTXHECBAgAABAgQIECBAgAABAgQIECBAYAAENHgHIAlCIECAAAECBAgQIECAAAECBAgQIECAQB0BDd46ao4hQIAAAQIECBAgQIAAAQIECBAgQIDAAAho8A5AEoRAgAABAgQIECBAgAABAgQIECBAgACBOgIavHXUHEOAAAECBAgQIECAAAECBAgQIECAAIEBENDgHYAkCIEAAQIECBAgQIAAAQIECBAgQIAAAQJ1BDR466g5hgABAgQIECBAgAABAgQIECBAgAABAgMgoME7AEkQAgECBAgQIECAAAECBAgQIECAAAECBOoIaPDWUXMMAQIECBAgQIAAAQIECBAgQIAAAQIEBkBAg3cAkiAEAgQIECBAgAABAgQIECBAgAABAgQI1BHQ4K2j5hgCBAgQIECAAAECBAgQIECAAAECBAgMgIAG7wAkQQgECBAgQIAAAQIECBAgQIAAAQIECBCoI6DBW0fNMQQIECBAgAABAgQIECBAgAABAgQIEBgAAQ3eAUiCEAgQIECAAAECBAgQIECAAAECBAgQIFBHQIO3jppjCBAgQIAAAQIECBAgQIAAAQIECBAgMAACGrwDkAQhECBAgAABAgQIECBAgAABAgQIECBAoI6ABm8dNccQIECAAAECBAgQIECAAAECBAgQIEBgAAQ0eAcgCUIgQIAAAQIECBAgQIAAAQIECBAgQIBAHQEN3jpqjiFAgAABAgQIECBAgAABAgQIECBAgMAACGjwDkAShECAAAECBAgQIECAAAECBAgQIECAAIE6Ahq8ddQcQ4AAAQIECBAgQIAAAQIECBAgQIAAgQEQ0OAdgCQIgQABAgQIECBAgAABAgQIECBAgAABAnUENHjrqDmGAAECBAgQIECAAAECBAgQIECAAAECAyCgwTsASRACAQIECBAgQIAAAQIECBAgQIAAAQIE6gho8NZRcwwBAgQIECBAgAABAgQIECBAgAABAgQGQECDdwCSIAQCBAgQIECAAAECBAgQIECAAAECBAjUEdDgraPmGAIECBAgQIAAAQIECBAgQIAAAQIECAyAgAbvACRBCAQIECBAgAABAgQIECBAgAABAgQIEKgjoMFbR80xBAgQIECAAAECBAgQIECAAAECBAgQGAABDd4BSIIQCBAgQIAAAQIECBAgQIAAAQIECBAgUEdAg7eOmmMIECBAgAABAgQIECBAgAABAgQIECAwAAIavAOQBCEQIECAAAECBAgQIECAAAECBAgQIECgjoAGbx01xxAgQIAAAQIECBAgQIAAAQIECBAgQGAABDR4ByAJQiBAgAABAgQIECBAgAABAgQIECBAgEAdAQ3eOmqOIUCAAAECBAgQIECAAAECBAgQIECAwAAIaPAOQBKEQIAAAQIECBAgQIAAAQIECBAgQIAAgToCGrx11BxDgAABAgQIECBAgAABAgQIECBAgACBARDQ4B2AJAiBAAECBAgQIECAAAECBAgQIECAAAECdQQ0eOuoOYYAAQIECBAgQIAAAQIECBAgQIAAAQIDIKDBOwBJEAIBAgQIECBAgAABAgQIECBAgAABAgTqCGjw1lFzzEALPPPM7OnJJ3dLKb1woOMUHIHJAg+nOeY4Nk2a9AQQAgQIECBAgAABAgQIECBAgEDPAhq8PZM5YNAFnnnmeenhh69Ozz47/6CHKj4CadKkv6a5514rTZr0nxAazzzzwvTf/y6VUpo1RLyCbLvA02nWWe9MkyY9HALi2WefTZMmTQoRqyAJZAF71j4gQIAAAQIECAyGgAbvYORBFBMooME7gZimKi4Qr8HrA5Tim8IJJkwgWn39978vSpMm5Q9PZpkwAxMRKCfwTErpv2mWWf5Z7hRmJkCAAAECBAgQqCSgwVuJyaBIAhq8kbIl1mgNKPVlz0YSUF+RsiXWaALR6iuar3gJECBAgAABAr0IaPD2omVsCAENqBBpEuT/C0T7B7L6snUjCaivSNkSazSBePU1T5o06bFozOJtqUB+/ElKc6ZZZnmwpQKWTYAAAQK9Cmjw9ipm/MALaEANfIoEOEwg3j+QPaLBBo4joL7i5Eqk8QRi1tfl6dln54uHLeLWCUya9Lc099ybBPqOhrnSs8/O5jnyrdupkRf8VJpllociL0DsBKYS0OC1KRonoMHbuJQ2ekEx/4HsSwwbvSkbtDj11aBkWsrACaivgUuJgBokEK++Zk9PPPH59OyzczUoC5bSXIEH0/Of/7k0adLjzV2ilbVSQIO3lWlv9qI1eJud36atLt4FvDt4m7YHm7we9dXk7FpbvwXUV78z4PxNFlBfTc6utfVbIFp99dvL+eMIaPDGyZVIKwpo8FaEMmwgBKJdYKivgdg2gqgooL4qQhlGoIaA+qqB5hACFQXUV0UowwjUEIhWXzWW6JCWCmjwtjTxTV62BlSTs9u8tUW7wFBfzduDTV6R+mpydq2t3wLqq98ZcP4mC6ivJmfX2votEK2++u3l/HEENHjj5EqkFQU0oCpCGTYQAtEuMNTXQGwbQVQUUF8VoQwjUENAfdVAcwiBigLqqyKUYQRqCESrrxpLdEhLBTR4W5r4Ji9bA6rJ2W3e2qJdYKiv5u3BJq9IfTU5u9bWbwH11e8MOH+TBdRXk7Nrbf0WiFZf/fZy/jgCGrxxciXSigIaUBWhDBsIgWgXGOprILaNICoKqK+KUIYRqCGgvmqgOYRARQH1VRHKMAI1BKLVV40lOqSlAhq8LU18k5etAdXk7DZvbdEuMNRX8/Zgk1ekvpqcXWvrt4D66ncGnL/JAuqrydm1tn4LRKuvfns5fxwBDd44uRJpRQENqIpQhg2EQLQLDPU1ENtGEBUF1FdFKMMI1BBQXzXQHEKgooD6qghlGIEaAtHqq8YSHdJSAQ3elia+ycvWgGpydpu3tmgXGOqreXuwyStSX03OrrX1W0B99TsDzt9kAfXV5OxaW78FotVXv72cP46ABm+cXIm0ooAGVEUowwZCINoFhvoaiG0jiIoC6qsilGEEagiorxpoDiFQUUB9VYQyjEANgWj1VWOJDmmpgAZvSxPf5GVrQDU5u81bW7QLDPXVvD3Y5BWpryZn19r6LaC++p0B52+ygPpqcnatrd8C0eqr317OH0dAgzdOrkRaUUADqiKUYQMhEO0CQ30NxLYRREUB9VURyjACNQTUVw00hxCoKKC+KkIZRqCGQLT6qrFEh7RUQIO3pYlv8rI1oJqc3eatLdoFhvpq3h5s8orUV5Oza239FlBf/c6A8zdZQH01ObvW1m+BaPXVby/njyOgwRsnVyKtKKABKyrD4QAAIABJREFUVRHKsIEQiHaBob4GYtsIoqKA+qoIZRiBGgLqqwaaQwhUFFBfFaEMI1BDIFp91ViiQ1oqoMHb0sQ3edkaUE3ObvPWFu0CQ301bw82eUXqq8nZtbZ+C6ivfmfA+ZssoL6anF1r67dAtPrqt5fzxxHQ4I2TK5FWFNCAqghl2EAIRLvAUF8DsW0EUVFAfVWEMoxADQH1VQPNIQQqCqivilCGEaghEK2+aizRIS0V0OBtaeKbvGwNqCZnt3lri3aBob6atwebvCL11eTsWlu/BdRXvzPg/E0WUF9Nzq619VsgWn3128v54who8MbJlUgrCmhAVYQybCAEol1gqK+B2DaCqCigvipCGUaghoD6qoHmEAIVBdRXRSjDCNQQiFZfNZbokJYKaPC2NPFNXrYGVJOz27y1RbvAUF/N24NNXpH6anJ2ra3fAuqr3xlw/iYLqK8mZ9fa+i0Qrb767eX8cQQ0eOPkSqQVBTSgKkIZNhAC0S4w1NdAbBtBVBRQXxWhDCNQQ0B91UBzCIGKAuqrIpRhBGoIRKuvGkt0SEsFNHhbmvgmL1sDqsnZbd7aol1gqK/m7cEmr0h9NTm71tZvAfXV7ww4f5MF1FeTs2tt/RaIVl/99nL+OAIavHFyJdKKAhpQFaEMGwiBaBcY6msgto0gKgqor4pQhhGoIaC+aqA5hEBFAfVVEcowAjUEotVXjSU6pKUCGrwtTXyTl60B1eTsNm9t0S4w1Ffz9mCTV6S+mpxda+u3gPrqdwacv8kC6qvJ2bW2fgtEq69+ezl/HAEN3ji5EmlFAQ2oilCGDYRAtAsM9TUQ20YQFQXUV0UowwjUEFBfNdAcQqCigPqqCGUYgRoC0eqrxhId0lIBDd6WJr7Jy9aAanJ2m7e2aBcY6qt5e7DJK1JfTc6utfVbQH31OwPO32QB9dXk7FpbvwWi1Ve/vZw/joAGb5xcibSigAZURSjDBkIg2gWG+hqIbSOIigLqqyKUYQRqCKivGmgOIVBRQH1VhDKMQA2BaPVVY4kOaamABm9LE9/kZWtANTm7zVtbtAsM9dW8PdjkFamvJmfX2votoL76nQHnb7KA+mpydq2t3wLR6qvfXs4fR0CDN06uRFpRQAOqIpRhAyEQ7QJDfQ3EthFERQH1VRHKMAI1BNRXDTSHEKgooL4qQhlGoIZAtPqqsUSHtFRAg7eliW/ysjWgmpzd5q0t2gWG+mreHmzyitRXk7Nrbf0WUF/9zoDzN1lAfTU5u9bWb4Fo9dVvL+ePI6DBGydXIq0ooAFVEcqwgRCIdoGhvgZi2wiiooD6qghlGIEaAuqrBppDCFQUUF8VoQwjUEMgWn3VWKJDWiqgwdvSxDd52RpQTc5u89YW7QJDfTVvDzZ5Reqrydm1tn4LqK9+Z8D5myygvpqcXWvrt0C0+uq3l/PHEdDgjZMrkVYU0ICqCGXYQAhEu8BQXwOxbQRRUUB9VYQyjEANAfVVA80hBCoKqK+KUIYRqCEQrb5qLNEhLRXQ4G1p4pu8bA2oJme3eWuLdoGhvpq3B5u8IvXV5OxaW78F1Fe/M+D8TRZQX03OrrX1WyBaffXby/njCGjwxsmVSCsKaEBVhDJsIASiXWCor4HYNoKoKKC+KkIZRqCGgPqqgeYQAhUF1FdFKMMI1BCIVl81luiQlgpo8LY08U1etgZUk7PbvLVFu8BQX83bg01ekfpqcnatrd8C6qvfGXD+JguoryZn19r6LRCtvvrt5fxxBDR44+RKpBUFNKAqQhk2EALRLjDU10BsG0FUFFBfFaEMI1BDQH3VQHMIgYoC6qsilGEEaghEq68aS3RISwU0eFua+CYvWwOqydlt3tqiXWCor+btwSavSH01ObvW1m8B9dXvDDh/kwXUV5Oza239FohWX/32cv44Ahq8cXIl0ooCGlAVoQwbCIFoFxjqayC2jSAqCqivilCGEaghoL5qoDmEQEUB9VURyjACNQSi1VeNJTqkpQIavC1NfJOXrQHV5Ow2b23RLjDUV/P2YJNXpL6anF1r67eA+up3Bpy/yQLqq8nZtbZ+C0Srr357OX8cAQ3eOLkSaUUBDaiKUIYNhEC0Cwz1NRDbRhAVBdRXRSjDCNQQUF810BxCoKKA+qoIZRiBGgLR6qvGEh3SUgEN3pYmvsnL1oBqcnabt7ZoFxjqq3l7sMkrUl9Nzq619VtAffU7A87fZAH11eTsWlu/BaLVV7+9nD+OgAZvnFyJtKKABlRFKMMGQiDaBYb6GohtI4iKAuqrIpRhBGoIqK8aaA4hUFFAfVWEMoxADYFo9VVjiQ5pqYAGb0sT3+Rla0A1ObvNW1u0Cwz11bw92OQVqa8mZ9fa+i2gvvqdAedvsoD6anJ2ra3fAtHqq99ezh9HQIM3Tq5EWlFAA6oilGEDIRDtAkN9DcS2EURFAfVVEcowAjUE1FcNNIcQqCigvipCGUaghkC0+qqxRIe0VECDt6WJb/KyNaCanN3mrS3aBYb6at4ebPKK1FeTs2tt/RZQX/3OgPM3WUB9NTm71tZvgWj11W8v548joMEbJ1cirSigAVURyrCBEIh2gaG+BmLbCKKigPqqCGUYgRoC6qsGmkMIVBRQXxWhDCNQQyBafdVYokNaKqDB29LEN3nZGlBNzm7z1hbtAkN9NW8PNnlF6qvJ2bW2fguor35nwPmbLKC+mpxda+u3QLT66reX88cR0OCNkyuRVhTQgKoIZdhACES7wFBfA7FtBFFRQH1VhDKMQA0B9VUDzSEEKgqor4pQhhGoIRCtvmos0SEtFdDgbWnip7fshRdZND3+n/+kBx64P6SOBlTItLU26GgXGOqrtVs15MLVV8i0CTqIgPoKkihhhhRQXyHTJuggAtHqKwirMAdAQIN3AJIwCCHsuvse6QMf3C/NM888adKkSZ2Qnn322fT3vz+QvviFz6bTTjl5qjC3eu3W6fNf+PJUf/7Ms8+kp556Kj3x+OPpuuuuTd878oh0yy03z7RlakDNNGonmgCBaBcY6msCkm6KmSagvmYatRO1UEB9tTDpljzTBNTXTKN2ohYKRKuvFqbIkmsKaPDWhGvKYbmZe8FFl6Yll1p6uku68ILz0m67vHPEmD3es2fa/4DPVKI45uij0oGf3r/S2BkdpAE1o4KOn5kC0S4w1NfM3B3ONaMC6mtGBR1PYNoC6svuIFBOQH2VszUzgWj1JWMEqgpo8FaVaui4bx16eNr+DW/srO7vDzyQjj3m++mHP/xBmn+++dO7dt09vXGHHdNss83W+fn+n/hoOuH447oSwxu899zzl/Tnu+/u/Gz22WdPz3/+C9Kiiy2W5phjju74/fbZO5180onFJTWgihM7wQQKRLvAUF8TmHxTFRdQX8WJnaDFAuqrxcm39OIC6qs4sRO0WCBafbU4VZbeo4AGb49gTRt+6x13d5qwTz/9dFp5haXTY489NmKJa629TjrxpNM6f3bN1Vel7V7/2jEbvF/50hfSEYd/eyqe733/2LT5Flt1/vziiy9Mu7zz7cUJNaCKEzvBBApEu8BQXxOYfFMVF1BfxYmdoMUC6qvFybf04gLqqzixE7RYIFp9tThVlt6jgAZvj2BNG373PZO/SO2hhx5KKy2/1JjL+9Nf7us8l/f+++9La662ck8N3pVWWjmdefb5nWNuvummtOXmGxcn1IAqTuwEEygQ7QJDfU1g8k1VXEB9FSd2ghYLqK8WJ9/Siwuor+LETtBigWj11eJUWXqPAhq8PYI1bfh1N9za+WK1/Np+29elq6/6/YglLr3MMun8Cy/t/NlZZ56e3v++PXpq8G63/RvSId8+onPMYd85JH3tK18qTqgBVZzYCSZQINoFhvqawOSbqriA+ipO7AQtFlBfLU6+pRcXUF/FiZ2gxQLR6qvFqbL0HgU0eHsEa9rww474btp6m207y3r22WfTN7/+1fTtQw/uLvOkU85Ia6y5Vue/37j9Nun3V15RucG73HLLp5NOPTO94AUvSM8880xaZ81V03333VucUAOqOLETTKBAtAsM9TWByTdVcQH1VZzYCVosoL5anHxLLy6gvooTO0GLBaLVV4tTZek9Cmjw9gjWtOFzzjlnOumUM9Myyy7bXdoTTzyRzjv3nPSKV7wirb7Gmp0/P/4Hx6ZPffJjI5Y//EvW8rN7H330kc7Pnzvrc9Psc8zRaezm11NPPZW2ee3m6ZZbbp4pfBpQM4XZSSZIINoFhvqaoMSbZqYIqK+ZwuwkLRVQXy1NvGXPFAH1NVOYnaSlAtHqq6VpsuwaAhq8NdCaeMhvr7wmLbDAy8dc2sHf/Hr61sHfmOpnwxu845k8/PDD6UP7fiCdf945I4bO+/Ilxju055//62/3pof+/fv07LPz93ysAwjMbIF8gTHPvOumeReIsV/V18zeIc43IwLqa0b0HEtg+gLqyw4hUE5AfZWzNTOBkvX14N/uAEygbwIavH2jH4wT57ts82MU8uMU8iMazjj9tLTKqqumhRZauBtg/vMjDv92+uqXvzgi6OEN3nvu+Uu6+09/6vw8fyHbHHPMkfLdwQsvsmiabbbZusft+d7d08/POrP73/MvvsqEQ9z/x9vSvx/U4J1wWBMWEcgXGPPOu26ab7GJ/7CjRMDqq4SqOUsJqK9SsuYlkK/3vH/ZBwRKCaivUrLmJVD2/ev+O69BTKBvAhq8faMfjBMP3bmbm7jvf9+7u83XBRd8ZfrCl7+aNt74Nd1Azzv37LTH7rt0/3t4g/crX/pCpwk81uuII49Kr33dNp0fPfjgg+lVKy7THTbb81444RBP/ue/6aGHrnYH74TLmrCEQOdXhOZZO83+vEklpp/wOdXXhJOasKCA+iqIa+rWC6iv1m8BAAUF1FdBXFO3XqBkfT31+KOt9wXQPwEN3v7Z9/3Mm2+xVfre94/txHHLzTenLTbbaKqYNnnNZumY407o/vkySy6SHn/88c5/V23w5rHX33R7mmuuuTrHDZ+jBIJnhJZQNWcpgWjPgFJfpXaCeUsIqK8SquYkMFlAfdkJBMoJqK9ytmYmEK2+ZIxAVQEN3qpSDRz3hS99Nb3jne/qrOzQQw5K3/z6V8dc5RVXXZfmn/9lnZ/tuMN26Xe//U3n//fS4L3ksl+nRRdbvHPcppusn26/7bZiohpQxWhNXEAg2gWG+iqwCUxZTEB9FaM1MQENXnuAQEEB718FcU3deoFo9dX6hAGoLKDBW5mqeQOHN3gPPujr6VsHTf1FannVPz/3wrTCCit2AN71zrenX1x8Yc8N3utuuDXNM888nef8Lrbwy9MzzzxTDFQDqhitiQsIRLvAUF8FNoEpiwmor2K0JiagwWsPECgo4P2rIK6pWy8Qrb5anzAAlQU0eCtTNW/gZptvmY46+rjOwv7613vSumutNtUiZ5111vSHG29L+cvYcnN26SUWTk8++WRPDd5P7H9Aeu/79uoc869//jOtsvJyRTE1oIrymnyCBaJdYKivCd4ApisqoL6K8pq85QLqq+UbwPKLCqivorwmb7lAtPpqebosvwcBDd4esJo2dLbZZkv5ztrnP//5naVdecXv0i47vz098sgjnf+e90UvSif86MTu3btX/f7K9Ibttu4yDH9Ew8UXXZAuuvCCzs9mm3329NKXvjQt8LKXp4023qQzz9Brrz33SGeecXpRSg2oorwmn2CBaBcY6muCN4Dpigqor6K8Jm+5gPpq+Qaw/KIC6qsor8lbLhCtvlqeLsvvQUCDtwesJg5da+110k9/dmqaNGlSZ3n50Qn/+Mff0yyTZkkvfslLun/+4IMPpnXWXKX7BWt57PAG73g2+e7fww87NH3tK18ab+gM/1wDaoYJTTATBaJdYKivmbg5nGqGBdTXDBOagMA0BdSXzUGgnID6KmdrZgLR6kvGCFQV0OCtKtXgcSuuuFI69DtHpMUWX2KqVebG7GmnnpI+9pF9u49mGBq027vfkz79mc9NU+app55Kjz7ySLr2umvSxz68X3rggftniqIG1ExhdpIJEoh2gaG+JijxppkpAuprpjA7SUsF1FdLE2/ZM0VAfc0UZidpqUC0+mppmiy7hoAGbw20ph7yilcsmFZfY4203PIrpMf/83i6+qrfp6uuujI99thjoZasARUqXa0PNtoFhvpq/ZYNBaC+QqVLsMEE1FewhAk3lID6CpUuwQYTiFZfwXiF20cBDd4+4jt1GQENqDKuZi0jEO0CQ32V2QdmLSOgvsq4mpVAFlBf9gGBcgLqq5ytmQlEqy8ZI1BVQIO3qpRxYQQ0oMKkSqD+gWwPECgqEO0C3vtX0e1g8gkWUF8TDGo6AsME1JftQKCcQLT6Kidh5qYJaPA2LaPWk/wD2SaIJBDtAkN9RdpdYlVf9gCBcgLqq5ytmQmoL3uAQDmBaPVVTsLMTRPQ4G1aRq1Hg9ceCCUQ7QJDgzfU9mp9sOqr9VsAQEEB9VUQ19StF1Bfrd8CAAoKRKuvghSmbpiABm/DEmo5SYPXJgglEO0CQ4M31PZqfbDqq/VbAEBBAfVVENfUrRdQX63fAgAKCkSrr4IUpm6YgAZvwxJqORq89kAsgWgXGBq8sfZX26NVX23fAdZfUkB9ldQ1d9sF1Ffbd4D1lxSIVl8lLczdLAEN3mbl02qSBq9NEEsg2gWGBm+s/dX2aNVX23eA9ZcUUF8ldc3ddgH11fYdYP0lBaLVV0kLczdLQIO3Wfm0Gg1eeyCYQLQLDA3eYBus5eGqr5ZvAMsvKqC+ivKavOUC6qvlG8DyiwpEq6+iGCZvlIAGb6PSaTFZQAPKPogkEO0CQ31F2l1iVV/2AIFyAuqrnK2ZCagve4BAOYFo9VVOwsxNE9DgbVpGrUeD1x4IJRDtAkODN9T2an2w6qv1WwBAQQH1VRDX1K0XUF+t3wIACgpEq6+CFKZumIAGb8MSajnu4LUHYglEu8DQ4I21v9oerfpq+w6w/pIC6qukrrnbLqC+2r4DrL+kQLT6Kmlh7mYJaPA2K59W4xEN9kAwgUmT7klzz71OmjTpsRCRa/CGSJMg/18g2gW8+rJ1Iwmor0jZEms0AfUVLWPijSQQrb4i2Yq1vwIavP31d/YCAv6BXADVlMUENHiL0ZqYQFJfNgGBcgLR/oHs+rDcXjDzxAuor4k3NSOBIYFo9SVzBKoKaPBWlTIujIAL+DCpEmhKGlB2AYGCAhq8BXFN3XoB9dX6LQCgoEC0BpR/fxXcDKaecIFo9TXhACZsrIAGb2NT296FucBob+4jrtw/kCNmTcxRBNRXlEyJM6KA+oqYNTFHEYjWgPLvryg7S5xZIFp9yRqBqgIavFWljAsj4AIjTKoE6g5ee4BAUQENqKK8Jm+5gPpq+Qaw/KIC6qsor8lbLqDB2/IN0ODla/A2OLltXZoGb1szH3PdLuBj5k3UMQTUV4w8iTKmgPqKmTdRxxBQXzHyJMqYAtHqK6ayqPshoMHbD3XnLCqgwVuU1+QTLBDtAkN9TfAGMF1RAfVVlNfkLRdQXy3fAJZfVEB9FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9HU3/ueAAAgAElEQVR8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgVlmuSfNNdc6adKkx0KQqK8QaRLk/wtEu4BXX7ZuJAH1FSlbYo0moL6iZUy8kQSi1VckW7H2V0CDt7/+zl5AwD+QC6CaspiABm8xWhMT8AGKPUCgoEC0fyC7Piy4GUw94QLqa8JJTUigKxCtvqSOQFUBDd6qUsaFEXABHyZVAnUHrz1AoKiAD1CK8pq85QLqq+UbwPKLCkRrQPn3V9HtYPIJFohWXxO8fNM1WECDt8HJbevSXGC0NfMx1+0fyDHzJuoYAuorRp5EGVNAfcXMm6hjCERrQPn3V4x9JcrJAtHqS94IVBXQ4K0qZVwYARcYYVIlUHfw2gMEigpoQBXlNXnLBdRXyzeA5RcVUF9FeU3+f+ydd5xV5dWFN0QBISAYUVEBQUEEwRY1Gk3svUYTW9QYe43tS0yMJbEhMV9UBOwl5UtisAB2ETuxd0UBC2IiVgREZSTM97tnwgQCOPfO3H3PWe9+5p8Ac+5+937WXr95XTO5E5wAAW/wBUh4fALehMWNOhoBb1TlNefmAq+pG11rEMBfGjrRpSYB/KWpG11rEMBfGjrRpSYBAl5N3ei6aQIEvE0z4gkxAgS8YoIFb5cLfPAFYHxXAvjLFS/FgxPAX8EXgPFdCeAvV7wUD05AzV/B5WL8CggQ8FYAi0c1CBDwauhElw0E1C4Y+IvNVSKAv5TUolc1AvhLTTH6VSKAv5TUolc1Amr+UuNLv/kRIODNjz0nOxEggHICS1kXAmoXDPzlsgYUdSKAv5zAUhYCfIOSHYCAKwG+frnipXhwAmr+Ci4X41dAgIC3Alg8qkGAAEpDJ7psIKB2wcBfbK4SAfylpBa9qhHAX2qK0a8SAfylpBa9qhFQ85caX/rNjwABb37sOdmJAAGUE1jKuhBQu2DgL5c1oKgTAfzlBJayEOAblOwABFwJ8PXLFS/FgxNQ81dwuRi/AgIEvBXA4lENAgRQGjrRZQMBtQsG/mJzlQjgLyW16FWNAP5SU4x+lQjgLyW16FWNgJq/1PjSb34ECHjzY8/JTgQIoJzAUtaFgNoFA3+5rAFFnQjgLyewlIUA36BkByDgSoCvX654KR6cgJq/gsvF+BUQIOCtABaPahAggNLQiS4bCKhdMPAXm6tEAH8pqUWvagTwl5pi9KtEAH8pqUWvagTU/KXGl37zI0DAmx97TnYiQADlBJayLgTULhj4y2UNKOpEAH85gaUsBPgGJTsAAVcCfP1yxUvx4ATU/BVcLsavgAABbwWweFSDAAGUhk502UBA7YKBv9hcJQL4S0ktelUjgL/UFKNfJQL4S0ktelUjoOYvNb70mx8BAt782HOyEwECKCewlHUhoHbBwF8ua0BRJwL4ywksZSHANyjZAQi4EuDrlyteigcnoOav4HIxfgUECHgrgMWjGgQIoDR0ossGAmoXDPzF5ioRwF9KatGrGgH8paYY/SoRwF9KatGrGgE1f6nxpd/8CBDw5seek50IEEA5gaWsCwG1Cwb+clkDijoRwF9OYCkLAb5ByQ5AwJUAX79c8VI8OAE1fwWXi/ErIEDAWwGsiI927tLFPps92+rq6mTGJ4CSkYpG+Q9kdgACrgTULvB8/XJdB4pXmQD+qjJQykFgAQL4i3WAgB8BNX/5kaByagQIeFNTtIXz/PDAg237HXayNfv1s65dV7DWrVtnFZ968gnba89dF6q+40672DnnXrDIifPq52WB8Beff27PP/+cXXXFCHv11Qkt7Kz8l/MfyOWz4sn8CahdMPBX/jtDB+UTwF/ls+JJCFRKAH9VSoznIVA+AfxVPiuehEClBNT8Vel8PB+XAAFvXO0Xmrxt27b2lxtvtvU3+OZiibzx+mTb8rvfXuhzRxx5jJ1+xlllEbzu2qvt7DNPL+vZlj5EANVSgry+lgTULhj4q5bbwVktJYC/WkqQ10NgyQTwF9sBAT8C+MuPLZUhoOYvFINAuQQIeMsllfBz3bv3sNvuvNc6d+6cTfnll1/ak088bi+88JzNnDHT1t9gA/vss8/t+GOPXGLA+847U+3tKVOyz5fC4vbtO1iv3r2tXbt2ja85+cTj7aaRN7qTJIByR8wBVSSgdsHAX1UUn1LuBPCXO2IOCEwAfwUWn9HdCeAvd8QcEJiAmr8CS8XoFRIg4K0QWIqP3zr6Dltv/Q2y0V5++SU7YL/v2/SPP25y1AV/gnfw+efaiOFDF3nNVddcb9ttv2P27+PGjbVDDjqgybotfYAAqqUEeX0tCahdMPBXLbeDs1pKAH+1lCCvh8CSCeAvtgMCfgTwlx9bKkNAzV8oBoFyCRDwlksq0ef69O1rY8c9nE33wfvv2zfXH1j2pOUEvIMGrWNj7rgnqznhlVdsh+22LLt+cx8kgGouOV6XBwG1Cwb+ymNLOLO5BPBXc8nxOgg0TQB/Nc2IJyDQXAL4q7nkeB0Emiag5q+mJ+IJCDQQIOANvgm3jLq98X13d9tlB3v+uWfLJlJOwLvHnt+zS4aOyGoOu+wSGzL4/LLrN/dBAqjmkuN1eRBQu2Dgrzy2hDObSwB/NZccr4NA0wTwV9OMeAICzSWAv5pLjtdBoGkCav5qeiKegAABLztgZpPemGpt2rSxWbNm2cD+fWzzzb9rAwetYz1XW80++uhDe/KJJ2zcffcullVTAW///gNs5C1jrEOHDjZv3jzbZKP1bdq0d925E0C5I+aAKhJQu2DgryqKTyl3AvjLHTEHBCaAvwKLz+juBPCXO2IOCExAzV+BpWL0CgnwE7wVAkvp8VatWtlbU6dlI5V+sdq//vWvhX4p2vxZp0+fbqecdILdN7bhrRbmfywY8M6ePds+/XRW9qmll1ra2rZrlwW7pY+6ujrbdaft7NVXJ9QEHwFUTTBzSJUIqF0w8FeVhKdMTQjgr5pg5pCgBPBXUOEZuyYE8FdNMHNIUAJq/goqE2M3gwABbzOgpfKS1dfoY+MeeGSRcebMmZP9W9u2bRs/V/oJ3N132cFeeOH5xQa8TTGZOXNmFhLfc/edCz3aZpmvN/XSij8/57N/2YwZz1h9/YoVv5YXQKDWBEoXjGWX3dTaLFPrk5t3Hv5qHjdelQ8B/JUPd06NQQB/xdCZKfMhgL/y4c6pMQh4+qvu809jQGTKQhIg4C2kLLVpatfddrfLhl+ZHTZjxgy75OLf2nXXXJW9nULpo0ePnnbt9X+wPn3XzP5eehuHtddao7G5BX+C9513ptqUt97KPlf6yeB27dpZx44dredqvbK3gJj/ccxRh9ntt41p/PuKq69X9WHfe2OifTL9KQLeqpOloAeB0gWjc5fNbYVevT3KV70m/qo6Ugo6EsBfjnApHZ4A/gq/AgBwJIC/HOFSOjwBT3+993r5v9MovBAAqDoBAt6qI9UpuN/+P7TBQ36bNXz9ddfYWWf8YpHmS+HsU8++ZMsuu2z2uXUHrWXTP/44+3NT78E7v9iIK662nXbeNftr6e0e1h3Yr/GcLiv/JzCuFrmP//muzfiEgLdaPKnjSyD7DnLnzaxLtxV8D6pSdfxVJZCUqQkB/FUTzBwSlAD+Cio8Y9eEAP6qCWYOCUrA01/T/zk5KFXGLgIBAt4iqJBTDwMGrG133H1fdvq999xlh/344MV2ctU119t22++Yfe7kE4+3m0bemP253IC39OyLr0yyTp06Za/r12c1+/zzz92m5j1C3dBS2IGA2ntA4S+HJaCkGwH85YaWwhAw/MUSQMCPAP7yY0tlCKj5C8UgUC4BAt5ySSX4XOvWre3Nt9/NJnt1wgTbftstFjvleRcMsR8e2BD+XnjBeTZ82KUVB7wPPDTeevVePXvdNlttbpMmTnQjSgDlhpbCDgTULhj4y2EJKOlGAH+5oaUwBAh42QEIOBLg65cjXEqHJ6Dmr/CCAaBsAgS8ZaNK88HXJk/J3i939uzZ1n/Nxb8H6A1//LNtscVWGYC9v7ebPfnE4xUHvM+/9Jp17tzZ6uvrrXfPlRvf59eDKgGUB1VqehFQu2DgL69NoK4HAfzlQZWaEGgggL/YBAj4EcBffmypDAE1f6EYBMolQMBbLqlEnxt582jbcKONs+muvfpK+9XZZyw0aeltFZ55/hVbeumls3C2V49u2f+WPsp9i4afn36GHXX0cdlrPv7oI1tvnf6uNAmgXPFSvMoE1C4Y+KvKC0A5VwL4yxUvxYMTwF/BF4DxXQngL1e8FA9OQM1fweVi/AoIEPBWACvFR5dfvqs9+cwLVnq7hlJwe+Xlw23wBedmP2E7cOAgu+6GP1nXFRp++dNf//J/9tNTT2rEsGDAO+6+e+2+sfdmn2vTtq117drVuq20sm2x5VbWZbnlGl9z3DFH2JjRo1xREkC54qV4lQmoXTDwV5UXgHKuBPCXK16KByeAv4IvAOO7EsBfrngpHpyAmr+Cy8X4FRAg4K0AVqqPnvrT0+z4E/4T3JbmLAW8pdB3/sfUqW/bZptsuBCCBQPeptiUwuPSe/cOGXx+U4+2+PMEUC1GSIEaElC7YOCvGi4HR7WYAP5qMUIKQGCJBPAXywEBPwL4y48tlSGg5i8Ug0C5BAh4yyWV+HN77Pk9u+DC31r79u0XmrQUzP7h99fbGaeftgiBQw8/0s4869dLJFNXV2efzpplzz3/rP3s1JPt/fffqwlFAqiaYOaQKhFQu2DgryoJT5maEMBfNcHMIUEJ4K+gwjN2TQjgr5pg5pCgBNT8FVQmxm4GAQLeZkBL+SV9+va1b2/2Hev49Y722GPj7emnnnT9hWgeLAmgPKhS04uA2gUDf3ltAnU9COAvD6rUhEADAfzFJkDAjwD+8mNLZQio+QvFIFAuAQLecknxnAwBAigZqWiU/0BmByDgSkDtAs/XL9d1oHiVCeCvKgOlHAQWIIC/WAcI+BFQ85cfCSqnRoCA9ysU7d69hx108CG2Wq9eNmnSRBt168322quvprYDyc3DfyAnJ2nSA6ldMPBX0uuY3HD4KzlJGahABPBXgcSgleQI4K/kJGWgAhFQ81eB0NFKwQmEDnifff4V69ylSybR/140xIZe+rtGuX544MF27vkXWqtWrRaS8Nqrr7RfnX1GwWWN3R4BVGz91aZXu2DgL7UNi90v/oqtP9P7EsBfvnypHpsA/oqtP9P7ElDzly8NqqdEIGzAu+FGG9vIm0dnWs6dO9fWHdjPZs2alf19pZW62d+feMZat269WK0vGjJ4oTA4pYVIYRYCqBRUjDOD2gUDf8XZzRQmxV8pqMgMRSWAv4qqDH2lQAB/paAiMxSVgJq/isqRvopHIGzAO2zElbbLrrtnitz41z/b/5xyYqM6510wxEo/wTv/4+23p9icL76wPn3XzP7ps88+s/5r9rb6+vriKUpHRgDFEigRULtg4C+l7aJX/MUOQMCPAP7yY0tlCOAvdgACfgTU/OVHgsqpEQgb8N5x9302YMDamZ5bbbGZvT55UqO2jz/1XPZTvKWPv934Fzv15J9kfy79xG/pJ39LH8cdc4SNGT0qtX1IYh4CqCRkDDOE2gUDf4VZzSQGxV9JyMgQBSWAvwoqDG0lQQB/JSEjQxSUgJq/CoqRtgpIIGzA++QzL9gKK6xo8+bNs149GsLc+R9vvv1u49szbLrxBvaPf7yTferQw4+0M8/6dfbn4cMutQsvOK+AktISARQ7oERA7YKBv5S2i17xFzsAAT8C+MuPLZUhgL/YAQj4EVDzlx8JKqdGIGzA++Irk6xTp042c+ZMG9i/T6OupZ/qLf10b+mj9FYMa/Xt1fi5Hj162sPjn8j+fvddd9gRhx2S2j4kMQ8BVBIyhhlC7YKBv8KsZhKD4q8kZGSIghLAXwUVhraSIIC/kpCRIQpKQM1fBcVIWwUkEDbgfejRx61nz9Wy99Ht3XPl7Cd5Sx9n//o8O+THh2V/fnXCBNt+2y0aZevff4Ddec+47O/jxo21Qw46oICS0hIBFDugREDtgoG/lLaLXvEXOwABPwL4y48tlSGAv9gBCPgRUPOXHwkqp0YgbMD7pz//zTbb/DuZnocf+iO75+47sz+/NGGydezYMfvzH35/vf3yFz9r1PzoY463037xy+zv1159pf3q7DNS24ck5iGASkLGMEOoXTDwV5jVTGJQ/JWEjAxRUAL4q6DC0FYSBPBXEjIyREEJqPmroBhpq4AEwga8P9hnP/vNby/OJJkzZ47dcftttuFGG9mqq3ZvlGmbrTa3SRMnNv79//4y0r692ebZ30856QQb+be/FlBSWiKAYgeUCKhdMPCX0nbRK/5iByDgRwB/+bGlMgTwFzsAAT8Cav7yI0Hl1AiEDXhLQj71zIvWdYUVFqtp6RerlX7B2vyPbt1Wtr8/8Yy1atUq+6fNNtnQpk59O7V9SGIeAqgkZAwzhNoFA3+FWc0kBsVfScjIEAUlgL8KKgxtJUEAfyUhI0MUlICavwqKkbYKSCB0wNuv31o28pYxjW/JMF+fL7/80rbfdkt7ffKkRsn++rdb7FubbJr9/b33ptlGG6xTQDlpqUSAAIo9UCKgdsHAX0rbRa/4ix2AgB8B/OXHlsoQwF/sAAT8CKj5y48ElVMjEDrgLYlZer/dU079mW248besbZs29vLLL9vZZ51u0z/+eCGtxz/+tLVfpn32b0OHXmzXXHVFaruQzDwEUMlIGWIQtQsG/gqxlskMib+SkZJBCkgAfxVQFFpKhgD+SkZKBikgATV/FRAhLRWUQPiAt6C60FYLCBBAtQAeL605AbULBv6q+YpwYAsI4K8WwOOlEGiCAP5iRSDgRwB/+bGlMgTU/IViECiXAAFvuaR4ToYAAZSMVDRqZmoXDPzF2ioRwF9KatGrGgH8paYY/SoRwF9KatGrGgE1f6nxpd/8CBDwmlmbNm1s3/0OsAFrD7Q11uhjnTt3trffnmKHHPzDRmUOPfzI7N9LH6NH3WKTJk7MTzVO/koCBFAsiBIBtQsG/lLaLnrFX+wABPwI4C8/tlSGAP5iByDgR0DNX34kqJwagfAB7yGHHm6n/fyX1q5du4W0nTVrlq291hqN/3bf/Q/bGn36Zn9/5OGH7ID9vp/aLiQzDwFUMlKGGETtgoG/QqxlMkPir2SkZJACEsBfBRSFlpIhgL+SkZJBCkhAzV8FREhLBSUQOuA96+xz7MeHHbFYaf474O3Tt6+NHfdw9mxdXZ316d29oJLSFgEUO6BEQO2Cgb+Utote8Rc7AAE/AvjLjy2VIYC/2AEI+BFQ85cfCSqnRiBswDtgwNp2+11jrVWrVpmm0z/+2EaNusW22nob69Gjp/13wFt65uHxT2SfK33st89eNv7RR1LbhyTmIYBKQsYwQ6hdMPBXmNVMYlD8lYSMDFFQAviroMLQVhIE8FcSMjJEQQmo+augGGmrgATCBrzDL7/Kdt5lt0ySRx952Pbfd+/sz9f/4f9syy23XmzAe+lll9vue+yZPTf4/HNtxPChBZSUlgig2AElAmoXDPyltF30ir/YAQj4EcBffmypDAH8xQ5AwI+Amr/8SFA5NQJhA975P407d+5c679mb5szZ06TAe8+++5vQy76XfbczSP/ZiedeFxq+5DEPARQScgYZgi1Cwb+CrOaSQyKv5KQkSEKSgB/FVQY2kqCAP5KQkaGKCgBNX8VFCNtFZBA2ID3tclTsl+sNm3au7bxN9dtlOarfoJ30KB1bMwd92TPjhs31g456IACSkpLBFDsgBIBtQsG/lLaLnrFX+wABPwI4C8/tlSGAP5iByDgR0DNX34kqJwagbAB70sTJlvHjh3tH/94xzbdeINGXa/7/Z9sq622WexbNCz4E7xXjBhm55/369T2IYl5CKCSkDHMEGoXDPwVZjWTGBR/JSEjQxSUAP4qqDC0lQQB/JWEjAxRUAJq/iooRtoqIIGwAe9d99xva/Xvb3V1ddand/dGab7qJ3ivu+GPttXW22bPHnfMETZm9KgCSkpLBFDsgBIBtQsG/lLaLnrFX+wABPwI4C8/tlSGAP5iByDgR0DNX34kqJwagbAB70X/e4l9/wf7ZnoOvfR3dtGQwdmflxTw9unb1+697yFr1apV9tyG6w+y999/L7V9SGIeAqgkZAwzhNoFA3+FWc0kBsVfScjIEAUlgL8KKgxtJUEAfyUhI0MUlICavwqKkbYKSCBswNuv31p21733Z4FtfX29nfPrs+yaq65YbMC76267229/N9Tatm2bSfjqhAm2/bZbFFBOWioRIIBiD5QIqF0w8JfSdtEr/mIHIOBHAH/5saUyBPAXOwABPwJq/vIjQeXUCIQNeEtC/vz0M+yoo49r1PTDDz6wZdq3tw4dOmSh77PPPG09evS05bt2bXym9O/f+fbG9vbbU1LbhWTmIYBKRsoQg6hdMPBXiLVMZkj8lYyUDFJAAvirgKLQUjIE8FcyUlR6utgAACAASURBVDJIAQmo+auACGmpoARCB7wlTUbePNo23GjjsuQphbult3K4bOjFZT3PQ/kQIIDKhzunNo+A2gUDfzVPZ16VDwH8lQ93To1BAH/F0Jkp8yGAv/LhzqkxCKj5K4YqTFkNAuED3hLEHXbc2X7z24utU6dOS2T6zjtT7UcH7W+TJk6sBndqOBIggHKES+mqE1C7YOCvqq8ABR0J4C9HuJQOTwB/hV8BADgSwF+OcCkdnoCav8ILBoCyCRDw/htV6b14Bw4cZBtsuJENGriOLbf8N2zau+/ac88+Y4899nd7843Xy4bKg/kSIIDKlz+nV0ZA7YKBvyrTl6fzJYC/8uXP6WkTwF9p68t0+RLAX/ny5/S0Caj5K201mK6aBAh4q0mTWoUgQABVCBlookwCahcM/FWmsDxWCAL4qxAy0ESiBPBXosIyViEI4K9CyEATiRJQ81eiMjCWAwECXgeolMyXAAFUvvw5vTICahcM/FWZvjydLwH8lS9/Tk+bAP5KW1+my5cA/sqXP6enTUDNX2mrwXTVJEDAW02a1CoEAQKoQshAE2USULtg4K8yheWxQhDAX4WQgSYSJYC/EhWWsQpBAH8VQgaaSJSAmr8SlYGxHAgkH/AefuTRduhhR1Qd3YEH7MMvXKs61eoUJICqDkeq1IaA2gUDf9VmLzilOgTwV3U4UgUCiyOAv9gLCPgRwF9+bKkMATV/oRgEyiWQfMB78SXDbM+99i6XR9nP7bfPXjb+0UfKfp4Ha0eAAKp2rDmp5QTULhj4q+WaU6F2BPBX7VhzUjwC+Cue5kxcOwL4q3asOSkeATV/xVOIiZtLgIC3meQIeJsJrgYvI4CqAWSOqBoBtQsG/qqa9BSqAQH8VQPIHBGWAP4KKz2D14AA/qoBZI4IS0DNX2GFYvCKCSQf8K6yyqrWf8DaFYNp6gUPPjDO6urqmnqMz+dAgAAqB+gc2WwCahcM/NVsqXlhDgTwVw7QOTIMAfwVRmoGzYEA/soBOkeGIaDmrzDCMGiLCSQf8LaYEAXkCBBAyUkWumG1Cwb+Cr2ucsPjLznJaFiIAP4SEotW5QjgLznJaFiIgJq/hNDSas4ECHhzFoDjq0+AAKr6TKnoR0DtgoG//HaBytUngL+qz5SKEJhPAH+xCxDwI4C//NhSGQJq/kIxCJRLgIC3XFI8J0OAAEpGKho1M7ULBv5ibZUI4C8ltehVjQD+UlOMfpUI4C8ltehVjYCav9T40m9+BAh4/82+y3LL2cYbb2Jt27YpS4277rzD5syZU9azPFRbAgRQteXNaS0joHbBwF8t05tX15YA/qotb06LRQB/xdKbaWtLAH/VljenxSKg5q9Y6jBtSwiED3jPOPNXdtCPfmxt2pQX7M6Hvd8+e9n4Rx9pCXte60SAAMoJLGVdCKhdMPCXyxpQ1IkA/nICS1kI8P9AYQcg4EqAr1+ueCkenICav4LLxfgVEAgd8F57/R9s6222qwDXfx4l4G0Wtpq8iACqJpg5pEoE1C4Y+KtKwlOmJgTwV00wc0hQAvgrqPCMXRMC+KsmmDkkKAE1fwWVibGbQSBswNu9ew975O9PNiKbN2+ezZ492zp27Jj92/Tp023mzBmNn+/Ro6e1atUq+/uUKW/ZIQf/0F6fPKkZyHmJNwECKG/C1K8mAbULBv6qpvrU8iaAv7wJUz8yAfwVWX1m9yaAv7wJUz8yATV/RdaK2SsjEDbgHX75VbbzLrtltKZOfdu2+u63bbPNv2vX3fDH7N9OPvF4u2nkjY00L/zN/9q++x2Q/f1/Lxpil1z828pI83TNCBBA1Qw1B1WBgNoFA39VQXRK1IwA/qoZag4KSAB/BRSdkWtGAH/VDDUHBSSg5q+AEjFyMwmEDXjvvvcB67fWWhm2nbbf2l5++SVbs18/u2fsg9m/DRl8vg277JJGrK1bt7aXJky2Dh06WF1dnfVdvYfV19c3Ezsv8yRAAOVJl9rVJtC69VTr2HFTa916drVLu9TDXy5YKepEQO0Cj7+cFoGyLgTwlwtWikIgI4C/WAQI+BFQ85cfCSqnRiBswPvkMy/YCiusaF9++aWt0WvVTNdSePvKa29kf77xr3+2/znlxIX0Lv1071Zbb5v9W+lzpWf4KB4B/gO5eJrQ0ZIJEPCyHRDwI4C//NhSGQJq/4HM/ZCdVSKAv5TUolc1Amr+UuNLv/kRCBvwln4at/R+u1988YWtuUbPRgXemjote6/dZ599xvbYdceFlPnxYUfYWWefk/3brbfcbD85/uj8lOPkJRLgAs9yKBEggFJSi17VCOAvNcXoV4mA2n8gcz9U2i56xV/sAAT8CKj5y48ElVMjEDbgffrZl2z5rl2t9MvVevXo1qjr8y+9Zp07d85+ydq6A/stpPfOu+xqwy+/Ovu3J5943Pb+XsN7+PJRLAJc4IulB918NQECKDYEAn4E8JcfWypDAH+xAxDwI6AWQPHfX367QOXqE1DzV/UJUDFVAmED3gceGm+9eq+e6brOwH72yfTp2Z//8Ke/2ne+u0X25xNPONZuuXlko/YL/qK1Rx5+yA7Y7/up7oX0XFwwpOUL1zz/gRxOcgauIQH8VUPYHBWOAP4KJzkD15CAWgDFf3/VcDk4qsUE1PzV4oEpEIZA2IB35M2jbcONNs6EHnz+uTZi+NDszwcdfIidc97g7M+fffaZ/e63v7Exo2+1n5x0iu2z7/5W+mVrpY+hl/7OLhrS8BwfxSLABaNYetDNVxPgP5DZEAj4EcBffmypDAH8xQ5AwI8A/vJjS2UIEPCyA6kSCBvw/uL0M+3Io4/NdH355Zdsp+23zv5c+kVrTz37krVv336Jms+dO9c22Wh9e//991LdC+m5CHil5QvXPBf4cJIzcA0J4K8awuaocATwVzjJGbiGBPBXDWFzVDgCav4KJxADN5tA2IB3nXXXs2uu/X0G7h///IftvssOjRDXXW99u3X0HdkvW1vcx7nnnG1XXTGi2dB5oS8BAl5fvlSvLgG1Cwb+qq7+VPMlgL98+VI9NgH8FVt/pvclgL98+VI9NgE1f8VWi+krIRA24G0K0g477mxHHX2srdV/gLVr187q6+vtgw/et1NOPMEeeuiBpl7O53MkQACVI3yOrpiA2gUDf1UsMS/IkQD+yhE+RydPAH8lLzED5kgAf+UIn6OTJ6Dmr+QFYcCqESDgLQPlct/4hn380UdlPMkjRSBAAFUEFeihXAJqFwz8Va6yPFcEAvirCCrQQ6oE8FeqyjJXEQjgryKoQA+pElDzV6o6MFf1CRDwVp8pFXMmQACVswAcXxEBtQsG/qpIXh7OmQD+ylkAjk+aAP5KWl6Gy5kA/spZAI5PmoCav5IWg+GqSoCA9ytwduzYMXsf3pkzZ1YVOsV8CRBA+fKlenUJqF0w8Fd19aeaLwH85cuX6rEJ4K/Y+jO9LwH85cuX6rEJqPkrtlpMXwmBMAHvNzfcyAats27GZt68efb766/N/ve/P5ZZZhm7+NJhtvU229nSSy+dffqLL76wCa+8bEcdcahNm/ZuJXx5NgcCBFA5QOfIZhNQu2Dgr2ZLzQtzIIC/coDOkWEI4K8wUjNoDgTwVw7QOTIMATV/hRGGQVtMIEzA++QzL9gKK6yYAZs7d66t1beX1dXVLQSw9NO6jz/1nK244kqLBVt6/vAfH2wPPDCuxeAp4EeAAMqPLZWrT0DtgoG/qr8DVPQjgL/82FIZAviLHYCAHwH85ceWyhBQ8xeKQaBcAiEC3lKwWwp4539cd+3VdvaZpy/CaPCQ39p++//wK9mVfup33YH9bMaMGeUy5rkaEyCAqjFwjmsRAbULBv5qkdy8uMYE8FeNgXNcKAL4K5TcDFtjAvirxsA5LhQBNX+FEodhW0QgRMD7s5+fbscce0IGqvR2CwP6rZ79FO9/f7w2eYq1a9cu++fS5++4/TYbeeNfsrd2OPHkU22ppZbKPnf3XXfYEYcd0iLwvNiPAAGUH1sqV5+A2gUDf1V/B6joRwB/+bGlMgTwFzsAAT8C+MuPLZUhoOYvFINAuQRCBLx//dst9q1NNs2Y/OmPv7dfnPY/i/DZautt7bob/tj478Muu8SGDD6/8e+l9/C96ZYx2d/r6+ttYP8+NmvWrHI581wNCRBA1RA2R7WYgNoFA3+1WHIK1JAA/qohbI4KRwB/hZOcgWtIAH/VEDZHhSOg5q9wAjFwswmECHjvf/BR6736GhmkE447ykbdessiwBZ8e4Y5c+ZYvz6rLfJL2MaOe8j69F0ze+1BB+xrDz54f7PB80I/AgRQfmypXH0CahcM/FX9HaCiHwH85ceWyhDAX+wABPwI4C8/tlSGgJq/UAwC5RIIEfA+98IE67LcchmTDdZd2z788INF+Nx97wPWb621sn9/4YXnbdedtlvkmdLbNJx0csNP//7mwgvssqEXl8uZ52pIgACqhrA5qsUE1C4Y+KvFklOghgTwVw1hc1Q4AvgrnOQMXEMC+KuGsDkqHAE1f4UTiIGbTSBEwDvpjanWpk2b7H11V19tlcXCeuW1N6xDhw7Z55b0S9h232NPu/Syy7NnRo+61Y4/9shmg+eFfgQIoPzYUrn6BNQuGPir+jtART8C+MuPLZUhgL/YAQj4EcBffmypDAE1f6EYBMolECLgnfj629a2bVurq6uzPr27L8Km9LnSM/M/fvyjA+2+sfcs8twee37PLhk6Ivv30tszlN6mgY/iESCAKp4mdLRkAmoXDPzFNisRwF9KatGrGgH8paYY/SoRwF9KatGrGgE1f6nxpd/8CIQIeJ94+nlbccWVMsq9enRb5L11t91uB7v62hsaVei/Zm+bPXv2Iqqcd8EQ++GBB2f//te//J/99NST8lOOk5dIgACK5VAioHbBwF9K20Wv+IsdgIAfAfzlx5bKEMBf7AAE/Aio+cuPBJVTIxAi4L119B223vobZNpdeMF5NnzYpQvpeO31f7Ctt2l4z91SsFsKeBf3MeaOe2zQoHWyTw0ZfL4Nu+yS1PYhiXkIoJKQMcwQahcM/BVmNZMYFH8lISNDFJQA/iqoMLSVBAH8lYSMDFFQAmr+KihG2ioggRAB7/EnnGSn/vS0DP9nn31mW35nU5s27d3s76uu2t0eHv+EtW7dOvv7/fffZz86cP/FSvXCyxNt2WWXzT53zFGH2e23jSmgpLREAMUOKBFQu2DgL6Xtolf8xQ5AwI8A/vJjS2UI4C92AAJ+BNT85UeCyqkRCBHwtmrVykq/RK19+/aZfnPmzLFHHn7QVlmlu63Zr5+VPj//44D9vm+PPPzQIjrvuNMudvmV1zT++7c2XM/effefqe1DEvMQQCUhY5gh1C4Y+CvMaiYxKP5KQkaGKCgB/FVQYWgrCQL4KwkZGaKgBNT8VVCMtFVAAiEC3hL3w4882n55xtlfKcELLzxvu+7U8FYN//3x3AsTrMtyy2X//MH779s31x9YQDlpqUSAAIo9UCKgdsHAX0rbRa/4ix2AgB8B/OXHlsoQwF/sAAT8CKj5y48ElVMjECbgLQl39DHH22m/+OViNXzvvWm2zZab28yZMxf5/LHH/cR+etovGv/99zdcZ2ec3vCWD3wUjwABVPE0oaMlE1C7YOAvtlmJAP5SUote1QjgLzXF6FeJAP5SUote1Qio+UuNL/3mRyBUwFvCvPG3NrGDf/RjW3e99a39Mu3tH//8h915+2122dCLl6jC+Meftm7dVm78/KYbb8DbM+S3s02eTADVJCIeKBABtQsG/irQ8tBKkwTwV5OIeAACzSaAv5qNjhdCoEkC+KtJRDwAgWYTUPNXswflheEIhAt4wykccGACqICiC4+sdsHAX8LLFrB1/BVQdEauGQH8VTPUHBSQAP4KKDoj14yAmr9qBoaD5AkQ8MpLyAD/TYAAip1QIqB2wcBfSttFr/iLHYCAHwH85ceWyhDAX+wABPwIqPnLjwSVUyNAwJuaoszDL1ljB6QIqF0wCHil1it8s/gr/AoAwJEA/nKES+nwBPBX+BUAgCMBNX85oqB0YgQIeBMTlHGMgJclkCKgdsEg4JVar/DN4q/wKwAARwL4yxEupcMTwF/hVwAAjgTU/OWIgtKJESDgTUxQxiHgZQe0CKhdMAh4tfYrerf4K/oGML8nAfzlSZfa0Qngr+gbwPyeBNT85cmC2mkRIOBNS0+mMQJelkCLgNoFg4BXa7+id4u/om8A83sSwF+edKkdnQD+ir4BzO9JQM1fniyonRYBAt609GQaAl52QIyA2gWDgFdswYK3i7+CLwDjuxLAX654KR6cAP4KvgCM70pAzV+uMCieFAEC3qTkZJgSAQIo9kCJgNoFA38pbRe94i92AAJ+BPCXH1sqQwB/sQMQ8COg5i8/ElROjQABb2qKMg8BLzsgRUDtgkHAK7Ve4ZvFX+FXAACOBPCXI1xKhyeAv8KvAAAcCaj5yxEFpRMjQMCbmKCMw0/wsgNaBNQuGAS8WvsVvVv8FX0DmN+TAP7ypEvt6ATwV/QNYH5PAmr+8mRB7bQIEPCmpSfT8BYN7IAYAbULBgGv2IIFbxd/BV8AxnclgL9c8VI8OAH8FXwBGN+VgJq/XGFQPCkCBLxJyckwJQIEUOyBEgG1Cwb+UtouesVf7AAE/AjgLz+2VIYA/mIHIOBHQM1ffiSonBoBAt7UFGUeAl52QIqA2gWDgFdqvcI3i7/CrwAAHAngL0e4lA5PAH+FXwEAOBJQ85cjCkonRiD5gHfVVbvb2gMHVV22+8eNtTlz5lS9LgVbToAAquUMqVA7AmoXDPxVu93gpJYTwF8tZ0gFCCyJAP5iNyDgRwB/+bGlMgTU/IViECiXQPIB78WXDLM999q7XB5lP7ffPnvZ+EcfKft5HqwdAQKo2rHmpJYTULtg4K+Wa06F2hHAX7VjzUnxCOCveJozce0I4K/aseakeATU/BVPISZuLgEC3maSI+BtJrgavIwAqgaQOaJqBNQuGPiratJTqAYE8FcNIHNEWAL4K6z0DF4DAvirBpA5IiwBNX+FFYrBKyaQfMB76OFH2qGHHVExmKZecPCB+9mkiRObeozP50CAACoH6BzZbAJqFwz81WypeWEOBPBXDtA5MgwB/BVGagbNgQD+ygE6R4YhoOavMMIwaIsJJB/wtpgQBeQIEEDJSRa6YbULBv4Kva5yw+MvOcloWIgA/hISi1blCOAvOcloWIiAmr+E0NJqzgQIeHMWgOOrT4AAqvpMqehHQO2Cgb/8doHK1SeAv6rPlIoQmE8Af7ELEPAjgL/82FIZAmr+QjEIlEuAgLdcUjwnQ4AASkYqGjUztQsG/mJtlQjgLyW16FWNAP5SU4x+lQjgLyW16FWNgJq/1PjSb34ECHjzY8/JTgQIoJzAUtaFgNoF41//WsVmzhxrZiu68KAoBKpJoFWrd6xjx53sa197p5pl3Wrx9csNLYUdCKh9/cJfDktASTcC+MsNLYUhIPcDNkgGgXIJhA94O3fpYsccc7ytt/4G1r1HD/va175WFrv9992bX7JWFqnaP8QFvvbMObH5BLjAN58dr4RAUwTU/DV37nI2a9Z4M1uhqdH4PARyJ1D6BkqnTttY69bv595LOQ1wPyyHEs8UhYDa1y/8VZTNoY9yCKj5q5yZeAYCJQKhA95111vf/vzXm6x9+/YVb8N+++xl4x99pOLX8QJ/Alww/BlzQvUIqF0w8Ff1tKeSPwH85c+YE+ISUPPXv/61ks2c+QDfQIm7slKTN/w/ULa3r33tXYm+581b1mbOfNzq6/kGpYRgwZts1Wqqder0XWvd+pPgJBg/NQKhA94JE99sVrhbWgIC3uJagQCquNrQ2aIE1P4DGX+xxUoE8JeSWvSqRgB/qSlGv0oE8JeSWvSqRkDNX2p86Tc/AmED3oMOPsTOOW9wRr6+vt5uuWmkzf5sth140I+yfxs+7FJ7+KEHG5UZetnltnzXrtnff3rqSXbTyBtt7ty5+SnHyUskQADFcigRULtg4C+l7aJX/MUOQMCPAP7yY0tlCOAvdgACfgTU/OVHgsqpEQgb8N46+o7sfXdLHxcNGWxDL/2dbbjRxjby5tHZv5115ul2/bVXN+q9/gbftFtG3Z79/dUJE2z7bbdIbReSmYcAKhkpQwyidsHAXyHWMpkh8VcyUjJIAQngrwKKQkvJEMBfyUjJIAUkoOavAiKkpYISCBvwPjz+CevRo2f207trrtHT5syZY926rWyPPflsJlXpJ3gvvOC8hWS7+94HrN9aa2X/tvmmG9nbb08pqKyx2yKAiq2/2vRqFwz8pbZhsfvFX7H1Z3pfAvjLly/VYxPAX7H1Z3pfAmr+8qVB9ZQIhA14n3/pNevcuXMW7PZdvUemaatWreytqdOyP48bN9YOOeiAhbQuvaVD6a0dSh/XXn2l/ersM1LahWRmIYBKRsoQg6hdMPBXiLVMZkj8lYyUDFJAAvirgKLQUjIE8FcyUjJIAQmo+auACGmpoATCBrwvvjLJOnXqZHV1ddand/dGeSa/+Y4tvfTS9uabb9gWm2+ykGw77rSLXX7lNUsMgAuqcbi2CKDCSS49sNoFA39Jr1u45vFXOMkZuIYE8FcNYXNUOAL4K5zkDFxDAmr+qiEajhInEDbgHf/407bKKqtm8q3WfaXsrRpKH+MeeMRWX6OPzZs3z9Zfd4BN//jjRokX/MVszz7ztO2x207i8qfZPgFUmrqmOpXaBQN/pbqJac6Fv9LUlamKQQB/FUMHukiTAP5KU1emKgYBNX8VgxpdKBAIG/Dedc/9tlb//plGP9h7D3v8sb9nfz73/AvtwIN+lP35wQfvt4MO2Df781JLLWXjHnzUevZcLfv7zSP/ZiedeJyCxuF6JIAKJ7n0wGoXDPwlvW7hmsdf4SRn4BoSwF81hM1R4Qjgr3CSM3ANCaj5q4ZoOEqcQNiAd/jlV9nOu+yWyTd61K12/LFHZn9eZ931bPRtdzXKOmvWLJs8eZINHDgoC3nnfxxz1GF2+21jxOVPs30CqDR1TXUqtQsG/kp1E9OcC3+lqStTFYMA/iqGDnSRJgH8laauTFUMAmr+KgY1ulAgEDbg3f+AA+2CCy/KNPr4o49svXUafpq39DFsxJW2y667L1G/yZMm2tZbbq6gb8geCaBCyi47tNoFA3/JrlrIxvFXSNkZukYE8FeNQHNMSAL4K6TsDF0jAmr+qhEWjkmAQNiAt0OHDrbtdttnEk7/eHr2dgwLfowd95D16bvmIhK/8fpk+/5ee9iHH36QgPxpjkAAlaauqU6ldsHAX6luYppz4a80dWWqYhDAX8XQgS7SJIC/0tSVqYpBQM1fxaBGFwoEwga85YjTvXsP+8G++9kmm3zb3pk61e6/f6yNuvWWcl7KMzkSIIDKET5HV0xA7YKBvyqWmBfkSAB/5Qifo5MngL+Sl5gBcySAv3KEz9HJE1DzV/KCMGDVCBDwVg0lhYpCgACqKErQRzkE1C4Y+KscVXmmKATwV1GUoI8UCeCvFFVlpqIQwF9FUYI+UiSg5q8UNWAmHwJhA94TTzrVDj284Rerbbrx+lb6ZWpNfVx62eW25VZbZ4/ttP3WNnXq2029hM/nQIAAKgfoHNlsAmoXDPzVbKl5YQ4E8FcO0DkyDAH8FUZqBs2BAP7KATpHhiGg5q8wwjBoiwmEDXgvvmSY7bnX3hnA0i9YK/2itaY+fnH6mXbk0cdmj5191i/tumuuauolfD4HAgRQOUDnyGYTULtg4K9mS80LcyCAv3KAzpFhCOCvMFIzaA4E8FcO0DkyDAE1f4URhkFbTICAt4KAd9vtdrCrr70hg/6H319vv/zFz1osAAWqT4AAqvpMqehHQO2Cgb/8doHK1SeAv6rPlIoQmE8Af7ELEPAjgL/82FIZAmr+QjEIlEuAgLeCgHe//X9og4f8NmM7ZvQoO+6YI8rlzHM1JEAAVUPYHNViAmoXDPzVYskpUEMC+KuGsDkqHAH8FU5yBq4hAfxVQ9gcFY6Amr/CCcTAzSZAwFtmwNuqVSu7974HrU/fNTPYQy/9nV00ZHCzwfNCPwIEUH5sqVx9AmoXDPxV/R2goh8B/OXHlsoQwF/sAAT8COAvP7ZUhoCav1AMAuUSCBPwnv3r82yVVVZp5LLueuvbCiusmP39oQcfsC+++HwRZqVQd6mll7aOX+9o/Qesbe3bt298Zt8ffM/+Pv7RcjnzXA0JEEDVEDZHtZiA2gUDf7VYcgrUkAD+qiFsjgpHAH+Fk5yBa0gAf9UQNkeFI6Dmr3ACMXCzCYQJeCdMfHOhgLbZxMzszTffsC0236QlJXitIwECKEe4lK46AbULBv6q+gpQ0JEA/nKES+nwBPBX+BUAgCMB/OUIl9LhCaj5K7xgACibAAFv2agaHnzppRft0B8daNOmvVvhK7Ueb9OmjY267S7runxXmzVrpm353W8vMsCOO+1i55x7wSL/Pq9+ntXV1dkXn39uzz//nF11xQh79dUJNQNAAFUz1BxUBQJqFwz8VQXRKVEzAvirZqg5KCAB/BVQdEauGQH8VTPUHBSQgJq/AkrEyM0kECbgPfHkU23llf/zFg3f3mxzW3XV7hm20aNutc8//2yJCGd/+mkWUD711JP2+uRJzUSt9bLb7xpra689MGt67ty5tvpq/2E3f5IjjjzGTj/jrLIGu+7aq+3sM08v69mWPkQA1VKCvL6WBNQuGPirltvBWS0lgL9aSpDXQ2DJBPAX2wEBPwL4y48tlSGg5i8Ug0C5BMIEvP8N5OJLhtmee+2d/fN66/S3jz/6qFxmyT83dNgVttvuezTOWU7A+847U+3tKVOy17Rt29bat+9gvXr3tnbt2jXWOfnE4+2mkTe68yOAckfMAVUkoHbBwF9VFJ9S7gTwlztiDghMAH8FFp/R3QngL3fEo7868AAAIABJREFUHBCYgJq/AkvF6BUSCBvwLveNb1ifPn1t3rx59uQTj1eILd3Hjz/hJDv1p6ctNGA5Ae/g88+1EcOHLgLmqmuut+223zH793HjxtohBx3gDo8Ayh0xB1SRgNoFA39VUXxKuRPAX+6IOSAwAfwVWHxGdyeAv9wRc0BgAmr+CiwVo1dIIGzAWyGnEI/vvMuuNvzyq7NZ33h9chZ+r9Gnb1lv0bCkgHfQoHVszB33ZDUnvPKK7bDdlu4sCaDcEXNAFQmoXTDwVxXFp5Q7AfzljpgDAhPAX4HFZ3R3AvjLHTEHBCag5q/AUjF6hQQIeP8NbOtttrP99j/AevZczVZYcSUr/ZKxz2bPtnenvWuvT55sF//uInvzjdcrxKvz+IABa9ttd95rrVu3tk8++cQ23Xh9GzXmTuvTd80WBbx77Pk9u2ToiAzEsMsusSGDz3eHQgDljpgDqkhA7YKBv6ooPqXcCeAvd8QcEJgA/gosPqO7E8Bf7og5IDABNX8FlorRKyQQPuDt07evDR9xlfVds99Xoquvr7d777nLSu8jO2vWrAoxF/vx5Zfvag+Pf8Lat29vdXV1tuV3NrXSe+qOHfdQiwLe/v0H2MhbxliHDh2ynwbeZKP1bdq0d91hEEC5I+aAKhJQu2DgryqKTyl3AvjLHTEHBCaAvwKLz+juBPCXO2IOCExAzV+BpWL0CgmEDnhLP7V6+11jrVWrVmVjK/0ytg3WWzsLLFP4KP2k8vjHnrauK6xgpRD7+3vt3viexJUEvLNnz7ZPP20Ivpdeamlr265dFuyWPkqh8a47bWevvjqhJsgIoGqCmUOqREDtgoG/qiQ8ZWpCAH/VBDOHBCWAv4IKz9g1IYC/aoKZQ4ISUPNXUJkYuxkEwga8yyyzjD3x9AvWqVOnRmyvTphg99xzp70+eZLNmDHTunXrlv1k7x577mVdunRpfO6eu++0ww/9UTNwF+8ld9x9n5WC7tLH/5xyot341z83NllJwNvUZDNnzrRTTjrBSuwW/OjQZaWmXlrx5z/9eKbNmPG01devWPFreQEEak2gdMHo1Onb9vXlvl7ro5t1Hv5qFjZelBMB/JUTeI4NQQB/hZCZIXMigL9yAs+xIQh4+mv29GkhGDJkMQmEDXiPP+EkO/Wnp2WqfPnll7b7LjvYyy+/tESVjj3uJ/bT037R+PnNN93I3n57SjFVLbOrYSOutF123T17+ooRw+z883690CsrCXhLb+kw5a23steXfiK6Xbt21rFjR+u5Wq/s/Yznfxxz1GF2+21jGv++4urrldlt+Y+998ZE+2T6UwS85SPjyRwJlC4Yy3be3FbsvXqOXZR/NP4qnxVP5k8Af+WvAR2kSwB/pastk+VPAH/lrwEdpEvA01/vvf5suuCYrPAEwga8o267y9ZdtyFcPPLwH9tdd97epFjXXPd722bb7bPnzjrzdLv+2qubfE2RH5jyzntZe888/ZQdfeRhi7R64023Zr90bv7755YemDHjE/v888+zZ4848hg7/Yyzsj8PPv9cGzF86GLHHXHF1bbTzrtmn5s+fbqtO/A/73fMT/AWeUPorRYEPL+D7NE/P8HrQZWaXgTwlxdZ6kLADH+xBRDwI4C//NhSGQKe/uIneNmvPAmEDXhfee2N7D1iSz+9u0avVcvSYONvbWI3jrw1e/a2MaPs2KOPKOt1RX1ofsBbSX+lXzR32I8PrijgLT384iuTGt8Oo1+f1RpD4krOLvdZ3iO0XFI8VwQCau8Bhb+KsDX0UC4B/FUuKZ6DQOUE8FflzHgFBMolgL/KJcVzEKicgJq/Kp+QV0QlEDbgfW3ylOxtBGbMmGGDBvQtS//OXbrY8y++mj373HPPZm/roPzRnIB37L1326GHHFRxwPvAQ+Ot17//L+jbbLW5TZo40Q0dAZQbWgo7EFC7YOAvhyWgpBsB/OWGlsIQyH6Ct2PHTa1169kSNPj6JSETTf6bAP5iFSDgR0DNX34kqJwagbAB78Pjn7AePXpafX29rda9vF/0tfsee9qll12e7cCCP8mquhTdu/ewpZZeeont/+FPf7HSM6W3aNhqi82y5z768AMr/cK00ke5b9FQevb5l16zzp07Z7x791w5q+n1wQXeiyx1PQioXTDwl8cWUNOLAP7yIktdCDS8RQMBL5sAAR8C+MuHK1UhUCKg5i9Ug0C5BMIGvFdfe4Ntu13DT+D++f/+aKf99JSvZFb6xWF/f+IZ69Zt5ey5nxx/tN16y83lcpZ8rpJfsvZV78H789PPsKOOPi5j8PFHH9l66/R35UEA5YqX4lUmoHbBwF9VXgDKuRLAX654KR6cAP4KvgCM70oAf7nipXhwAmr+Ci4X41dAIGzAu+tuu9tlw69sRFUKec/51Zk2e/ai/zezNfv1s8uGXWF912z45WCln0Ltu3oPq6urqwC13qOVBLzj7rvX7ht7bzZkm7ZtrWvXrtZtpZVtiy23si7LLdc4/HHHHGFjRo9yhUEA5YqX4lUmoHbBwF9VXgDKuRLAX654KR6cAP4KvgCM70oAf7nipXhwAmr+Ci4X41dAIGzAW2L0pz//zTbb/DuNuEpvGzBlylv23rRpNnPmDOu6woq20korNf7U7vwHL7zgPBs+7NIKMGs+WknA29SEpVC8xGzI4POberTFnyeAajFCCtSQgNoFA3/VcDk4qsUE8FeLEVIAAkskgL9YDgj4EcBffmypDAE1f6EYBMolEDrgbdOmjT3y9ydtxRXLew/eEtQU3nu33OW4974Hs59anjt3rq2+2iqLvOzQw4+0M8/69RLLlX7C+dNZs+y555+1n516sr3//nvlHt2i5wigWoSPF9eYgNoFA3/VeEE4rkUE8FeL8PFiCHwlAfzFgkDAjwD+8mNLZQio+QvFIFAugdAB73xIxx73E/vJSadY27Ztl8jtg/fft1NOOsEefPD+ctnyXE4ECKByAs+xzSKgdsHAX82SmRflRAB/5QSeY0MQwF8hZGbInAjgr5zAc2wIAmr+CiEKQ1aFAAHvvzGWfpp3o42/ZYMGrWtr9R9gnZbtZNPefddeefkle+bpp+zFF1+oCnCK+BMggPJnzAnVI6B2wcBf1dOeSv4E8Jc/Y06ISwB/xdWeyf0J4C9/xpwQl4Cav+IqxeSVEggR8G6y6bdt429tkrH54+9vsA8//KBSTjwvRIAASkgsWjW1Cwb+YmmVCOAvJbXoVY0A/lJTjH6VCOAvJbXoVY2Amr/U+NJvfgRCBLwL/jK14445wsaMHpUfcU52J0AA5Y6YA6pIQO2Cgb+qKD6l3AngL3fEHBCYAP4KLD6juxPAX+6IOSAwATV/BZaK0SskQMBbITAeLz4BAqjia0SH/yGgdsHAX2yvEgH8paQWvaoRwF9qitGvEgH8paQWvaoRUPOXGl/6zY8AAW9+7DnZiQABlBNYyroQULtg4C+XNaCoEwH85QSWshAw4y2G2AIIOBLg65cjXEqHJ6Dmr/CCAaBsAgS8ZaPiQRUCBFAqStFniYDaBQN/sbdKBPCXklr0qkYAf6kpRr9KBPCXklr0qkZAzV9qfOk3PwIEvPmx52QnAgRQTmAp60JA7YKBv1zWgKJOBPCXE1jKQoBvULIDEHAlwNcvV7wUD05AzV/B5WL8CggQ8FYAi0c1CBBAaehElw0E1C4Y+IvNVSKAv5TUolc1AvhLTTH6VSKAv5TUolc1Amr+UuNLv/kRCBfw/vIXP7M777i9xcQ//PCDFteggA8BAigfrlT1IaB2wcBfPntAVR8C+MuHK1UhwDco2QEI+BLg65cvX6rHJqDmr9hqMX0lBMIFvJXA+apn9/3B9+zv4x+tVjnqVJEAAVQVYVLKnYDaBQN/ua8EB1SRAP6qIkxKQeC/COAvVgICfgTwlx9bKkNAzV8oBoFyCRDwlkvqv57bb5+9bPyjjzTz1bzMkwABlCddalebgNoFA39VewOo50kAf3nSpXZ0Avgr+gYwvycB/OVJl9rRCaj5K7pezF8+AQLe8lkt9OTe39vNnnzi8Wa+mpd5EiCA8qRL7WoTULtg4K9qbwD1PAngL0+61I5OAH9F3wDm9ySAvzzpUjs6ATV/RdeL+csnEC7gPe6YI2zM6FHlE+JJOQIEUHKShW5Y7YKBv0Kvq9zw+EtOMhoWIoC/hMSiVTkC+EtOMhoWIqDmLyG0tJozAQLenAXg+OoTIICqPlMq+hFQu2DgL79doHL1CeCv6jOlIgTmE8Bf7AIE/AjgLz+2VIaAmr9QDALlEiDgLZcUz8kQIICSkYpGzUztgoG/WFslAvhLSS16VSOAv9QUo18lAvhLSS16VSOg5i81vvSbHwEC3vzYc7ITAQIoJ7CUdSGgdsHAXy5rQFEnAvjLCSxlIcA3KNkBCLgS4OuXK16KByeg5q/gcjF+BQQIeCuAxaMaBAigNHSiywYCahcM/MXmKhHAX0pq0asaAfylphj9KhHAX0pq0asaATV/qfGl3/wIEPDmx56TnQgQQDmBpawLAbULBv5yWQOKOhHAX05gKQsBvkHJDkDAlQBfv1zxUjw4ATV/BZeL8SsgQMBbASwe1SBAAKWhE102EFC7YOAvNleJAP5SUote1QjgLzXF6FeJAP5SUote1Qio+UuNL/3mRyBEwNu//wAbOGidjPJdd95uM2bMyI84J7sTIIByR8wBVSSgdsHAX1UUn1LuBPCXO2IOCEwAfwUWn9HdCeAvd8QcEJiAmr8CS8XoFRIIEfBWyITHxQkQQIkLGKx9tQsG/gq2oOLj4i9xAWm/0ATwV6HloTlxAvhLXEDaLzQBNX8VGibNFYoAAW+h5KCZahAggKoGRWrUioDaBQN/1WozOKcaBPBXNShSAwKLJ4C/2AwI+BHAX35sqQwBNX+hGATKJUDAWy4pnpMhQAAlIxWN8h687AAEXAmoXeD5+uW6DhSvMgH8VWWglIPAAgTwF+sAAT8Cav7yI0Hl1AgQ8KamKPMY/4HMEigRULtg4C+l7aJX/MUOQMCPAP7yY0tlCOAvdgACfgTU/OVHgsqpESDgTU1R5iHgZQekCKhdMAh4pdYrfLP4K/wKAMCRAP5yhEvp8ATwV/gVAIAjATV/OaKgdGIECHgTE5RxjICXJZAioHbBIOCVWq/wzeKv8CsAAEcC+MsRLqXDE8Bf4VcAAI4E1PzliILSiREg4E1MUMYh4GUHtAioXTAIeLX2K3q3+Cv6BjC/JwH85UmX2tEJ4K/oG8D8ngTU/OXJgtppESDgTUtPpjECXpZAi4DaBYOAV2u/oneLv6JvAPN7EsBfnnSpHZ0A/oq+AczvSUDNX54sqJ0WAQLetPRkGgJedkCMgNoFg4BXbMGCt4u/gi8A47sSwF+ueCkenAD+Cr4AjO9KQM1frjAonhQBAt6k5GSYEgECKPZAiYDaBQN/KW0XveIvdgACfgTwlx9bKkMAf7EDEPAjoOYvPxJUTo0AAW9qijIPAS87IEVA7YJBwCu1XuGbxV/hVwAAjgTwlyNcSocngL/CrwAAHAmo+csRBaUTI0DAm5igjMNP8LIDWgTULhgEvFr7Fb1b/BV9A5jfkwD+8qRL7egE8Ff0DWB+TwJq/vJkQe20CBDwpqUn0/AWDeyAGAG1CwYBr9iCBW8XfwVfAMZ3JYC/XPFSPDgB/BV8ARjflYCav1xhUDwpAgS8ScnJMCUCBFDsgRIBtQsG/lLaLnrFX+wABPwI4C8/tlSGAP5iByDgR0DNX34kqJwaAQLe1BRlHgJedkCKgNoFg4BXar3CN4u/wq8AABwJ4C9HuJQOTwB/hV8BADgSUPOXIwpKJ0aAgDcxQRmHn+BlB7QIqF0wCHi19it6t/gr+gYwvycB/OVJl9rRCeCv6BvA/J4E1PzlyYLaaREg4E1LT6bhLRrYATECahcMAl6xBQveLv4KvgCM70oAf7nipXhwAvgr+AIwvisBNX+5wqB4UgQIeJOSk2FKBAig2AMlAmoXDPyltF30ir/YAQj4EcBffmypDAH8xQ5AwI+Amr/8SFA5NQIEvKkpyjwEvOyAFAG1CwYBr9R6hW8Wf4VfAQA4EsBfjnApHZ4A/gq/AgBwJKDmL0cUlE6MAAFvYoIyDj/Byw5oEVC7YBDwau1X9G7xV/QNYH5PAvjLky61oxPAX9E3gPk9Caj5y5MFtdMiQMCblp5Mw1s0sANiBNQuGAS8YgsWvF38FXwBGN+VAP5yxUvx4ATwV/AFYHxXAmr+coVB8aQIEPAmJSfDlAgQQLEHSgTULhj4S2m76BV/sQMQ8COAv/zYUhkC+IsdgIAfATV/+ZGgcmoECHhTU5R5CHjZASkCahcMAl6p9QrfLP4KvwIAcCSAvxzhUjo8AfwVfgUA4EhAzV+OKCidGAEC3sQEZRx+gpcd0CLQuvU71qnTJtaq1WyJxgl4JWSiyX8TULvA4y9WV4kA/lJSi17VCOAvNcXoV4mAmr+U2NJrvgQIePPlz+kOBPgPZAeolHQjQMDrhpbCEDD8xRJAwI8A/vJjS2UIqAVQ/PcXO6tEQM1fSmzpNV8CBLz58ud0BwJcMBygUtKNAP+B7IaWwhAg4GUHIOBIgK9fjnApHZ4A/gq/AgBwJEDA6wiX0rkSIODNFT+HexAg4PWgSk0vAlzgvchSFwJGwMsSQMCRAF+/HOFSOjwB/BV+BQDgSEDNX44oKJ0YAQLexARlHN6Dlx3QIqB2weAbKFr7Fb1b/BV9A5jfkwD+8qRL7egE8Ff0DWB+TwJq/vJkQe20CBDwpqUn0xgBL0ugRUDtgkHAq7Vf0bvFX9E3gPk9CeAvT7rUjk4Af0XfAOb3JKDmL08W1E6LAAFvWnoyDQEvOyBGQO2CQcArtmDB28VfwReA8V0J4C9XvBQPTgB/BV8AxncloOYvVxgUT4oAAW9ScjJMiQABFHugREDtgoG/lLaLXvEXOwABPwL4y48tlSGAv9gBCPgRUPOXHwkqp0aAgDc1RZmHgJcdkCKgdsEg4JVar/DN4q/wKwAARwL4yxEupcMTwF/hVwAAjgTU/OWIgtKJESDgTUxQxuEneNkBLQJqFwwCXq39it4t/oq+AczvSQB/edKldnQC+Cv6BjC/JwE1f3myoHZaBAh409KTaXiLBnZAjIDaBYOAV2zBgreLv4IvAOO7EsBfrngpHpwA/gq+AIzvSkDNX64wKJ4UAQLepORkmBIBAij2QImA2gUDfyltF73iL3YAAn4E8JcfWypDAH+xAxDwI6DmLz8SVE6NAAFvaooyDwEvOyBFQO2CQcArtV7hm8Vf4VcAAI4E8JcjXEqHJ4C/wq8AABwJqPnLEQWlEyNAwJuYoIzDT/CyA1oE1C4YBLxa+xW9W/wVfQOY35MA/vKkS+3oBPBX9A1gfk8Cav7yZEHttAgQ8KalJ9PwFg3sgBgBtQsGAa/YggVvF38FXwDGdyWAv1zxUjw4AfwVfAEY35WAmr9cYVA8KQIEvEnJyTAlAgRQ7IESAbULBv5S2i56xV/sAAT8COAvP7ZUhgD+Ygcg4EdAzV9+JKicGgEC3tQUZR4CXnZAioDaBYOAV2q9wjeLv8KvAAAcCeAvR7iUDk8Af4VfAQA4ElDzlyMKSidGgIA3MUEZh5/gZQe0CKhdMAh4tfYrerf4K/oGML8nAfzlSZfa0Qngr+gbwPyeBNT85cmC2mkRIOBNS0+m4S0a2AExAmoXDAJesQUL3i7+Cr4AjO9KAH+54qV4cAL4K/gCML4rATV/ucKgeFIECHiTkpNhSgQIoNgDJQJqFwz8pbRd9Iq/2AEI+BHAX35sqQwB/MUOQMCPgJq//EhQOTUCBLypKco8BLzsgBQBtQsGAa/UeoVvFn+FXwEAOBLAX45wKR2eAP4KvwIAcCSg5i9HFJROjAABb2KCMg4/wcsOaBFQu2AQ8GrtV/Ru8Vf0DWB+TwL4y5MutaMTwF/RN4D5PQmo+cuTBbXTIkDAm5aeTMNbNLADYgTULhgEvGILFrxd/BV8ARjflQD+csVL8eAE8FfwBWB8VwJq/nKFQfGkCBDwJiUnw5QIEECxB0oE1C4Y+Etpu+gVf7EDEPAjgL/82FIZAviLHYCAHwE1f/mRoHJqBAh4U1OUeQh42QEpAmoXDAJeqfUK3yz+Cr8CAHAkgL8c4VI6PAH8FX4FAOBIQM1fjigonRgBAt7EBGUcfoKXHdAioHbBIODV2q/o3eKv6BvA/J4E8JcnXWpHJ4C/om8A83sSUPOXJwtqp0WAgDctPZmGt2hgB8QIqF0wCHjFFix4u/gr+AIwvisB/OWKl+LBCeCv4AvA+K4E1PzlCoPiSREg4E1KToYpESCAYg+UCKhdMPCX0nbRK/5iByDgRwB/+bGlMgTwFzsAAT8Cav7yI0Hl1AgQ8KamKPMQ8LIDUgTULhgEvFLrFb5Z/BV+BQDgSAB/OcKldHgC+Cv8CgDAkYCavxxRUDoxAgS8iQnKOPwELzugRUDtgkHAq7Vf0bvFX9E3gPk9CeAvT7rUjk4Af0XfAOb3JKDmL08W1E6LAAFvWnoyDW/RwA6IEVC7YBDwii1Y8HbxV/AFYHxXAvjLFS/FgxPAX8EXgPFdCaj5yxUGxZMiQMCblJwMUyJAAMUeKBFQu2DgL6Xtolf8xQ5AwI8A/vJjS2UI4C92AAJ+BNT85UeCyqkRIOBNTVHmIeBlB6QIqF0wCHil1it8s/gr/AoAwJEA/nKES+nwBPBX+BUAgCMBNX85oqB0YgQIeBMTlHH4CV52QIuA2gWDgFdrv6J3i7+ibwDzexLAX550qR2dAP6KvgHM70lAzV+eLKidFgEC3rT0ZBreooEdECOgdsEg4BVbsODt4q/gC8D4rgTwlyteigcngL+CLwDjuxJQ85crDIonRYCANyk5GaZEgACKPVAioHbBwF9K20Wv+IsdgIAfAfzlx5bKEMBf7AAE/Aio+cuPBJVTI0DAm5qizEPAyw5IEVC7YBDwSq1X+GbxV/gVAIAjAfzlCJfS4Qngr/ArAABHAmr+ckRB6cQIEPAmJijj8BO87IAWAbULBgGv1n5F7xZ/Rd8A5vckgL886VI7OgH8FX0DmN+TgJq/PFlQOy0CBLxp6ck0vEUDOyBGQO2CQcArtmDB28VfwReA8V0J4C9XvBQPTgB/BV8AxncloOYvVxgUT4oAAW9ScjJMiQABFHugREDtgoG/lLaLXvEXOwABPwL4y48tlSGAv9gBCPgRUPOXHwkqp0aAgDc1RZmHgJcdkCKgdsEg4JVar/DN4q/wKwAARwL4yxEupcMTwF/hVwAAjgTU/OWIgtKJESDgTUxQxuEneNkBLQJqFwwCXq39it4t/oq+AczvSQB/edKldnQC+Cv6BjC/JwE1f3myoHZaBAh409KTaXiLBnZAjIDaBYOAV2zBgreLv4IvAOO7EsBfrngpHpwA/gq+AIzvSkDNX64wKJ4UAQLepORkmBIBAij2QImA2gUDfyltF73iL3YAAn4E8JcfWypDAH+xAxDwI6DmLz8SVE6NAAFvaooyDwEvOyBFQO2CQcArtV7hm8Vf4VcAAI4E8JcjXEqHJ4C/wq8AABwJqPnLEQWlEyNAwJuYoIzDT/CyA1oE1C4YBLxa+xW9W/wVfQOY35MA/vKkS+3oBPBX9A1gfk8Cav7yZEHttAgQ8KalJ9PwFg3sgBgBtQsGAa/YggVvF38FXwDGdyWAv1zxUjw4AfwVfAEY35WAmr9cYVA8KQIEvEnJyTAlAgRQ7IESAbULBv5S2i56xV/sAAT8COAvP7ZUhgD+Ygcg4EdAzV9+JKicGgEC3tQUZR4CXnZAioDaBYOAV2q9wjeLv8KvAAAcCeAvR7iUDk8Af4VfAQA4ElDzlyMKSidGgIA3MUEZh5/gZQe0CKhdMAh4tfYrerf4K/oGML8nAfzlSZfa0Qngr+gbwPyeBNT85cmC2mkRIOBNS0+m4S0a2AExAmoXDAJesQUL3i7+Cr4AjO9KAH+54qV4cAL4K/gCML4rATV/ucKgeFIECHiTkpNhSgQIoNgDJQJqFwz8pbRd9Iq/2AEI+BHAX35sqQwB/MUOQMCPgJq//EhQOTUCBLypKco8BLzsgBQBtQsGAa/UeoVvFn+FXwEAOBLAX45wKR2eAP4KvwIAcCSg5i9HFJROjAABb2KCMg4/wcsOaBFQu2AQ8GrtV/Ru8Vf0DWB+TwL4y5MutaMTwF/RN4D5PQmo+cuTBbXTIkDAm5aeTMNbNLADYgTULhgEvGILFrxd/BV8ARjflQD+csVL8eAE8FfwBWB8VwJq/nKFQfGkCBDwJiUnw5QIEECxB0oE1C4Y+Etpu+gVf7EDEPAjgL/82FIZAviLHYCAHwE1f/mRoHJqBAh4U1OUeQh42QEpAmoXDAJeqfUK3yz+Cr8CAHAkgL8c4VI6PAH8FX4FAOBIQM1fjigonRgBAt7EBGUcfoKXHdAioHbBIODV2q/o3eKv6BvA/J4E8JcnXWpHJ4C/om8A83sSUPOXJwtqp0WAgDctPZmGt2hgB8QIqF0wCHjFFix4u/gr+AIwvisB/OWKl+LBCeCv4AvA+K4E1PzlCoPiSREg4E1KToYpESCAYg+UCKhdMPCX0nbRK/5iByDgRwB/+bGlMgTwFzsAAT8Cav7yI0Hl1AgQ8KamKPMQ8LIDUgTULhgEvFLrFb5Z/BV+BQDgSAB/OcKldHgC+Cv8CgDAkYCavxxRUDoxAgS8iQnKOPwELzugRUDtgkHAq7Vf0bvFX9E3gPk9CeAvT7rUjk4Af0XfAOb3JKDmL08W1E6LAAFvWnoyDW/RwA6IEVC7YBDwii1Y8HbxV/AFYHxXAvjLFS/FgxPAX8EXgPFdCaj5yxUGxZMiQMCblJwMUyJAAMUeKBFQu2DgL6Xtolf8xQ5AwI8A/vJjS2UI4C92AAJ+BNT85UeCyqkRIOBNTVHmIeBlB6QIqF2lqB1qAAAgAElEQVQwCHil1it8s/gr/AoAwJEA/nKES+nwBPBX+BUAgCMBNX85oqB0YgQIeBMTlHH4CV52QIuA2gWDgFdrv6J3i7+ibwDzexLAX550qR2dAP6KvgHM70lAzV+eLKidFgEC3rT0ZBreooEdECOgdsEg4BVbsODt4q/gC8D4rgTwlyteigcngL+CLwDjuxJQ85crDIonRYCANyk5GaZEgACKPVAioHbBwF9K20Wv+IsdgIAfAfzlx5bKEMBf7AAE/Aio+cuPBJVTI0DAm5qizEPAyw5IEVC7YBDwSq1X+GbxV/gVAIAjAfzlCJfS4Qngr/ArAABHAmr+ckRB6cQIEPAmJijj8BO87IAWAbULBgGv1n5F7xZ/Rd8A5vckgL886VI7OgH8FX0DmN+TgJq/PFlQOy0CBLxp6ck0vEUDOyBGQO2CQcArtmDB28VfwReA8V0J4C9XvBQPTgB/BV8AxncloOYvVxgUT4oAAW9ScjJMiQABFHugREDtgoG/lLaLXvEXOwABPwL4y48tlSGAv9gBCPgRUPOXHwkqp0aAgDc1RZmHgJcdkCKgdsEg4JVar/DN4q/wKwAARwL4yxEupcMTwF/hVwAAjgTU/OWIgtKJESDgTUzQlo7TunVr69ZtZfvnP/9h9fX1LS2Xy+sJoHLBzqHNJKB2wcBfzRSal+VCAH/lgp1DgxDAX0GEZsxcCOCvXLBzaBACav4KIgtjVoEAAW8VICqXKIW5PznpFNtiy63sG99Y3tq0adM4zhdffGGPPTbeTvrJcfbxRx8tMuaOO+1i55x7wSL/Pq9+ntXV1dkXn39uzz//nF11xQh79dUJNcNEAFUz1BxUBQJqFwz8VQXRKVEzAvirZqg5KCAB/BVQdEauGQH8VTPUHBSQgJq/AkrEyM0kQMDbTHCpvOzW0XfYeutv8JXjzJs3z3bZcVt7+eWXFnruiCOPsdPPOKssFNdde7WdfebpZT3b0ocIoFpKkNfXkoDaBQN/1XI7OKulBPBXSwnyeggsmQD+Yjsg4EcAf/mxpTIE1PyFYhAolwABb7mkEn1ufsBbCnGffebpLMR9/733bPsdd7K11upvSy21VDb5jBkzbNCAvksMeN95Z6q9PWVK9vm2bdta+/YdrFfv3tauXbvG15x84vF208gb3UkSQLkj5oAqElC7YOCvKopPKXcC+MsdMQcEJoC/AovP6O4E8Jc7Yg4ITEDNX4GlYvQKCRDwVggstcfPH/wbW3rppe2cX51pM2fOXGi8Dh062JPPvGil/y197LjdVvbKKy83PrPgT/AOPv9cGzF86CJ4rrrmettu+x2zfx83bqwdctAB7ggJoNwRc0AVCahdMPBXFcWnlDsB/OWOmAMCE8BfgcVndHcC+MsdMQcEJqDmr8BSMXqFBAh4KwQW7fGLLxlme+61dzb2f4e45QS8gwatY2PuuCd7/YRXXrEdttvSHSEBlDtiDqgiAbULBv6qoviUcieAv9wRc0BgAvgrsPiM7k4Af7kj5oDABNT8FVgqRq+QAAFvhcCiPT7kot/ZPvvun439q7PPsGuvvrIRQTkB7x57fs8uGToie82wyy6xIYPPd0dIAOWOmAOqSEDtgoG/qig+pdwJ4C93xBwQmAD+Ciw+o7sTwF/uiDkgMAE1fwWWitErJEDAWyGwaI/f/+Cj1nv1NbKx99pzV3vqySfKDnj79x9gI28Zk73FQ+k9fjfZaH2bNu1dd4QEUO6IOaCKBNQuGPiriuJTyp0A/nJHzAGBCeCvwOIzujsB/OWOmAMCE1DzV2CpGL1CAgS8FQKL9PiGG21sI28enY386aef2oB+qy80/oI/wTt79mz79NNZ2eeXXmppa9uuXeN799bV1dmuO21nr746oSb4CKBqgplDqkRA7YKBv6okPGVqQgB/1QQzhwQlgL+CCs/YNSGAv2qCmUOCElDzV1CZGLsZBAh4mwEtwkuWXXZZe+zJ56x9+/bZuKW3Vii9xcKCHwsGvE0xKf0Ct1NOOsHuufvOhR7tsnLDTwdX8+Pjf75rMz55yurrV6xmWWpBwIVA6YKxbOfNrEu3FVzqV7so/qo2Uep5EsBfnnSpHZ0A/oq+AczvSQB/edKldnQCnv6a/s/J0fEyf44ECHhzhF/Uo9u2bWsPPvKYdeu2ctbiSy+9aDvvsM0i7S4Y8L7zzlSb8tZb2TOtWrWydu3aWceOHa3nar2sTZs2ja895qjD7PbbxjT+fcXV16s6hvfemGifTCfgrTpYCroQKF0wOnfZ3Fbo1dulfrWL4q9qE6WeJwH85UmX2tEJ4K/oG8D8ngTwlyddakcn4Omv915/Njpe5s+RAAFvjvCLePRSSy1l9z803nr06Jm19+67/7TvbvYtmzNnzlcGvIPPP9dGDB+62JFGXHG17bTzrtnnpk+fbusO7Nf4XJtlvl51DHM++5fNmPEMP8FbdbIU9CCQfQd52U2tzTIe1atfE39VnykV/QjgLz+2VIYA/mIHIOBHAH/5saUyBDz9Vff5pwCGQG4ECHhzQ1+8g0u/DO2e+x60VVftnjX33nvTbMvvbGql99dd3MeCP8H7VQFv6bUvvjLJOnXqlJXp12c1+/zzz90A8B6hbmgp7ECgVatSwLuJtWq1eJ85HNmikvirRfh4cY0JqL3HGv6q8YJwXIsI4K8W4ePFEPhKAviLBYGAHwE1f/mRoHJqBAh4U1O0mfMsv3xXGzvuIeuy3HJZhTffeN2233bLxf7k7vwjKgl4H3hovPXq3fBL2rbZanObNHFiMztt+mX8B3LTjHiiOAQIeIujBZ2kRwB/pacpExWHgNp/IHM/LM7u0EnTBPBX04x4AgLNJaDmr+bOyeviESDgjaf5IhP37z/Abrr1tsZfqPbss8/YnrvtZPX19V9Jp5KA9/mXXrPOnTtnNXv3XNnmzZvnRp4LvBtaCjsQIIBygEpJCPybAP5iFSDgRwB/+bGlMgTUAij++4udVSKg5i8ltvSaLwEC3nz55376DjvubKX3yG3dunXWy5jRo+y4Y44oq69yA96fn36GHXX0cVnNjz/6yNZbp39Z9Zv7EBeM5pLjdXkQ4D+Q86DOmVEI4K8oSjNnHgTwVx7UOTMKAfwVRWnmzIOAmr/yYMSZmgQIeDV1q1rXU955r7HWK6+8bH+78S9LrF366ds//eEGq6ury55ZMOAdd9+9dt/Ye7N/b9O2rXXt2tW6rbSybbHlVo1v+1D6XCk8LoXInh8EvJ50qV1tAmoXDPxV7Q2gnicB/OVJl9rRCeCv6BvA/J4E8JcnXWpHJ6Dmr+h6MX/5BAh4y2eV5JMLBrzlDPidzb5lU956c5GAt6nXlsLh4cMutSGDz2/q0RZ/ngCqxQgpUEMCahcM/FXD5eCoFhPAXy1GSAEILJEA/mI5IOBHAH/5saUyBNT8hWIQKJcAAW+5pBJ9rtKAd7NNNrSpU9/OaBx6+JF25lm/XiKZ0k/6fjprlj33/LP2s1NPtvff/89PC3viJIDypEvtahNQu2Dgr2pvAPU8CeAvT7rUjk4Af0XfAOb3JIC/POlSOzoBNX9F14v5yydAwFs+K54UIUAAJSIUbWYE1C4Y+IvFVSKAv5TUolc1AvhLTTH6VSKAv5TUolc1Amr+UuNLv/kRIODNjz0nOxEggHICS1kXAmoXDPzlsgYUdSKAv5zAUhYCfIOSHYCAKwG+frnipXhwAmr+Ci4X41dAgIC3Alg8qkGAAEpDJ7psIKB2wcBfbK4SAfylpBa9qhHAX2qK0a8SAfylpBa9qhFQ85caX/rNjwABb37sOdmJAAGUE1jKuhBQu2DgL5c1oKgTAfzlBJayEOAblOwABFwJ8PXLFS/FgxNQ81dwuRi/AgIEvBXA4lENAgRQGjrRZQMBtQsG/mJzlQjgLyW16FWNAP5SU4x+lQjgLyW16FWNgJq/1PjSb34ECHjzY8/JTgQIoJzAUtaFgNoFA3+5rAFFnQjgLyewlIUA36BkByDgSoCvX654KR6cgJq/gsvF+BUQIOCtABaPahAggNLQiS4bCKhdMPAXm6tEAH8pqUWvagTwl5pi9KtEAH8pqUWvagTU/KXGl37zI0DAmx97TnYiQADlBJayLgTULhj4y2UNKOpEAH85gaUsBPgGJTsAAVcCfP1yxUvx4ATU/BVcLsavgAABbwWweFSDAAGUhk502UBA7YKBv9hcJQL4S0ktelUjgL/UFKNfJQL4S0ktelUjoOYvNb70mx8BAt782HOyEwECKCewlHUhoHbBwF8ua0BRJwL4ywksZSHANyjZAQi4EuDrlyteigcnoOav4HIxfgUECHgrgMWjGgQIoDR0ossGAmoXDPzF5ioRwF9KatGrGgH8paYY/SoRwF9KatGrGgE1f6nxpd/8CBDw5seek50IEEA5gaWsCwG1Cwb+clkDijoRwF9OYCkLAb5ByQ5AwJUAX79c8VI8OAE1fwWXi/ErIEDAWwEsHtUgQACloRNdNhBQu2DgLzZXiQD+UlKLXtUI4C81xehXiQD+UlKLXtUIqPlLjS/95keAgDc/9pzsRIAAygksZV0IqF0w8JfLGlDUiQD+cgJLWQjwDUp2AAKuBPj65YqX4sEJqPkruFyMXwEBAt4KYPGoBgECKA2d6LKBgNoFA3+xuUoE8JeSWvSqRgB/qSlGv0oE8JeSWvSqRkDNX2p86Tc/AgS8+bHnZCcCBFBOYCnrQkDtgoG/XNaAok4E8JcTWMpCgG9QsgMQcCXA1y9XvBQPTkDNX8HlYvwKCBDwVgCLRzUIEEBp6ESXDQTULhj4i81VIoC/lNSiVzUC+EtNMfpVIoC/lNSiVzUCav5S40u/+REg4M2PPSc7ESCAcgJLWRcCahcM/OWyBhR1IoC/nMBSFgJ8g5IdgIArAb5+ueKleHACav4KLhfjV0CAgLcCWDyqQYAASkMnumwgoHbBwF9srhIB/KWkFr2qEcBfaorRrxIB/KWkFr2qEVDzlxpf+s2PAAFvfuw52YkAAZQTWMq6EFC7YOAvlzWgqBMB/OUElrIQ4BuU7AAEXAnw9csVL8WDE1DzV3C5GL8CAgS8FcDiUQ0CBFAaOtFlAwG1Cwb+YnOVCOAvJbXoVY0A/lJTjH6VCOAvJbXoVY2Amr/U+NJvfgQIePNjz8lOBAignMBS1oWA2gUDf7msAUWdCOAvJ7CUhQDfoGQHIOBKgK9frngpHpyAmr+Cy8X4FRAg4K0AFo9qECCA0tCJLhsIqF0w8Bebq0QAfympRa9qBPCXmmL0q0QAfympRa9qBNT8pcaXfvMjQMCbH3tOdiJAAOUElrIuBNQuGPjLZQ0o6kQAfzmBpSwE+AYlOwABVwJ8/XLFS/HgBNT8FVwuxq+AAAFvBbB4VIMAAZSGTnTZQEDtgoG/2FwlAvhLSS16VSOAv9QUo18lAvhLSS16VSOg5i81vvSbHwEC3vzYc7ITAQIoJ7CUdSGgdsHAXy5rQFEnAvjLCSxlIcA3KNkBCLgS4OuXK16KByeg5q/gcjF+BQQIeCuAxaMaBAigNHSiywYCahcM/MXmKhHAX0pq0asaAfylphj9KhHAX0pq0asaATV/qfGl3/wIEPDmx56TnQgQQDmBpawLAbULBv5yWQOKOhHAX05gKQsBvkHJDkDAlQBfv1zxUjw4ATV/BZeL8SsgQMBbASwe1SBAAKWhE102EFC7YOAvNleJAP5SUote1QjgLzXF6FeJAP5SUote1Qio+UuNL/3mR4CANz/2nOxEgADKCSxlXQioXTDwl8saUNSJAP5yAktZCPANSnYAAq4E+PrlipfiwQmo+Su4XIxfAQEC3gpg8agGAQIoDZ3osoGA2gUDf7G5SgTwl5Ja9KpGAH+pKUa/SgTwl5Ja9KpGQM1fanzpNz8CBLz5sedkJwIEUE5gKetCQO2Cgb9c1oCiTgTwlxNYykKAb1CyAxBwJcDXL1e8FA9OQM1fweVi/AoIEPBWAItHNQgQQGnoRJcNBNQuGPiLzVUigL+U1KJXNQL4S00x+lUigL+U1KJXNQJq/lLjS7/5ESDgzY89JzsRIIByAktZFwJqFwz85bIGFHUigL+cwFIWAnyDkh2AgCsBvn654qV4cAJq/gouF+NXQICAtwJYPKpBgABKQye6bCCgdsHAX2yuEgH8paQWvaoRwF9qitGvEgH8paQWvaoRUPOXGl/6zY8AAW9+7DnZiQABlBNYyroQULtg4C+XNaCoEwH85QSWshDgG5TsAARcCfD1yxUvxYMTUPNXcLkYvwICBLwVwOJRDQIEUBo60WUDAbULBv5ic5UI4C8ltehVjQD+UlOMfpUI4C8ltehVjYCav9T40m9+BAh482PPyU4ECKCcwFLWhYDaBQN/uawBRZ0I4C8nsJSFAN+gZAcg4EqAr1+ueCkenICav4LLxfgVECDgrQAWj2oQIIDS0IkuGwioXTDwF5urRAB/KalFr2oE8JeaYvSrRAB/KalFr2oE1Pylxpd+8yNAwJsfe052IkAA5QSWsi4E1C4Y+MtlDSjqRAB/OYGlLAT4BiU7AAFXAnz9csVL8eAE1PwVXC7Gr4AAAW8FsHhUgwABlIZOdNlAQO2Cgb/YXCUC+EtJLXpVI4C/1BSjXyUC+EtJLXpVI6DmLzW+9JsfAQLe/NhzshMBAignsJR1IaB2wcBfLmtAUScC+MsJLGUhwDco2QEIuBLg65crXooHJ6Dmr+ByMX4FBAh4K4DFoxoECKA0dKLLBgJqFwz8xeYqEcBfSmrRqxoB/KWmGP0qEcBfSmrRqxoBNX+p8aXf/AgQ8ObHnpOdCBBAOYGlrAsBtQsG/nJZA4o6EcBfTmApCwG+QckOQMCVAF+/XPFSPDgBNX8Fl4vxKyBAwFsBLB7VIEAApaETXTYQULtg4C82V4kA/lJSi17VCOAvNcXoV4kA/lJSi17VCKj5S40v/eZHgIA3P/ac7ESAAMoJLGVdCKhdMPCXyxpQ1IkA/nICS1kI8A1KdgACrgT4+uWKl+LBCaj5K7hcjF8BAQLeCmDxqAYBAigNneiygYDaBQN/sblKBPCXklr0qkYAf6kpRr9KBPCXklr0qkZAzV9qfOk3PwIEvPmx52QnAgRQTmAp60JA7YKBv1zWgKJOBPCXE1jKQoBvULIDEHAlwNcvV7wUD05AzV/B5WL8CggQ8FYAi0c1CBBAaehElw0E1C4Y+IvNVSKAv5TUolc1AvhLTTH6VSKAv5TUolc1Amr+UuNLv/kRIODNjz0nOxEggHICS1kXAmoXDPzlsgYUdSKAv5zAUhYCfIOSHYCAKwG+frnipXhwAmr+Ci4X41dAgIC3Alg8qkGAAEpDJ7psIKB2wcBfbK4SAfylpBa9qhHAX2qK0a8SAfylpBa9qhFQ85caX/rNjwABb37sOdmJAAGUE1jKuhBQu2DgL5c1oKgTAfzlBJayEOAblOwABFwJ8PXLFS/FgxNQ81dwuRi/AgIEvBXA4lENAgRQGjrRZQMBtQsG/mJzlQjgLyW16FWNAP5SU4x+lQjgLyW16FWNgJq/1PjSb34ECHjzY8/JTgQIoJzAUtaFgNoFA3+5rAFFnQjgLyewlIUA36BkByDgSoCvX654KR6cgJq/gsvF+BUQIOCtABaPahAggNLQiS4bCKhdMPAXm6tEAH8pqUWvagTwl5pi9KtEAH8pqUWvagTU/KXGl37zI0DAmx97TnYiQADlBJayLgTULhj4y2UNKOpEAH85gaUsBPgGJTsAAVcCfP1yxUvx4ATU/BVcLsavgAABbwWweFSDAAGUhk502UBA7YKBv9hcJQL4S0ktelUjgL/UFKNfJQL4S0ktelUjoOYvNb70mx8BAt782HOyEwECKCewlHUhoHbBwF8ua0BRJwL4ywksZSHANyjZAQi4EuDrlyteigcnoOav4HIxfgUECHgrgMWjGgQIoDR0ossGAmoXDPzF5ioRwF9KatGrGgH8paYY/SoRwF9KatGrGgE1f6nxpd/8CBDw5seek50IEEA5gaWsCwG1Cwb+clkDijoRwF9OYCkLAb5ByQ5AwJUAX79c8VI8OAE1fwWXi/ErIEDAWwEsHtUgQACloRNdNhBQu2DgLzZXiQD+UlKLXtUI4C81xehXiQD+UlKLXtUIqPlLjS/95keAgDc/9pzsRIAAygksZV0IqF0w8JfLGlDUiQD+cgJLWQjwDUp2AAKuBPj65YqX4sEJqPkruFyMXwEBAt4KYPGoBgECKA2d6LKBgNoFA3+xuUoE8JeSWvSqRgB/qSlGv0oE8JeSWvSqRkDNX2p86Tc/AgS8+bHnZCcCBFBOYCnrQkDtgoG/XNaAok4E8JcTWMpCgG9QsgMQcCXA1y9XvBQPTkDNX8HlYvwKCBDwVgCLRzUIEEBp6ESXDQTULhj4i81VIoC/lNT6//buO06KIm3g+GM6T0URPRRPSYLkLCCiSBDMBAVBjJgBkWDAgFkxoAKioCiSBDEBIqiISM5ZQMnmnMBw5lffz1Nz09c7O6Fnd2p3avpX/yg73dVV36rq6Xm6upqyuibA+HKtxSivSwKML5dai7K6JuDa+HLNl/IWnwAB3uKz58iWBAhAWYIlWysCrl1gML6sdAMytSTA+LIES7YIcIOSPoCAVQG+v6zyknnIBVwbXyFvLqqfhgAB3jSw2NQNAQJQbrQTpYwIuHaBwfii57okwPhyqbUoq2sCjC/XWozyuiTA+HKptSirawKujS/XfClv8QkQ4C0+e45sSYAAlCVYsrUi4NoFBuPLSjcgU0sCjC9LsGSLADco6QMIWBXg+8sqL5mHXMC18RXy5qL6aQgQ4E0Di03dECAA5UY7UcqIgGsXGIwveq5LAowvl1qLsromwPhyrcUor0sCjC+XWouyuibg2vhyzZfyFp8AAd7is+fIlgQIQFmCJVsrAq5dYDC+rHQDMrUkwPiyBEu2CHCDkj6AgFUBvr+s8pJ5yAVcG18hby6qn4YAAd40sNjUDQECUG60E6WMCLh2gcH4oue6JMD4cqm1KKtrAowv11qM8rokwPhyqbUoq2sCro0v13wpb/EJEOAtPnuObEmAAJQlWLK1IuDaBQbjy0o3IFNLAowvS7BkiwA3KOkDCFgV4PvLKi+Zh1zAtfEV8uai+mkIEOBNA4tN3RAgAOVGO1HKiIBrFxiML3quSwKML5dai7K6JsD4cq3FKK9LAowvl1qLsrom4Nr4cs2X8hafAAHe4rPnyJYECEBZgiVbKwKuXWAwvqx0AzK1JMD4sgRLtghwg5I+gIBVAb6/rPKSecgFXBtfIW8uqp+GAAHeNLDY1A0BAlButBOljAi4doHB+KLnuiTA+HKptSirawKML9dajPK6JMD4cqm1KKtrAq6NL9d8KW/xCRDgLT57jmxJgACUJViytSLg2gUG48tKNyBTSwKML0uwZIsANyjpAwhYFeD7yyovmYdcwLXxFfLmovppCBDgTQOLTd0QIADlRjtRyoiAaxcYjC96rksCjC+XWouyuibA+HKtxSivSwKML5dai7K6JuDa+HLNl/IWnwAB3uKz58iWBAhAWYIlWysCrl1gML6sdAMytSTA+LIES7YIcIOSPoCAVQG+v6zyknnIBVwbXyFvLqqfhgAB3jSw2NQNAQJQbrQTpYwIuHaBwfii57okwPhyqbUoq2sCjC/XWozyuiTA+HKptSirawKujS/XfClv8QkQ4C0+e45sSYAAlCVYsrUisNtun0rJksfIbrv9bCX/TGfK+Mq0KPnZFGB82dQl77ALuPYDme+vsPdYt+rP+HKrvSitWwKujS+3dCltcQoQ4C1OfY5tRYALeCusZGpJgACUJViyRcDMkOcGCh0BAVsCjC9bsuSLAE940QcQsClAgNemLnkXpwAB3uLU59hWBAjwWmElU0sC/EC2BEu2CBDgpQ8gYFWA7y+rvGQecgHGV8g7ANW3KkCA1yovmRejAAHeYsTn0HYECPDacSVXOwJcwNtxJVcEVIDxRT9AwJ4A48ueLTkjwPiiDyBgT8C18WVPgpxzTYAAb661KPURArx0ApcEXLvAYHy51LsoK+OLPoCAPQHGlz1bckaA8UUfQMCegGvjy54EOeeaAAHeXGtR6kOAlz7glIBrFxgEeJ3qXqEvLOMr9F0AAIsCjC+LuGQdegHGV+i7AAAWBVwbXxYpyDrHBAjw5liDUh0hwEsncErAtQsMArxOda/QF5bxFfouAIBFAcaXRVyyDr0A4yv0XQAAiwKujS+LFGSdYwIEeHOsQakOAV76gFsCrl1gEOB1q3+FvbSMr7D3AOpvU4DxZVOXvMMuwPgKew+g/jYFXBtfNi3IO7cECPDmVntSGyHASydwS8C1CwwCvG71r7CXlvEV9h5A/W0KML5s6pJ32AUYX2HvAdTfpoBr48umBXnnlgAB3txqT2pDgJc+4JiAaxcYBHgd62AhLy7jK+QdgOpbFWB8WeUl85ALML5C3gGovlUB18aXVQwyzykBArw51ZxURgUIQNEPXBJw7QKD8eVS76KsjC/6AAL2BBhf9mzJGQHGF30AAXsCro0vexLknGsCBHhzrUWpDwFe+oBTAq5dYBDgdap7hb6wjK/QdwEALAowviziknXoBRhfoe8CAFgUcG18WaQg6xwTIMCbYw1KdZjBSx9wS8C1CwwCvG71r7CXlvEV9h5A/W0KML5s6pJ32AUYX2HvAdTfpoBr48umBXnnlgAB3txqT2rDEg30AccEXLvAIMDrWAcLeXEZXyHvAFTfqgDjyyovmYdcgPEV8g5A9a0KuDa+rGKQeU4JEODNqeakMipAAIp+4JKAaxcYjC+XehdlZXzRBxCwJ8D4smdLzggwvugDCNgTcG182ZMg51wTIMCbay1KfQjw0gecEnDtAoMAr1PdK/SFZXyFvgsAYFGA8WURl6xDL8D4Cn0XAMCigGvjyyIFWeeYAAHeHN9nc+sAACAASURBVGtQqsMMXvqAWwKuXWAQ4HWrf4W9tIyvsPcA6m9TgPFlU5e8wy7A+Ap7D6D+NgVcG182Lcg7twQI8OZWe1IblmigDzgm4NoFBgFexzpYyIvL+Ap5B6D6VgUYX1Z5yTzkAoyvkHcAqm9VwLXxZRWDzHNKgABvTjUnlVEBAlD0A5cEXLvAYHy51LsoK+OLPoCAPQHGlz1bckaA8UUfQMCegGvjy54EOeeaAAHeXGtR6kOAlz7glIBrFxgEeJ3qXqEvLOMr9F0AAIsCjC+LuGQdegHGV+i7AAAWBVwbXxYpyDrHBAjw5liDUh1m8NIH3BJw7QKDAK9b/SvspWV8hb0HUH+bAowvm7rkHXYBxlfYewD1tyng2viyaUHeuSVAgDe32pPasEQDfcAxAdcuMAjwOtbBQl5cxlfIOwDVtyrA+LLKS+YhF2B8hbwDUH2rAq6NL6sYZJ5TAgR4c6o5qYwKEICiH7gk4NoFBuPLpd5FWRlf9AEE7AkwvuzZkjMCjC/6AAL2BFwbX/YkyDnXBAjw5lqLUh8CvPQBpwRcu8AgwOtU9wp9YRlfoe8CAFgUYHxZxCXr0AswvkLfBQCwKODa+LJIQdY5JkCAN8calOowg5c+4JaAaxcYBHjd6l9hLy3jK+w9gPrbFGB82dQl77ALML7C3gOov00B18aXTQvyzi0BAry51Z7UhiUa6AOOCbh2gUGA17EOFvLiMr5C3gGovlUBxpdVXjIPuQDjK+QdgOpbFXBtfFnFIPOcEiDAm1PNSWVUgAAU/cAlAdcuMBhfLvUuysr4og8gYE+A8WXPlpwRYHzRBxCwJ+Da+LInQc65JkCAN9dalPoQ4KUPOCXg2gUGAV6nulfoC8v4Cn0XAMCiAOPLIi5Zh16A8RX6LgCARQHXxpdFCrLOMQECvDnWoFSHGbz0AbcEXLvAIMDrVv8Ke2kZX2HvAdTfpgDjy6YueYddgPEV9h5A/W0KuDa+bFqQd24JEODNrfakNizRQB9wTMC1CwwCvI51sJAXl/EV8g5A9a0KML6s8pJ5yAUYXyHvAFTfqoBr48sqBpnnlAAB3pxqTiqjAgSg6AcuCbh2gcH4cql3UVbGF30AAXsCjC97tuSMAOOLPoCAPQHXxpc9CXLONQECvLnWotSHAC99wCkB1y4wCPA61b1CX1jGV+i7AAAWBRhfFnHJOvQCjK/QdwEALAq4Nr4sUpB1jgkQ4M2xBqU6zOClD7gl4NoFBgFet/pX2EvL+Ap7D6D+NgUYXzZ1yTvsAoyvsPcA6m9TwLXxZdOCvHNLgABvbrUntWGJBvqAYwKuXWAQ4HWsg4W8uIyvkHcAqm9VgPFllZfMQy7A+Ap5B6D6VgVcG19WMcg8pwQI8OZUc1IZFSAART9wScC1CwzGl0u9i7IyvugDCNgTYHzZsyVnBBhf9AEE7Am4Nr7sSZBzrgkQ4M21FqU+BHjpA04JuHaBQYDXqe4V+sIyvkLfBQCwKMD4sohL1qEXYHyFvgsAYFHAtfFlkYKsc0yAAG+ONSjVYQYvfcAtAdcuMAjwutW/wl5axlfYewD1tynA+LKpS95hF2B8hb0HUH+bAq6NL5sW5J1bAgR4c6s9s6Y2pQ46SHZ+912xlIcAVLGwc9ACCrh2gcH4KmBDs1uxCDC+ioWdg4ZEgPEVkoammsUiwPgqFnYOGhIB18ZXSJqFamZAgABvBhDJIiJw/6CH5cTWbaR06UNkt912kz/++EM+//wzGf30UzLm6aeKjIkAVJFRc6AMCLh2gcH4ykCjk0WRCTC+ioyaA4VQgPEVwkanykUmwPgqMmoOFEIB18ZXCJuIKhdQgABvAeHY7X8Cu+++u0ybMVPq1KmbkGXsmKfl9ltvLhI2AlBFwsxBMiTg2gUG4ytDDU82RSLA+CoSZg4SUgHGV0gbnmoXiQDjq0iYOUhIBVwbXyFtJqpdAAECvAVAY5e8Ao8OHynt2ncwf/zpp59k6pSXZN3aNXJC85bStl170QCwpr69rzKf2U4EoGwLk38mBVy7wGB8ZbL1ycu2AOPLtjD5h1mA8RXm1qfutgUYX7aFyT/MAq6NrzC3FXVPT4AAb3pebB1HYOuOj2Tvvfc2SzK0an6cfPTRh95Wp5/RVkY8Mcr8e+uWzdLmxObWDQlAWSfmABkUcO0Cg/GVwcYnK+sCjC/rxBwgxAKMrxA3PlW3LsD4sk7MAUIs4Nr4CnFTUfU0BQjwpgnG5nkFOnbqLIOHPmr+OHXKZOnbu2c+ooVLVki5cuXN3+vXrSHfffutVUYCUFZ5yTzDAq5dYDC+MtwByM6qAOPLKi+Zh1yA8RXyDkD1rQowvqzyknnIBVwbXyFvLqqfhgAB3jSw2DS/wOMjR8lpp7c1H1x+aTeZ9cbr+TZ64MHBck7X88zf+1/XT55/7lmrlASgrPKSeYYFXLvAYHxluAOQnVUBxpdVXjIPuQDjK+QdgOpbFWB8WeUl85ALuDa+Qt5cVD8NAQK8aWCxaX6ByVOnS8NGjc0HlSocLn/++We+jTqc1VEeGTbC/H3YI4Pl4QcfsEpJAMoqL5lnWMC1CwzGV4Y7ANlZFWB8WeUl85ALML5C3gGovlUBxpdVXjIPuYBr4yvkzUX10xAgwJsGFpvmF5g7f7EcWamy+aD8EYfGJWrRopWMmzDJfPbSi8/Ltf16W6UkAGWVl8wzLODaBQbjK8MdgOysCjC+rPKSecgFGF8h7wBU36oA48sqL5mHXMC18RXy5qL6aQgQ4E0Di03zC6xeu1H+Vbq0/PXXX1Kx3GFxierWqy+vzJhpPlu0cIGc1/Vsb7tDK9XPOOuX722VXTtXyd9/xw84Z/yAZIhAIQT0AqNUqaZyyJGRGyXZnhhf2d5ClM8vwPiiPyBgT4DxZc+WnBFgfNEHELAnYHN8fbljrb2CkzMCKQQI8NJFCiWwbsNmKVWqlFmaQZdoiJdq1qwlr73xlvmoSAK8OzbJr79eJn//vV+h6sbOCBSFwG67/Sj77DNWDjmyalEcrtDH+JLxVWhDMig6AcZX0VlzpPAJML7C1+bUuOgEGF9FZ82Rwidgc3wR4A1ff8qmGhPgzabWcLAsi5aulLJly8nff/8tFcqWiVuD45udIBMnvWg+m/7KNOnV8wpvOxszeB1kpMgIIIAAAggggAACCCCAAAIIIOCwAAFehxsvB4pOgDcHGrE4qzD9tVlSp05dU4REa/C2bddeHhvxpNnmySdGyMB77iTAW5yNxrERQAABBBBAAAEEEEAAAQQQQCCjAgR4M8pJZmkKEOBNE4zN8wqMGTdBWp3Yxvzx5NYtZPPmTfmI+t94s1zVq4/5++23DZCxo0fBiAACCCCAAAIIIIAAAggggAACCCCAAAIZECDAmwHEMGdx7fU3SO8+1xiCJx5/TO4beHc+jldnzpZatWqbv59xahvZsGF9mMmoOwIIIIAAAggggAACCCCAAAIIIIAAAhkTIMCbMcpwZrT//vvLhne3yW677SbfffutHF2/lvz1118exhFHlJWFS1bI7rvvbj6vX7dGOKGoNQIIIIAAAggggAACCCCAAAIIIIAAAhYECPBaQA1bltNmzJR69eqbaq9ds1pu7H+tWaqh6XHHy4jHn5JSBx1kPhsxfJg8cN/AsPFQXwQQQAABBBBAAAEEEEAAAQQQQAABBKwJEOC1RhuejI+qUkVemfGG7Lvvvl6l//77bzOrN5o++eRjad2ymfzyyy/hgaGmCCCAAAIIIIAAAggggAACCCCAAAIIWBYgwGsZOCzZH3LIofLKqzPlsMP+nafKGuhdtXKFdO7UIc/SDWFxoZ4FE9hnn324GVAwOvYqRoF//OMfUmL//c1yNK6nPffc01Thzz//dL0qlD+EAvod8uuvv4pegxQk0f8LosY+yQT0+vjzzz8DqZgFSpYsab7X/vOf/xRzSTi8iwL6e/ebb77mN62LjUeZEQiJAAHekDR0UVVzv/32kxYtW0nVatVlxfJlsmTxIr4EY/BPPe0Mufue+wI3yVkdzpCPPvpQEu335//9Kb/8/LN88MH7MvyxYSagHjQ9OnykHHtsU7P5X3//JSe2OF5+/PHHhLvHluHjjz+SM9ufHnd7ndk96bnJ5rNbb7lJXn9tRsJ8L7iwm3Ts1FnKl68gB5YqZdZs1h/mP//8s3z26ScybuxomfDMuDw/1u8eeL+cemr8Y8c70NW9usvSJYuD0rCdRYGTTj5V7r1vUNwjfP/9LjmxZTPvs9h2njHjFbnjtgFx973ksiukZ8+rzWfNmzXJ8wMuXn/5v7/+z4ydn3/5RT75+COZ/srLMv2VaWnV/KpefaTDmWfJ4UeUFT3/afrjjz/MD4B339ko113bN2HAV7efv3CZdzwdy6ec1Ep27dwZtwxz5y+W/fc/QF5//VW5dcCN3jax+aSqwJYtm+W8rmfn2UyfuOjT91o574IL5cADS4kGq8154a+/jOPOnd/JrJmvy6inRuYJUqTTlrHluvCii72XdOpnN9/UX2a98Xqq4vN5FggkOv/+/sfv8p+ffpJ169bK0MEPyaeffhK3tLp+/9z5S8xnsf053g7LVq6VPffYUxYvXiR9ru6RbxMN2txz7yA5oXkLKVGihEQDtDoW9XtEyzFl8ovy7ITxcQM7xdH/y1eoKJOnvOLVJdm5LQuaPOeKEHvenDNntvS/rl/Cemof0XNwiRL7m230mqvTWe0Sbt+yVWvp0+9aqVChohx44IHmqTa9rtn53Xfy/vvvyb0D70p4vab7PvjQkLTM9fujSaPIcmnxUrrnWxs+L7/ymui7OWKTXn/+/vvv8tWXX8rLUyfLc5Mmmn/709577y2Llq6U3eR/Twf6P+94Vjv58IP38+Wt32UPDBosDRs3ljJlDvO+2/QG0OeffSqLFi0036eJbgbdc+8Dcsopp5l8Y68rYg+mL57u2vV88+cO7U4TfXoxmhLVPV5bpWrLtDoGGxuBqtWqycRnX4yrkajv6MZly5aT+wc9LFWqVpWDDjrY+27R30r6G0i/U54ZPzahcmG/KxNd3+l37e+//SZffvmlbNywXkY+MUK++urLtFq7sOeEgl6zplVINkYAgbQFCPCmTcYOCBRO4Iore8qAW28PnEnb006S9evflqD7vbdju5zcpmW+i+PYA+pF75btH5pgajQNe2SwPPzgAwnLFq8MfXtfJVOnvJRvn0aNj5GX/vvjdeDdd8qTI0fk2+bww4+Qcc88K0dVqZrSQ3+o33P3HTJ29Ciz7YuTp0njY5qk3C+6QZ/ePeXlKZGAM6l4BTQQe/sdd8cthM6sqVThcO+z2HbWH2EN69c2AdTYNPC+QXL+BReZP9etXS1PoDRof9Fg0OSXXpBbbr4hKZL+UJz0/EtyZKXKSbfTfnvzjdfLC89Pyred3sx4e8PmPH9/c9ZMueySSB1i0/sffW7Gq948O7tje+/jePkkK9TXX30lDRvU9jbRmzHTps/0AtSpeke3C8+TuXNmm83SacvYfBcvW5Xnx/6GDevljFPbpDo8n2eBQNDxNHXyS9K3z1X5SnzQwQfL2rffNX+P7c/xqvfhJ5Efrps3bZKT27TIs0m3Sy4z5xP/d1kiIr1hUbHcYXk+Lq7+P2ToY3JWp//daNGAU9XK5bOgdcNRhNjzpn63NKhXM+ENuSu7XyU333Kbh/P9999LnZpV8mHpzYXhjz8ppwS4AT3p2QnmvRWxSW96a2Ax3VT+iEMT7pLu+daGz8ZN20Vv7qRKGjw7pU3LPAFS3U/3T5Tatz1V1q1dk+djfRfIk6PGpjymBt31puc772zMl71ex+r1rKbY64rYjZ96eqzoTU9Np518Yp78gtY9mmeytkzlx+f5BY5tepw898KUuDTtzjhF3l63Nt9nPXpeLf1vvDnld4ve0LzwvC6i54TYVNjvynSu77Zu2SzXX9cv3zhI1B8Ke07QfAtyzUr/RAABuwIEeO36kjsC+QT8QVJ9lPurr75KqtTtwnPNjDn/fjob6eOPPjIXHfpI+GFlDvNeZqeZaZC3ZfPjkuYbL1irx0k2AyTePjt37pR6tavlO1aqAK/eTZ85a6534aQ/vFevWikb1r8tX3zxhdSrX1+qV68hOssp+sN9xvRpclWPK8yx/BdNO7Zvkz/+SP4oef/r+8W9gKOLFr1AuXLlvcBGv2uuNwXQsTBu3Gj54YcfZPSoJ71Cxbs4nj9/rlx43jn5Ch40wKsvg9TA6z777is68++AA0qaGVb+NOetN+XiiyIzcWLTv/5VWnRG4V577WU+ivbd1atXmvHcuPExckyTplKqVClv10eHDZGHBt2fJ6t4F+4aZDiuScO4Mx+DBHg1SPTB+/lnMfkPvOndd7ygm74Ec/HSVV5wV+vy4YcfyKKFC+THH3+Q2rXrypGVKsm//324t656z+6Xyaszppss02lLfxn05s6S5avzeGjdq1epyPIsRT8k0z6if1zqePrtt99kjz32MONIZ7P71+TX2U2xN0wyFeDVYIoGVaJJy7F16xZZuGCeme1eo0ZN00dLH3KIt40/cFJc/V8LEy/gc+Xll8jM119Nuz3YIX2BeOffV2e8Ij27Xx43s3UbNuc5pycK8MYGTfSmhH43bNm8SWrXqStHH90wz41BvYGvN/L96Zgmx8pdd6d+0qvMYYd53116/qxQtkzcshfkfGvDJ9rn9Xtm2dLIDH69vvvnPvtI6dKl83zPfPP113J0/VpefaKz7HUCb8+reovO6NV8Hhn6sNlGrxv0+iGa2rZrL4+N+N+1hN68Xb58qaxcvtx8d+s1qk4SiD6ton46Izv2KbhMB3j1OFs2572xG9toOjPy9FNap9+p2SOhgH7nXHvd/27ct2x1oui40BQvwBt7A+7LL7+QFcuXm7Fcrmw5qd/gaKlXv4F3XaRPOtWvU918F/pTYb8r/eNQj6G/kfQmkrl2LVnSzCqOXovqcfXatt3pJ8u7776TtDdk6pxQkGtWuikCCNgVIMBr15fcEcgn4A+S3n/vPfL4iEcDKaXar81Jp5gfutGX2zU95uiEj8fqAectXCoVKx5pHkv77LNPvQudZk0bmyUh4qXYIHP04khn1j418vE8u6QK8C5cssL88NakgeUuZ58V9/E6Xbfu6bHPSM2atSRRgLd+3Ro5se5poI6QYxtFZ+bpzBmd8RKbohfH0aUCdBaP9tnmzY7N11+CBnjj9Rd9DO+aa/vLmR07eWNoyksvSr++vfKVadLzk0VnBmnatWuXdDqrrWzbujXPdjoOnxw1xpvNozOT9ceqf/kF/4W73rSJjif94dvl7DPzHTdIgHfliuVJHxuOzfSOO++Riy+NBDT0RknrVifEXVZH150bPPRRaXZCc/EHeP35pWpL/7b6yGPXcyMBdA2AVKte3fz/gw/cJ489OjTHennuVcf/ozXeeLrjroFy8SWXmYprYEUD9/6UqQCv/3skXiA5eswGRzeUwUOGScUjK4k/wFtc/V/PH3oeie3/a1avSrjsUe71ouKtUbwApn7P6Kzc2KWqdBmeRx7Ne40TL8Cr51LtU5r0nH/tNb3jPjl0+ZU9ZMAtt3vfNZdf2i3t5Wn0nKxLFmigU1O867CocEHOtzZ8ogHen376SWpWq5SvA1SqfJTMmj3Pewy+RtUj4y6psm79JjOpQYNpVSqVi9uR1r+z1QTBNG3cuEE6d2yfLy89D02b/rp3Larfw3rt7E+ZDvAmqnvxjobwHf3xkaPktNPbmorHBnh1Ysn8hUu98alLxA24qX8+JP2dM37Cc94NzalTJkvf3j3zbFfY70r/OIx3fafXmmd3Pkeu63+jHHpo5AaPjgt9sXmi33K6TWHPCYW5Zg1fb6PGCBStAAHeovXmaAjkmYmbyQCv0vofD7v3nrtk5BPD44rrD4OVa9Z7F76vTn9Fbrgpsq7pSy8+L9f26x13P3+At3ev7uYHj15c6F1lvVj3r2GWLMDr/xGkF7u1axyVcq3m9h3OlN1338NbDiLVRRNdzQ2BVEFBf4BX18nTIK4mnTWoa9z5U2ECvNF8Op3dRR4eMszLdsjgB81aotFUp05dmf7aLPNP/QGvs9eTrVutjwTqo4Ga5s2bIxed39XLy3/hrj8gTj+jnTdD7KTWzfPN8rER4H3jzXlecPXUk1qlnPWhgfBdu3bGrXOqtvS3VfTHt/4Q0bW/NVChSdcs1BnMpOwWCHL+XbVmgzdztlGDOnnWB8xUgDc6JnTWUuWKkdlYyVK1atVl8+ZN3ibF1f8nTnpRjm92gilH61bNvCVSNMCoyzTErj+aql58nr6A//yrgXW9CaBJl9O5/tq+eTLUpw30Bpwub7NfiRImoBMb4NVZde9s3iH//Oc/zb6XdLtA3pod+a6Ily69/Eq57fa7zEeJnoRKtK/Oel26Yo1ZU1aTzvrW2d+JUkHOt5n20bKlCvDqNnPmLRIN9GqK9z2of08V4NXH6nV9fE1BvlM2vLtNDjjgALP9TTdcJ89OfMajJMCb/thyYY9kAd5XZ86WWrUiy1glutEfraNOVFmweLm3xvbxxzbKs7RIYb8rUwV4o+XQmehzFyzxlr3S32V6fZrou6Sw54TCXLO60D8oIwIuCxDgdbn1KLuTAqlm4iaqVJD9/LORxo8bk+dFTP58ddF/XVxf0zV9r5bXXp0um7a+by5QNFhVq3r8dUX9ZdBH2a64soc3Q3HE8GHywH0DvcMkC/CuXrtR/lW6tNlWX2ry/HPPpt2WQS6a0s6UHYpcIFVQ0B/g1bUz/UGj6PrU0UJnIsCreenY0DGiKXa2jT8w8+ILz8l110R+RCZK+kIZ82KY/75gx/8IbWyAVx8NHTosclMm3oxmGwFe/wzIROtpB+0Uqdoymk/DRo1l8tTIEg+z33xDLr34QrPkhc7W16TLxPC2+aDqxbNdkPPv7DkLvPXV9WWcGkSLpkwHePXmot4oTHazJZ5UcfR/PRdse+9j81ht9DF0feFpu/YdTBGTzcQsntbOzaPGnn+jj2zrzQK9YR191Nq/dqder+js9HgB3ou6XSJ3/fcFuvryJQ30pEr+Waa67JAuPxQkPfvcS3Lc8ZGXkeoL21o0OzbhbgU932baRwsYJMAb/Y5PNjs3VYDX76o3VfXmarKk63jfeVfk+jW27QjwBumR7m2TKMDrX+tZb+LrjH4NliZL/vEYe11Y2O/KoAFeLd8+++wjCxev8G6sJppElKlzQkGvWd3rLZQYAbcECPC61V6UNgcEggRq41UzyH5jxk+UVq0i63bFzkLw5xm9ONYfMkcdWdbMvPXfsT6n81mydMnifMWIDfBu27bVvChHZ5PoXWL9URS9W5wswLvjg0/NI3h60aSP4BUkBbloKki+7FO0AqmCgrEB3lNPO0OeePJpU8htW7eYJQWiKVMBXs1PZ2KVKFHCZO0fDxqs1VmsmhI9Phor6J8lqLNTo2/Wjv0BrY8A+gOdehNFH8mLJhsB3nETJkmLFq3MIfSRO53FG+9FIUF6Raq2jOYx9plnpWXLyHIc0Ucj/TOuEr14KEgZ2KZoBIKcf6PfM1oifYzavzZhpgK8/nVRk73sJZFKcfR/XZpEH4/VNObpp+SO228RfdHb7DkLzd9SBeyKpoVz/yix599lSxd7a7aOGT1K7rgt8lRT9PwdnbGrN8PjBXgfGvyIeVRakz5tojfZUyVdpuGK7pFHuoc8/KAMHfK/p0US7XvNdf2lT9/Ii9n0GqpJo3p51p6N3a+g59tM+2i5kgV49Zrw3vsflC7nnGuqoBMPelwZWeYlNqUK8H7w8RfmpqouoVS3VuqX+Gr+etNFZ0HGLilDgDdVL3bz80QB3ubNW8r4ic+ZSi1cMF/OP7dzygrqWu+vz4rcRFi7do10aBt50Z6mwn5XphPg1eP5XwaZ6LskU+eEgl6zpgRlAwQQKJQAAd5C8bEzAukL+IOk+kKknxPcGf7++13S4oSm3gFSBXj1kTadMaXBVn3MUx/NiReoqV27jsx4/U2Tr75ISd8crKljp85mjc3Yv/trGBvg1eDTgw8Plc5dIo+d+wMziQK8+oKq1esibyrWlzmdcFzk7cTpJv9Fk95lT5W6X3GpedsrKbsEUgUFYwO8Wnr/rLsLzu0iCxbMM5XKZIDXf8PDvy5s9Md90EfCtVy6Fu/Jp0SWk9ClTaa9PNX8f7wArwZbNeikKfbiPEiAV/dLNR4+eP89ObFlZPaXviRE1yCMJr3Zoy9pfHvdOlm6dLHMnj0r8PrWqdoyeozoD2n/I866VuLbG7eYH+WJXl6UXT033KVJ9aPVP5sx3ss7MxXg1aWF9IVL0aTjUtfb1Dei601KfdlastlXxdH//Td8jq5XS7755mtTfP+TLf6/h7un2at9vPOv3rDWvqk3I6odVUEqVa7sBd6js+ESBXhffuU18+IlTbFPlySqhX9t31TLLGgerU5sI2PGTTDZ6XXeGae2MU97JEsFPd9m2kfLGA3w6vfMV199aYqt5/y99/6n6MzJeC/UjVe3ZAFe/8ujYm8CJ3PyPx2kT9pElxzLdIA3yHe0tq1OviDZE0gU4NWbJ3oTRVP0BlyqUmgf1psKmrRf65JE0VTY78p0A7y6zvy8BZEXGCaaRJPJc0JBrllTefI5AggUToAAb+H82BuBtAX8QdJkO2uQplKFw71N/Pvpkgb6GNA+/9xHyleoYNby07eJRy+Ox455Wm6/9ea42fvX6e3apaMsWbzIu8iOPjbqn9nrzyRegFdf8KEX7TrzQS9KdbaEvsk4UYD39DPayognRplsg94dj1cR/0VTkEbo07tn3JedBNmXbewJpAoKxgvw6hvGX3jpZVMo/0tRMhng9S9jEl2T0X8Rv/O776RenciLwVIlfxBq1JNPyN133W52ifcDWv/uX4Pwsksu8m5MBA3wpiqPriPZsEFkfTlNsUGy2P31RtT6gJy8IAAAIABJREFUt9eJrkccPV/EO0aqttR9OpzVUR4ZNsLs/tykiXLD9dd4WSV7pD9Vnfi8aAX8519d+/Pbb7+RAw4oKRUqVpR27c+UevXqmwJpkOTii86XuXNm5ylgpgK8munUaa9666fGU9BlG+bOeUsefODeuC+dKcr+r+t86uPjei6JvcHpfzFdsu/wom3p3D1avPOv/8bEsEcGS+PGTaTJsU3NrE59YkP7c6IAr77XQN9voEmv3VLdaNPt/DO39WWTJ7dpkRBcl/vRl+Pq0h6a9F0J+s6EZKkw59tM+2g5owHeVL1KnfW75sLzz4nrmCzA27Zde28m9pw5s+XiC89LdTjz+WtvvGVe5qtJX/gaDZzbCPAGKZD/ZZBBtmeb9AQSBXj9f09nCbmtOz4yLzyMvflf2O/KdAO8qhB9SlJ/k+nSZv6U6XOC5p3uNWt6LcXWCCCQrgAB3nTF2B6BQgr4g6QaaPnyv7MYYrPVAJL/0aAggWG9sLj5xuvNS0ISpehFSLw3+frXkYp3YRMvwKvHuXnAbXJlj6siF8n/fawuUYDX/3hqQR6pjdbLf9GkLzL5+edfkraMBqd2bN9WyNZj90wLpAoKxgvwahn8s+Cis2IzGeC9acCt0r1HL1Pd6IsH9SaG3gTRFDtLI5nLtdffIL37RAKZEyeMN2NUU6IAb9169eWVGZHZ5v7jBAnw6iOpeuMkWdJZTY8MjTwiHk06XnUc16lbz3uDebw85rz1pgnYxUup2lL38c+M9i9XoZ/510FM54d5pvsk+aUWCHKDTb/D9AmReDMMMxng1dKee94FcvkV3UVnL2nwNF7SoNF9A++O+/LRour/+qbzq3v3M8WLXR/R/3RLOjeQUrcWW8QTSHT+jS7Po9dTumyA9if/OwYSBXj9S5IEDc7puuO6LI+mZEtz6HfP8pXrzOzi2O+RZK1bmPNtpn20nNEArwae/MuA7bHHHubldYceeqgXJNftP/roQ2nWtHG+KiYL8PqvMYPMio5mrk+26RNumvS8pU+4acp0gFfr/uqMyBr0iZLeHOjbO7J0B8mOQKIAr3/5Av8TV6lKsWX7h+YFi7FB1cJ+VxYkwBudoavfef73PmgdbJwT0r1mTWXJ5wggUDgBAryF82NvBNIWSLXUQqIMgwR4U72cxb9+qb7w5s47bs1zuGOPPU5uvPkW87d4s0kSBXh15rD+KNJ16fSCQl+SVLZcOXNhrGng3XfKkyMjs/b8M1a2b9vqPSqeLmSqx57SzY/ti0cgVVAwUYC3WrXq8sbsyNIM0WBIJgO8/pep6Uyuhx98wBwreuGc7AUwsZJDh42QM8/qaP6sa5bp24c1JfoBrZ9NmzHTmwUZvdkSJMCry6bo2r2FSfoj9/hmzaVR48ZSo2Yt7+Vn0TwTrRWZqi31BSDRlznqLP8LzuuSp5g6My16ztC1vHlEtTCtaHffID9aW7U4PuFNNX+AN0ifjfatVLMcNRDWpElTadK0qTRqdIx5yVupUqXyYPhn58VTstX/9VjLV62TMmUiM6o6d+qQZ11i/dvY8c965U1VTrstnPu5Jzr/9r3mOul3TeQmnCY9F1WvUtGbSZoowOu/6ajLa73/3o6UiCe2PklGj33GbKcvWNMXrcVL/uUfdAmS00+JvGshWSrs+TbTPlrWIC9Z01m0U195zcyG1OT/zozWN1mA139tENRK812yfLXo8g6a9BH76BIS/gCvPrWj1xuJkv8JudjxG6TuqdqUzzMnkCjA65+w8uiwIfLQoMgLd1Ol6LrPO3fuNEvkRVNhvyvTDfDqUyIb3o1MZtGnr6pWLu+VxdY5QQ+QzjVrKks+RwCBwgkQ4C2cH3sjkLZAJgK8Optk3JjR5tgXX3qZN9NQg6tnd2yf58VM/gL6fySkKni8t5InCvBqXv6F/RcvWmge544X4NVtoxdC+uhsreqVUxUl7ucEeAvElnU7pQoKJgrwakX8P7xuv22AHHVUFTn/gotMHevWria7du6Me5Fdv26NlOvKrlj9thx6aBmz/+WXdpNZb0TWqfX/3b9OXzJY/yPkJ7duIZs3bzKbJwvw+tdRi65JW1QB3ti66E2ZJ0Y+LZWPqmI+il3iIbp9qrbUmYs6gzFo6nN1D3l56pSgm7NdEQr4z7/6Yr7v/hv0GDVmvDcLToP4xzU5Ou4LoPSmoPZnTe+++455uV+i5P/Bqm/t7nhm27Rq2uakU2TII4+ZNT416VjWMR00Zar/l69QURYsWhb0sPLGzNfkissuDrw9G6YnkOj8q31z87YPvACj/6kLPUKiAO+IJ56S08+I3FwLOvOv19V95fobbjL7jHx8uNw78K58lbjjznvk4ksvN3/X4NExDevmuzEQr+aFPd9m2kfLGDTIecllV8jtd9xtqrVg/rx8NwOTBXiTrYearIe8u+U92W+//cwkBf+sRw3AayBeU+tWzWTb1q0Js5n0/GRpetzx5vPYdbSD1j29XszWBRVIFOD1L/ERdAa43rTTm3eaYm9CFva7Mt0Ar7/8sevf2zonaL3TuWYtaJuxHwIIBBMgwBvMia0QyJhAJgK8sY92jhk/UVq1iszo0NkmLU9oKp98EnmUPJp0ZpM+QhRdpzdIhfwzF3X7ZAFe/VxfknTggQearHXW4aCHhpj/98/g1X/r3WX90a4p6MtIYstLgDdIC2b/NqmCgskCvLom4aKlK80jtLrkyLSXp8h5519oKl2YAG/VatXMEhCab+xMUv9NEp0BP3rUk0mRddzp7Hb9ryZ/UDhZgFe3nfDsC9LshOZmvwfuG2gCATp+VyxfZm7kRFO6PwAK0ivKli1nrKPnmHiza1O15eJlq0TbLGjasGG9eYkQKfsEEp1/tZ8vWbZaSh9yiCn0xx9/ZB6xjr6wyF+T6Gx4/zra8WrqfzHolJdelH59I0unpJOu6tVH+t8YWZc+VUA5Xr6Z6P9Dhj4mZ3WKvNQ0SIqdfRVkH7YJLpDs/Btdg10ft9ab0P4X9SUK8PqDJ7p+rL7jIFXyrzves/tl+R7d9wdrdMmIVs2Pi7uOdLzjFPZ8m2kfLWPQIGfDRo1l8tTIMga6xIvOhvWnZAFe3S7aRnre0fOPnoeSJf/xYpdHGXDL7XJF98hyCZd0u0B0SbBE6c235kuVqtXyBYnTqXuqPsPnmREYNXqc6M0/Te3OOMW8mFOTf9kUvUlZu8ZRKQ/ovwkzY/o0uarHFd4+hf2uTPf67rkXpsixTY8zx3/i8cfMskTRZPOcoMcIes2aEpQNEECgUAIEeAvFx84IpC9gI8CrpdC3puodVE06y0NnTvl/lPhn2E57eaqMHRN50Vls0lmLTzz5tPlz7N3fVAHeTmd3kYeHDDP7fvP11/Kv0qXN/8cGeMdNmCT65lVNqX7cR8unj/QeUvoQb/YjAd70+1427pEqKJgswKv18c+u8fe5ggZ49SU58xctM8uNaJr+yjTp1fN/F+sXXNhN7rk3slxDvHWsY411W91HU+wai6kCvFoWnTGsgWZ9yY+u75bpAK++oDG61mCq/hGdQZyo3sna0v9mc325VN/ekTW74yX9gaKP5+qPc300+pdfkq+vnarcfJ55gWTnX53NtGDxcm8GpK61eU7ns/IVYu3b75o1RTWIpi+wStTOOpNPZ/Rp8t/c1LGgL1z0r+WZqKb6g1f7lSb/khBF1f/1uP61XXV5hkRp0IODzdISmvQFdjqLjJR5gWTnXz3/NG/RSr74/DNZv/7tPAdPFOD133DUHZItUaKf+/ukBm/1BbX+azadOT5z1lxvTXT/CzdTaWTifJtpHy1z0ACv/3s2NmCm+aQK8D4z8Xk5oXnkhXVBloCZO3+xHFkp8jRZbFDMf10bXY8/nr+ej3QShd7kivcdGbTuqdqWzzMj4A+Exk408U9WiZ1QE3t0XfZAJ61EX354wbldZMGCyPJhmgr7XZlOgNf/ok7/S6+1HLbPCXqMoNesmWlBckEAgUQCBHjpGwgUsYCtAK8+frpk+RpvZux7O7ZLy+aRu7ia9Ad3+fIVzP/71xeLV/3oD2/9TGc/6IsuNKUK8Oo2/kfYo3nHBnh19u7qde94sxr1B2yPKy8zP/TjJZ19dc11/c0P3eidcQK8RdxxLR2usAHeUgcdJGvWvZNvZnpBArwa7Hls+EjRPDXpEiIN6tYws3j9SV+Ko7M8NOlMLV1LNt4b0zuceZYMeWS4VzadjaqzUqMpVYBXtxv++JNyRtv/zdY1YyyDM3g1WKHBhdtuuTHpcgj+2Wm6fveZ7U/P1yOSteUDDw6Wc7pG3mZ+x+23yJinn0rYo/xBe13/TtfBI2WXQKrzb4OjG8qUl2d4LzzTdad1LU1/8gdhpk6ZHPelQhoAXrx0lXfDxf+IdHSmlb48s1fPK83M3ETJv0zKgw/cJ489OtRsWlT9Xx/b1se3o+eMZLM7/QGltWtWS4d2p2VX4+dIaYKcf+NVNVGAV7cd9tgT0r7DmWY3Xcqm7eknmxvlsUmDt1NeftW7Xot9WkqDRstXvS0lS5Y0u6azFqhun4nzrQ2fIEFOHfMLF6+QEiVKmLpf26+3edGpP6UK8MZeFyRaN17z9N+EjTdjW88zS1es8Z7oifeEnPle8y2lEW/cBql7jgwtJ6qx/p2t3viqUqlcnmVP/O8r0eujS7tdYNbIjk26pMfkqTOkeo0a5qN4Tx0V9rsySIBXf//dNOA27wk2Lcug+++V4Y894hW5qM4JQa5ZneggFBIBhwUI8DrceBTdTQFbAV7V0Bm8+ohY9E5y9KUdeld15ZpIYEmXbtC31ydL0ccTdRv/I7FBArytTmwjY8ZNyJN9bIBXP/Svsab/1nVGdQ26RYsWmIDy8cc3k2OaNJXWbU7ygmn+mRz+i6Yxo0fJTz/9mLROE58ZH/eHlpu9yO1S60wXfWO8pmi/3LZ1i5x7ztny+x+/x107N/bNxH4BnTWuQRF/Shbg1QDPjz/+IAccUFLKHHaYlClTRho2OsZbXkTz0aCuvqws+tieP+9GjY/x1pfWv+sjnY88MljeenOWfP31V9LshBbS9dzzRMdCNC1cMF/OP7dznjIG+QGtN0PWrt/kzeLSDJIFePXFMM8/92zSDvLB++97P5ijwYrouUFn8y5dutise6ipXr0GclWv3qKPsGrSWbVndThDNMirKWhbRn9MaTvq8g7xAuLRQvsflw1yvnJ7NLhZ+lQ/WrVWXc4511umR/+t62SPHf2/J0c0kLN67UbvBoj260eGPizLli4x54dWJ7aW2++8x8xc1xT7Eir/o7T6uc60XLFsqSxevEiWL1siBx10sFni5Kqr+3hLg+hNG13DNDpTsqj6/7PPvSTHHd/M1OOi87vKvHlzEja8ztjf/v4nZszreNGX5MTeZHKz12RXqYOcf+OVOFmAV2f+aiAvuiSPBof0BbOz3pgp699eJ0c3bCSnn95WLrr4Uq/f79q1y8ze9Sf/Wq66VMdTTz4eCC96nZOJ860Nn2iQU/vznbdHXuir/b1kyQPNE1/16tWXuvXqezb6hJder0aXeNHzgn7nzJ670ATnNJ/o9Wz0pWhRKH/ANXp+eHrUSJk3d47suceecmLrNtK9x1XezF3dJl4wWf/+6PCR0q59ZNa9HvO+e++WWTNfl88++9S0ac9evb1l0rSsxx/bKN8yadG6a5/QWcLJ0p9//ClDhzwUqM3ZKLmALsOgbf3ajOnmKSp9OqJ3n35Sv8HRZkftNzrpJTb5l0/Rz/TJx6lTXpLFixZI+QoVpFWrNtK77zXejYhEy4EU9rvSPw51POjvpD323FMOPfRQKVPm31KpcmWpVau2dzNVy6rLiOhyIv5UVOeEINes9FkEELArQIDXri+5I5BPwGaAVw/WslVrE2DVi2ZNukbonnvtJRdeFHlZS7KZDNHC+l8Y4H8RWpAAr+bhXy5C/x0vwKt/v2nArWZWcNB1gceOeVpuvzWyjmKQN9P68fv07ikvT4nMoCIVr4C+MEZ/fMVL+uOncsXIm6z97ZwswBv7iJzulyzAm6r2+iOga+eOSW8IdOzU2cySit5MSZbn3LlvyRWXdssXpAn6A3rgfYO8l8fpcZIFeFPVTT/3vyQt+mKZIPvpNnfdeZs8/dRIb/MgbekP2K5du0Y6tD015eGiP4Z1wyaN6nNzJqVY0W4Q5EerlujOu++VbhdfagqnP4A1uOmfCdW333XS79rrUxZelyhp0qieuREYTf7vqZQZiJiZ6u1OPznPTN+i6P/6XazrDeu5Quuhy46kSv7HhxN9f6bKg8+TCwQ9/8bmkizAq9vWqFFTJk560Sw/kirpDawunc7MFwz0P3GVKg//57r0ja43G12/tjDnWxs+/vN6qnrp91Sb1s3NDVRNOktR90+U/OuoRrfR705dlz96PZxoXz036cuLddZjvKSB+1VrN3ozrpOVXScc3HHbgHybpFN33bn8EYemIuLzAAL+JX5iN0/2YmoNVI6f8JwXCE52KD2v9+x+ucydMzvfZoX9rvSPw1TV1e847ceDHxqUZ9NMXYMFPSekumZNVQ8+RwCBwgkQ4C2cH3sjkLbApZdfKbfdHnlTcjo/3NLZr0fPq+XGmyOzIzR9//0uM0NCL2b0hQEatE2VlixfbdZs0hRdn8pfBn2Tub7RPF7Sx3P1kdhoig0K+ffRWVhPjR4n1avXyDNLMbqNXrBs3LDeBKb9gQH/D+BUddHPg77VOkhebFM4gW6XXCZ33jUwbiaxAd5oO+uMz0oVDk944Ftvu1Muu6K793mdmlXyBIMS9RcdE//3f/8nP/7wg6xcuVzuv2+g6CPfQZI+BqqPmSfquxqMGnDT9WYd33hJZyDprApNz4wfK7fcfEPc7WJf1Ba7pqk/nyDl9s9Y0dn9V3bvKW3bdxBdfzteUiN99FCDB7E2Qdpy5FOj5ZRTI0s69Lm6R9KlIKLHH/rIcDmzYyfzT13OQZd1IGWPgH881atT3QvCxCvh8y9OlSbHNjUf6fhu2KB2nln6uhbpiMefShgQm/XG69K7V4+4a/TWrFlLelzVW1q0bGUCQPGSnjtee3WG3Hzjdfm++4qi/+sj+/rovqY3Zr4mV1wWudmaLPmfhNGnG1q3OiHVLnyepkDQ829sttEAb7yZt9FtNaCoL9U7vW07bzavP5/ffvtNnp0wPuF5bd7CpVKx4pFp1ihyftXHyzNxvrXhkyzIqTdxNVD23XffymPDhuZ7EkUfh9cbMolSohf26vWovldCx3q8QK+2Y5dOHbz3OyTKX2fUPzzkUbMER7x89PtevyPnvPVm3CwI8KbdnTOyww03DZCeV/XOl5cundLn6p6yfNnSpMfRyTH9bxwQ9/tFv1v0d9Al3c7Ps362P8PCflf+/ddf3nVibEH12kzXrte1wseNGyPjxjwd94WmmboGC3pOSHXNmpGGJRMEEEgoQICXzoEAAlkjoAGzY4451vyw+eKLz2XL5k1J11XMmoJTkNALlC1bzgSZ9LHwZcuWyOpVK5MuQ5CNYDqTXpd5qVSpslSoUFG+/fYbWbdubeCAdzbWiTK5I6Czg44+upHUrlPH3JzRdSz15l6y5Tz8tdOZ/FWrVZeqVavJwQf/S957b4dZSiT20e1EIvR/d/qKSyXVft2s2QlSpWo1eWfjRlmyeKH88MMPLlUhZ8pap05dOe74E+Tfhx/uPdUW9EW/UQQN7upNXZ0VWfqQQ+Tdd94x3/dBzzM5g+lQRXRpj2rVq5tlQL775ltZu3Z1oIku/ipq0LJJk6bSsHFj+eTjj0WX3Yq3vrZDLBQVAQRyVIAAb442LNVCAAEEEEAAAQQQQAABBBDIK7Djg0+9p8bO63q26PrzmvTR/H333c9MMiAhgAACCCDgmgABXtdajPIigAACCCCAAAIIIIAAAggUSODpMeOldZuTvX31xYv6yHuJEiXyrXNfoAOwEwIIIIAAAsUgQIC3GNA5JAIIIIAAAggggAACCCCAQNEL6Jq6b741X46sVDnfwWNfZFr0peOICCCAAAIIFEyAAG/B3NgLAQQQQAABBBBAAAEEEEDAUYG27drLyaecLhUqVpQ/fv/dLM3w/KRnZd68OY7WiGIjgAACCIRZgABvmFufuiOAAAIIIIAAAggggAACCCCAAAIIIICA0wIEeJ1uPgqPAAIIIIAAAggggAACCCCAAAIIIIAAAmEWIMAb5tan7ggggAACCCCAAAIIIIAAAggggAACCCDgtAABXqebj8IjgAACCCCAAAIIIIAAAggggAACCCCAQJgFCPCGufWpOwIIIIAAAggggAACCCCAAAIIIIAAAgg4LUCA1+nmo/AIIIAAAggggAACCCCAAAIIIIAAAgggEGYBArxhbn3qjgACCCCAAAIIIIAAAggggAACCCCAAAJOCxDgdbr5KDwCCCCAAAIIIIAAAggggAACCCCAAAIIhFmAAG+YW5+6I4AAAggggAACCCCAAAIIIIAAAggggIDTAgR4nW4+Co8AAggggAACCCCAAAIIIIAAAggggAACYRYgwBvm1qfuCCCAAAIIIIAAAggggAACCCCAAAIIIOC0AAFep5uPwiOAAAIIIIAAAggggAACCCCAAAIIIIBAmAUI8Ia59ak7AggggAACCCCAAAIIIIAAAggggAACCDgtQIDX6eaj8AgggAACCCCAAAIIIIAAAggggAACCCAQZgECvGFufeqOAAIIIIAAAggggAACCCCAAAIIIIAAAk4LEOB1uvkoPAIIIIAAAggggAACCCCAAAIIIIAAAgiEWYAAb5hbn7ojgAACCCCAAAIIIIAAAggggAACCCCAgNMCBHidbj4KjwACCCCAAAIIIIAAAggggAACCCCAAAJhFiDAG+bWp+4IIIAAAggggAACCCCAAAIIIIAAAggg4LQAAV6nm4/CI4AAAggggAACCCCAAAIIIIAAAggggECYBQjwhrn1qTsCCCCAAAIIIIAAAggggAACCCCAAAIIOC1AgNfp5qPwCCCAAAIIIIAAAggggAACCCCAAAIIIBBmAQK8YW596o4AAggggAACCCCAAAIIIIAAAggggAACTgsQ4HW6+Sg8AggggAACCCCAAAIIIIAAAggggAACCIRZgABvmFufuiOAAAIIIIAAAggggAACCCCAAAIIIICA0wIEeJ1uPgqPAAIIIIAAAggggAACCCCAAAIIIIAAAmEWIMAb5tan7ggggAACCCCAAAIIIIAAAggggAACCCDgtAABXqebj8IjgAACCCCAAAJFK7DPPvvIb7/9Jn/99VfRHpijIYAAAggggAACCCCAQFwBArx0DAQQQAABBBBAAIGEAhd1u0RatzlZKlWuLKVLHyL/+Mc/zLa///67/PTjj7Jjx3YZNnSwLFgwD0UEEEAAAQQQQAABBBAoBgECvMWAziERQAABBBBAAIFsF6hU+SgZO36ilCtXPlBRf/zxR3nx+Uly5x23BtrexY2u6tVH+t94syn6iuXL5OyO7V2sBmVGAAEEEEAAAQQQyDEBArw51qBUBwEEEEAAAQQQKKzANdf1l959rpHddtstT1b/+c9/5Ntvv5GSJQ+UAw44IN/nf/zxh1SueERhD5+1+/e95jrpd831pnxr16yWDu1Oy9qyUjAEEEAAAQQQQACB8AgQ4A1PW1NTBBBAAAEEEEAgpUCdOnVl+muz8mw3dcpkueH6fmbt3WjS4G/devXlhhsHSNPjjjd/JsCbkpcNEEAAAQQQQAABBBDIuAAB3oyTkiECCCCAAAIIIOCuwLKVa+Www/7tBWwv7XaBzJ8/N2mFjm92gjw24kkpUaJEoBm8u+++e1a9pC1oeZjB626/puQIIIAAAggggEAuCxDgzeXWpW4IIIAAAggggEAaAv41ZnW3B+4bKCOGDwuUg87o1ZexvTlrZr7tdR3fBx4cLEcdVUUO/te/RAOqP//8s3z6yceis4OHP/ZIwmNMmzFT9txzT/l+1y4595xOCbcb/viTUqHikebz88/tLDu/+87bVgPWo8aMN//evm2b9Lm6h5x62hnSvWcvqVSpsuy///4m4Lxr506ZNGmCDLr/3jzH2W+//eSFydPk34f9Ww46+GDz2a+//irbt2/Ls90333wtF53f1fytbbv20r3n1eb/X546WZ4a+bh5Qd3Jp5wqrVq1kcpVqsjvv/0mEyeMk0suu9Jb7qJ3rx6yIyZf/0E0Dy3LXnvtZf58XtezTblJCCCAAAIIIIAAAuEVIMAb3ran5ggggAACCCCAQB6B5avWSZkyh5m/ffftt1K/bo1CC11wYTe56577TFA3Udq8aZN07tRevv/++3ybfPjJl+ZvGoCtWC5Stnhp46btJlCrqXWrZrJt61Zvs3r1G8i06a+bf+s6wlu3bJb6DY5OmNe6dWul/RmneJ+ridqkSv4lKu68+17pdvGlZpcF8+fJxAnjZfDQR0WDxf408/VX5ZgmTaVUqVLmz2/NniWXdLsg4aH8s4i1LjWqRoLaJAQQQAABBBBAAIHwChDgDW/bU3MEEEAAAQQQQCCPwLb3PjazTDXde89dMvKJ4YUS6nru+XL/oIe9PDRI++WXX8j3u76XI8qWNUs6RNM3X38tR9evle94mQ7wxh5Ay/Tnn3969Y5+3qvnFTL9lWnmn6UOOkhWrdkge+yxR54Xy+l+/vTjjz9KvdrVzJ/8AV49RqIAtwZ4t27dYl5qp0nzrFq5vPlvvLRu/SZTHk3PjB8rt9x8Q6HaiJ0RQAABBBBAAAEE3BcgwOt+G1IDBBBAAAEEEECg0AI6+1VnwUZTxzPbyqqVKwqcrwY0Nb/ojNXPP/9MOrQ9Tb744nMvz779rhOdkarLO2i6/9575PERj+Y5pq0A78oVy+WB+weK/ldT7dp15KWp0+Wf//yn+fd7O7ZLy+bH5SlLOmvw+gO80Ux0hu+2bVtl+dIl8s0330jlo6rIwgU0HXaQAAAS8klEQVTzZMb0afLulvfMUhSaHhp0vzw6bEg+e13reOKkF83f//77b6lTs4r88MMPBW4jdkQAAQQQQAABBBDIDQECvLnRjtQCAQQQQAABBBAolECLFq1k3IRJXh5HHVlWfv/99wLnecNNA6TnVb3N/jobtVb1yvLLL7/ky++hwY/I2Z3PMX//7bffpEqlcnm2yXSAV8ty8YXnyYIF8/KVpdfVfeX6G24yf9fZuFpmfypMgHfJ4kVyxWXdTL7x0pjxE6VVq9bmo0SzmXU94nr16pttli1dIl3OPrPA7cOOCCCAAAIIIIAAArkjQIA3d9qSmiCAAAIIIIAAAgUWuLp3P7mu/41mf/9asgXN8LU33pKaNSNLLkx7ear07tU9blYHHHCAvL1xi7eEQYsTmsr77+3wts10gHfXrl1St1bVuGU55JBDZeWa9eYznSFboWyZPNsVNMCrwd2uXTompTyqShWZPWeht02ns9p5s4v1j/pytzXr3vFmO59xahvZsCFSVhICCCCAAAIIIIBAuAUI8Ia7/ak9AggggAACCCBgBDp26mxeApYouJku09q33zVBSU19ru4hL0+dkjALXd+29CGHmM+v6Xu1TH7pBW/bogzw6kGjx9P/L3/EoXnKXNAAr75k7YLzuqQkXLB4uZQvX8Fst3rVSjmrwxnePoMeGiJdzjnX/PvTTz+RpsckfklcygOxAQIIIIAAAggggEBOCRDgzanmpDIIIIAAAggggEDBBI44oqwsXrbK2/nk1i1k8+ZNBctMRHZ88Km3pmyqvN54c55Uq17dHGvM00/JHbff4h23qAO8H3z8hTdLtqgDvJ27dJUHHx5q6q4ziHWm8ffff2/+vWX7h976wANu6i8TnhlX4LZhRwQQQAABBBBAAIHcEiDAm1vtSW0QQAABBBBAAIECC7z/0efeUgm33XKTjBs7usB5+QOlxzVpKJ988nHCvGbOmivVa9Qwn0+cMF5uvvH6UAZ4tdKbtr4v++67r6n/+HFj5NYBN0rXc8+X+wc9bP7266+/StXK5QvcLuyIAAIIIIAAAgggkHsCBHhzr02pEQIIIIAAAgggUCCBdRs2S6lSpcy+a1avkjPbn16gfHSndzbvkBIlSpj9u114nsydMzthXkuWr5bDDz/CfD7w7jvlyZEjvG2jM3jjrYnrz3Djpu2y//77mz+1btVMtm3d6n1cr34DmTb9dfPvZGvw6ufFOYNXj6+BXA3oavrpp5+kZrVKsnDJCilXLhLUnfTsBLmx/7UFbhd2RAABBBBAAAEEEMg9AQK8udem1AgBBBBAAAEEECiQwIuTp0njY5p4+15wbhdZsGBegfKat3CpVKx4pNl3yOAHZejghxLm419+oHOnDrJ82VJv22Rr4vozLOoA78aNG+T0U1onrNOdd98r3S6+1HwedA1e3bbUQQeJrl+82267mX0HPzRIrrmuv/l/DXLXq1Nddu3cWaA2YScEEEAAAQQQQACB3BQgwJub7UqtEEAAAQQQQACBtAUOO+zforNpd999d7Pvzu++k+OObSj/+c9/kua15557ykODh0nrNidJreqVzbZjxk+UVq0iAVDNRwOT8ZJ/+QH9vEqlcvLbb795m25//xPZa6+9zL87ndVOVq5Yni8bDYa+u+U9b2kDWzN4L7zoYrl74P3m+B9//JEcf2yjhC4FDfBqhi+/8prUb5D/JWqrVq6Qjme2Tbtd2QEBBBBAAAEEEEAgtwUI8OZ2+1I7BBBAAAEEEEAgLYGbBtwq3Xv08vbRNV/79r5KXn9tRtx82px0igwdNtwsx/DHH39I5YqRpRYqVT5K3pq70JuJOvLx4XLvwLvy5KHLMrwxe563tMKSxYuka5eOebbR2awHHXyw+dvaNaulQ7vT8nzeslVrc/wDDzzQ+7utAG+DoxvK1GmvmuPobNrGR9eVr776Mq5LYQK8xzY9Tp57YUq+fHXJDF06g4QAAggggAACCCCAgF+AAC/9AQEEEEAAAQQQQCCPwIrVb8uhh5bJ87cvv/xCdmzfLls2b5LDjzhCqlarLmXKHCZ77723t50/wKt/HDV6nGgAOJp0WYNXXp4q3377jZmh2uWcc73ZuX/99Zc0alBHvvnm6zzHfWzEk9K2XXvvb/qytrVr1kjJkiWldu06ZkmD2GQrwKt13bztA2+Gs85s1sD3jz/8IBWOPFLKHlFWTmzZzBSnMAFe3X/12o3yr9Klvap9/vln0qRRfXoqAggggAACCCCAAAL5BAjw0ikQQAABBBBAAAEE8gj84x//MEsutGvfwZuBG4Ro29Yt0rrVCd6mBxxwgLw6c7b3grBEeWhw947bBsi4saPzbbLffvvJ2xu3eIHgeHn8+eefostERJOtAK/mP+ihISYwHS/5A9yFDfD2urqvXH/DTd5hbr9tgIwdPSpIM7ANAggggAACCCCAQMgECPCGrMGpLgIIIIAAAgggEFSgRo2aMvzxJ6Vc+Qp5Aqj+/XW9XF0bVl+kFm99XN1W16294MJucYPFusTBued0km1btyYsVs2atWTCsy94SzX4N9ywYb1cctH58ta8RaIBZU0tTmgq77+3w9tM93/tjbfMv5OtB6yfv//R52aGri7BUKFs3lnM+rl+9uDDQ6Vjp8756vPzzz9L9SoVzXFuve1OueyK7ub/58yZLRdfeF5QdrPd+RdcJAPvG2T+X42rVi5vykRCAAEEEEAAAQQQQCBWgAAvfQIBBBBAAAEEEEAgpcCBpUpJo0bHSJ26deXPP/4UXSph1aqV8uEH76fcN7pBnTp15YTmLc3yChs3rpf58+fJrp07A+2vL1Jr2KixNG16vOisXj32/Hlz8ryQLVBGGdpIl2vQNXmr16gpP3z/vWzbtlXeXrc2Q7mLedmdrlGs6cUXnpPrrumTsbzJCAEEEEAAAQQQQCC3BAjw5lZ7UhsEEEAAAQQQQAABxwUaNT5GXpryiqmFztptUK+mfPftt47XiuIjgAACCCCAAAII2BIgwGtLlnwRQAABBBBAAAEEECiAwPTXZonOdta0ds1q6dDutALkwi4IIIAAAggggAACYREgwBuWlqaeCCCAAAIIIIAAAlkvoMsy6PIM0dTprHYJ1zbO+spQQAQQQAABBBBAAIEiESDAWyTMHAQBBBBAAAEEEEAAgdQCTz09Vk46+VSzob6ArlGDOql3YgsEEEAAAQQQQACBUAsQ4A1181N5BBBAAAEEEEAAgWwSGDV6nFSoUNEU6fERj8nkl17IpuJRFgQQQAABBBBAAIEsFCDAm4WNQpEQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEgAgR4gyixDQIIIIAAAggggAACCCCAAAIIIIAAAgggkIUCBHizsFEoEgIIIIAAAggggAACCCCAAAIIIIAAAgggEESAAG8QJbZBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSyUIAAbxY2CkVCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSCCBDgDaLENggggAACCCCAAAIIIIAAAggggAACCCCAQBYKEODNwkahSAgggAACCCCAAAIIIIAAAggggAACCCCAQBABArxBlNgGAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIQgECvFnYKBQJAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIIkCAN4gS2yCAAAIIIIAAAggggAACCCCAAAIIIIAAAlkoQIA3CxuFIiGAAAIIIIAAAggggAACCCCAAAIIIIAAAkEECPAGUWIbBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgCwUI8GZho1AkBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgiAAB3iBKbIMAAggggAACCCCAAAIIIIAAAggggAACCGShAAHeLGwUioQAAggggAACCCCAAAIIIIAAAggggAACCAQRIMAbRIltEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBLBQgwJuFjUKREEAAAQQQQAABBBBAAAEEEEAAAQQQQACBIAIEeIMosQ0CCCCAAAIIIIAAAggggAACCCCAAAIIIJCFAgR4s7BRKBICCCCAAAIIIIAAAggggAACCCCAAAIIIBBEgABvECW2QQABBBBAAAEEEEAAAQQQQAABBBBAAAEEslCAAG8WNgpFQgABBBBAAAEEEEAAAQQQQAABBBBAAAEEgggQ4A2ixDYIIIAAAggggAACCCCAAAIIIIAAAggggEAWChDgzcJGoUgIIIAAAggggAACCCCAAAIIIIAAAggggEAQAQK8QZTYBgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQyEIBArxZ2CgUCQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCCJAgDeIEtsggAACCCCAAAIIIIAAAggggAACCCCAAAJZKECANwsbhSIhgAACCCCAAAIIIIAAAggggAACCCCAAAJBBAjwBlFiGwQQQAABBBBAAAEEEEAAAQQQQAABBBBAIAsFCPBmYaNQJAQQQAABBBBAAAEEEEAAAQQQQAABBBBAIIgAAd4gSmyDAAIIIIAAAggggAACCCCAAAIIIIAAAghkoQAB3ixsFIqEAAIIIIAAAggggAACCCCAAAIIIIAAAggEESDAG0SJbRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgSwUIMCbhY1CkRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgSACBHiDKLENAggggAACCCCAAAIIIIAAAggggAACCCCQhQIEeLOwUSgSAggggAACCCCAAAIIIIAAAggggAACCCAQRIAAbxAltkEAAQQQQAABBBBAAAEEEEAAAQQQQAABBLJQgABvFjYKRUIAAQQQQAABBBBAAAEEEEAAAQQQQAABBIIIEOANosQ2CCCAAAIIIIAAAggggAACCCCAAAIIIIBAFgoQ4M3CRqFICCCAAAIIIIAAAggggAACCCCAAAIIIIBAEAECvEGU2AYBBBBAAAEEEEAAAQQQQAABBBBAAAEEEMhCAQK8WdgoFAkBBBBAAAEEEEAAAQQQQAABBBBAAAEEEAgiQIA3iBLbIIAAAggggAACCCCAAAIIIIAAAggggAACWShAgDcLG4UiIYAAAggggAACCCCAAAIIIIAAAggggAACQQQI8AZRYhsEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCALBQjwZmGjUCQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCCIAAHeIEpsgwACCCCAAAIIIIAAAggggAACCCCAAAIIZKEAAd4sbBSKhAACCCCAAAIIIIAAAggggAACCCCAAAIIBBEgwBtEiW0QQAABBBBAAAEEEEAAAQQQQAABBBBAAIEsFCDAm4WNQpEQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEgAgR4gyixDQIIIIAAAggggAACCCCAAAIIIIAAAgggkIUCBHizsFEoEgIIIIAAAggggAACCCCAAAIIIIAAAgggEESAAG8QJbZBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSyUIAAbxY2CkVCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSCCBDgDaLENggggAACCCCAAAIIIIAAAggggAACCCCAQBYKEODNwkahSAgggAACCCCAAAIIIIAAAggggAACCCCAQBABArxBlNgGAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIQgECvFnYKBQJAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIIkCAN4gS2yCAAAIIIIAAAggggAACCCCAAAIIIIAAAlkoQIA3CxuFIiGAAAIIIIAAAggggAACCCCAAAIIIIAAAkEECPAGUWIbBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgCwUI8GZho1AkBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgiAAB3iBKbIMAAggggAACCCCAAAIIIIAAAggggAACCGShAAHeLGwUioQAAggggAACCCCAAAIIIIAAAggggAACCAQRIMAbRIltEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBLBQgwJuFjUKREEAAAQQQQAABBBBAAAEEEEAAAQQQQACBIAIEeIMosQ0CCCCAAAIIIIAAAggggAACCCCAAAIIIJCFAgR4s7BRKBICCCCAAAIIIIAAAggggAACCCCAAAIIIBBEgABvECW2QQABBBBAAAEEEEAAAQQQQAABBBBAAAEEslCAAG8WNgpFQgABBBBAAAEEEEAAAQQQQAABBBBAAAEEgggQ4A2ixDYIIIAAAggggAACCCCAAAIIIIAAAggggEAWChDgzcJGoUgIIIAAAggggAACCCCAAAIIIIAAAggggEAQAQK8QZTYBgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQyEIBArxZ2CgUCQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCCJAgDeIEtsggAACCCCAAAIIIIAAAggggAACCCCAAAJZKPD/mPLQmOuKNKgAAAAASUVORK5CYII=", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "AI-generated follow-up questions:\n", + "\n", + "* What are the total sales for each country in descending order?\n", + "* Which country has the highest number of customers?\n", + "* What are the total sales for each customer in descending order?\n", + "* Which customers in the United States have the highest total sales?\n", + "* What are the total sales and number of orders for each customer in each country?\n", + "* What are the total sales for customers in Europe?\n", + "* What are the top 10 countries with the highest total order amount?\n", + "* Which country has the highest number of failed orders?\n", + "* Which customers have the highest total sales?\n", + "* \n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "vn.ask(\"Which 5 countries have the highest sales?\")" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "with ranked_customers as (SELECT c.c_name as customer_name,\n", + " r.r_name as region_name,\n", + " row_number() OVER (PARTITION BY r.r_name\n", + " ORDER BY sum(l.l_quantity * l.l_extendedprice) desc) as rank\n", + " FROM snowflake_sample_data.tpch_sf1.customer c join snowflake_sample_data.tpch_sf1.orders o\n", + " ON c.c_custkey = o.o_custkey join snowflake_sample_data.tpch_sf1.lineitem l\n", + " ON o.o_orderkey = l.l_orderkey join snowflake_sample_data.tpch_sf1.nation n\n", + " ON c.c_nationkey = n.n_nationkey join snowflake_sample_data.tpch_sf1.region r\n", + " ON n.n_regionkey = r.r_regionkey\n", + " GROUP BY customer_name, region_name)\n", + "SELECT region_name,\n", + " customer_name\n", + "FROM ranked_customers\n", + "WHERE rank <= 2;\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
REGION_NAMECUSTOMER_NAME
0ASIACustomer#000102022
1ASIACustomer#000148750
2AMERICACustomer#000095257
3AMERICACustomer#000091630
4EUROPECustomer#000028180
5EUROPECustomer#000053809
6MIDDLE EASTCustomer#000143500
7MIDDLE EASTCustomer#000103834
8AFRICACustomer#000131113
9AFRICACustomer#000134380
\n", + "
" + ], + "text/plain": [ + " REGION_NAME CUSTOMER_NAME\n", + "0 ASIA Customer#000102022\n", + "1 ASIA Customer#000148750\n", + "2 AMERICA Customer#000095257\n", + "3 AMERICA Customer#000091630\n", + "4 EUROPE Customer#000028180\n", + "5 EUROPE Customer#000053809\n", + "6 MIDDLE EAST Customer#000143500\n", + "7 MIDDLE EAST Customer#000103834\n", + "8 AFRICA Customer#000131113\n", + "9 AFRICA Customer#000134380" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABXgAAAPoCAYAAABkvZZOAAAgAElEQVR4XuzdebyM5f/H8Q+JlF22rMe+Z9/3ZKkQkexLSJQobSiVVJasUZJs2couspN9y87h2LeoSBItfPk9Prff3GbmzH7PmDPnvK7H4/v4Zuba7ud1z/zxPtdcd6K0adPeFgoCCCCAAAIIIIAAAggggAACCCCAAAIIIIBAxAkkIuCNuDVjwggggAACCCCAAAIIIIAAAggggAACCCCAgCFAwMuNgAACCCCAAAIIIIAAAggggAACCCCAAAIIRKgAAW+ELhzTRgABBBBAAAEEEEAAAQQQQAABBBBAAAEECHi5BxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQgVIOCN0IVj2ggggAACCCCAAAIIIIAAAggggAACCCCAAAEv9wACCCCAAAIIIIAAAggggAACCCCAAAIIIBChAgS8EbpwTBsBBBBAAAEEEEAAAQQQQAABBBBAAAEEECDg5R5AAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQiVICAN0IXjmkjgAACCCCAAAIIIIAAAggggAACCCCAAAIEvNwDCCCAAAIIIIAAAggggAACCCCAAAIIIIBAhAoQ8EbowjFtBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAgJd7AAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFABAt4IXTimjQACCCCAAAIIIIAAAggggAACCCCAAAIIEPByDyCAAAIIIIAAAggggAACCCCAAAIIIIAAAhEqQMAboQvHtBFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQJe7gEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBCBQh4I3ThmDYCCCCAAAIIIIAAAggggAACCCCAAAIIIEDAyz2AAAIIIIAAAggggAACCCCAAAIIIIAAAghEqAABb4QuHNNGAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQIeLkHEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBCBUg4I3QhWPaCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAS/3AAIIIIAAAggggAACCCCAAAIIIIAAAgggEKECBLwRunBMGwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQIODlHkAAAQQQQAABBBBAAAEEEEAAAQQQQAABBCJUgIA3QheOaSOAAAIIIIAAAggggAACCCCAAAIIIIAAAgS83AMIIIAAAggggAACCCCAAAIIIIAAAggggECEChDwRujCMW0EEEAAAQQQQAABBBBAAAEEEEAAAQQQQICAl3sAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIUAEC3ghdOKaNAAIIIIAAAggggAACCCCAAAIIIIAAAggQ8HIPIIAAAggggAACCCCAAAIIIIAAAggggAACESpAwBuhC8e0EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABAl7uAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIEIFCHgjdOGYNgIIIIAAAggggAACCCCAAAIIIIAAAgggQMDLPYAAAggggAACCCCAAAIIIIAAAggggAACCESoAAFvhC4c00YAAQQQQAABBBBAAAEEEEAAAQQQQAABBAh4uQcQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEIFSDgjdCFY9oIIIAAAggggAACCCCAAAIIIIAAAggggAABL/cAAggggAACCCCAAAIIIIAAAggggAACCCAQoQIEvBG6cEwbAQQQQAABBBBAAAEEEEAAAQQQQAABBBAg4OUeQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEIlSAgDdCF45pI4AAAggggAACCCCAAAIIIIAAAggggAACBLzcAwgggAACCCCAAAIIIIAAAggggAACCCCAQIQKEPBG6MIxbQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgICXewABBBBAAAEEEEAAAQQQQAABBBBAAAEEEIhQAQLeCF04po0AAggggAACCCCAAAIIIIAAAggggAACCBDwcg8ggAACCCCAAAIIIIAAAggggAACCCCAAAIRKkDAG6ELx7QRQAABBBBAAAEEEEAAAQQQQAABBBBAAAECXu4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgQgUIeCN04Zg2AggggAACCCCAAAIIIIAAAggggAACCCBAwMs9gAACCCCAAAIIIIAAAggggAACCCCAAAIIRKgAAW+ELhzTRgABBBBAAAEEEEAAAQQQQAABBBBAAAEECHi5BxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQgVIOCN0IVj2ggggAACCCCAAAIIIIAAAggggAACCCCAAAEv9wACCCCAAAIIIIAAAggggAACCCCAAAIIIBChAgS8EbpwTBsBBBBAAAEEEEAAAQQQQAABBBBAAAEEECDg5R5AAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQiVICAN0IXjmkjgAACCCCAAAIIIIAAAggggAACCCCAAAIEvNwDCCCAAAIIIIAAAggggAACCCCAAAIIIIBAhAoQ8EbowjFtBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAgJd7AAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFABAt4IXTimjQACCCCAAAIIIIAAAggggAACCCCAAAIIEPByDyCAAAIIIIAAAggggAACCCCAAAIIIIAAAhEqQMAboQvHtBFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQJe7gEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBCBQh4I3ThmDYCCCCAAAIIIIAAAggggAACCCCAAAIIIEDAyz2AAAIIIIAAAggggAACCCCAAAIIIIAAAghEqAABb4QuHNNGAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQIeLkHEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBCBUg4I3QhWPaCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAS/3AAIIIIAAAggggAACCCCAAAIIIIAAAgggEKECBLwRunBMGwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQIODlHkAAAQQQQAABBBBAAAEEEEAAAQQQQAABBCJUgIA3QheOaSOAAAIIIIAAAggggAACCCCAAAIIIIAAAgS8Lu6BRIkSSaFChYN6d9y6dUsOHYoOap9xubPUqVNLteo1JH+BgpI3bz7JniOn3L59W06eOCExhw/Jli2bZPu2rSG5hIcfziAZM2Z02/f/bv1P/vvvhly58of8fumSX3OoV/9JyfLII2abaVMny3///edXH1SO+wJp0qaVJs80kwIFChr3UsqUqeTSpYty/PgxOXz4kOzbu1eOHT0S9y+EGSKAAAIIIIAAAggggAACCCCAQLwXIOB1scSP16knX309OeiL37RJw5CFmkGfbAAdJk2aVHq//pY0atxEMmfO4rWHs2fPSO9XX5HNmzZ6retPhRWrfjSCZV/LX3/9JRs3rJPxX37hdX32Rx+VlClTml0/Vf9x2bdvr69DUc9HgTp160vmzJmN2vpHgXXr1vrY0lq16tVryqfDR0kGD38gsI1w5coVWTB/rgwfNsTvPxRYm6X11o+WKCmPPlrC6OjatWsyZ/a31julBwQQQAABBBBAAAEEEEAAAQQQCIsAAa8Ldg2Xxk+YFPQFie8Bb6XKVWTGrDl+u437fIx8NPADv9u5a7By9TrJl79AQP15mwsBb0Csfjc6ePi4PPTQQ0a7CxfOS/kyd8LIUJXkyZPLF+O/lho1agU0hO5Kb9b0afnj8uWA2t/rRnPnfy+ly5Q1h82ZLdO9ngLjIYAAAggggAACCCCAAAIIIIBAkAQIeF1AEvAGdne5C3j1eApb8JUqdWpJkiRJrAFaNH9GNm3cENjATq2sBLza1TdTJ0vft99wORcC3qAskddO7mXAqzv2Pxs7Th544AGX87p+/bpcv3ZN9NgGV/eurVHd2jUi5hgWAl6vtyAVEEAAAQQQQAABBBBAAAEEEIgYAQJeF0uVLFkyqVmrtsdFbNW6rXHGrK0sW7pE5s6Z7bHNyhXL5ObNmxFzc/g7UfuAV489mPDVOPlmymT59ddfHLp6uUcv6flqb4ew7PLly1KimO/HKniam3PA+0zjBvLbb7+ZTVKlTCkpU6WSXLmipGGjxlK+QkVJnDix+b6eqZsvd3aXQ7Ru006yZstmvjdqxDD5+++//aWivheBexXw6nEbO/ccFD1exL6cO3dW+r79pmzauF7+/fdf862sWbMZn/vH69Q1viPs7xsCXm5rBBBAAAEEEEAAAQQQQAABBBAIhwABb4Dqffv1ly5du5mthw7+REaPGh5gb/GjWYGCBWXqtFkydsxomfT1Vx4vSh9WNm781w51NFQNxgPLnAPe0iWKysWLdwNe54mVLVdevpuzQPTherZSo1olOXH8WPxYmAi8insV8E6ZNlP03F1b0QcBTp0ySd7p+5ZXNd3RO2LUGKlZ8zGjLgGvVzIqIIAAAggggAACCCCAAAIIIIBACAQIeANEDXbAqzsB9UxM3R2YLWt22b17p6xZvUpOnz4V4AzvNtOzTGs9VluqVK0uly5dlOXLlsruXTst92u1gy3bd0mWLI+Y3bRr3ULWrl1ttVvxN+DVATds3i7Zs+cwx36vfz+ZOGG85bnYOtD1rVathtR8rLakTp1GLl38TbZu3SIrli8VDRUDKaHoU+eROnVqqVK1mlSoWFnuu+8+417R4zP0oXj+Ft3xWqp0aSlcpKixe13Pqj148KAcP3bU43Xfi4BXg/3Zcxc6XNIbvXvJrJnT/brMpxs3kY8HfWoEvMH4vPozuK5VqdJlpXjxR40zi48dOyrRBw8YR0V4+mNJsI5oCOX3lu6urv14XalcpaocO3pU5s2dbZzH7K6kTZdO6tSpJ+XKV5Dz53+WbVu2yJYtmwL+o1GRIkWlWvWaUqBAQTl58oRs27ZFdmzfFnB//qyrrW6gn59AxqINAggggAACCCCAAAIIIIBA5AoQ8Aa4dsEKeKNy55Fvps+SbNlcHwmgodgPSxbLy91f8BiIzV+4REqULGVcjZ4ZWrhAbmnZqo281ecdI7BzLnou7uRJX8t77/YNUMB6sznzFkmZsuXMjgYOeF++HDfWcseBBLxr12+WqKjc5tjdunaSxd8vijWXmd/OlQoVKxmva4CWP8/dUNjVxDNmzCTTZnxrPPTNfoewra72sW3rFiPEspX+7/Qx1sZdCUWfOpYenfFSj55uz6LVuX74QX+Pc9N+UqVKJR98+Ik0aNjI7Zm1GmofPnRIpn0zWaZPm2oeXRJz7LRxXIKzlbsQ/Ml6teXAgf0B3TM7du6TDBkzmm3PnDktVSreffBYQJ3+fyOd//FTP5vX8f2ihfJSty4eu5y3YLGULFXaqKPHfhTKH+Wyvvbd/aVX5MXuL0uKFCnc9qkhp4ai474Ya56BvXT5GilYqJDPvp+PHS2DPh4Ya4xQfm/pGeiDhw6XtGnTxhr32rVr8slHA2TK5InGexowvz/gI2narLk8+OCDLr/n9PNkq+9tTTVQnTptpuTOk9fl51Xb6/3WuuWz8vulSy67y5c/v6xYtc58b+yYUTL4k49EH+TXo+erUqlyVcmTJ6+xdnpf6x9Oqla6+z1o5fPj7fp4HwEEEEAAAQQQQAABBBBAIH4KEPAGuK7BCHg7PN9Z3u3/gcM5nu6m89uvv0qzpk+7PTbAOdQ8EnPYCBW9Fd2Z2fK5pgHvIvXWv6f3V6/dIHny5jOrtG/bStasXmmlS6NtIAFvdMwJh4DI3bEOi5eulKJFixnjaDiTK3tmt/Nt/lxLGfjxYLn//vv9uiYNg8Z8NtJlm1D0mS59epkxc44R/PlSNOBq3PAJh7Npbe0KFy4ii5Ys9/gwMucxPnj/XZkwfpzx8onT5336PNj6aNqkoWzfttWXaTvU0RBu5er1Dq81alA/aDvbNXjUa7EV3ZmuO9Q9lRWrfpT8Be6cQ61/2MmTK2us6no++KYtP8nDGTL4fM2bN22U555tYtRfv2mb5MiR0+e2elxFvz5vOtQP1feWfp50rnqWt6ei9To/394423vajO9Ed/p6K199+YUM+KC/x2rtO3aSd95936d798aNG/LWG6/J7O9mxepTd1PrZ8BWNFw+c/q0vP7m27HOetY6esaz7Q9FVj8/3hx4HwEEEEAAAQQQQAABBBBAIH4KEPAGuK5WA94uL3STvu/EDhz++ecf+evqVdHQzf4BTjpNDRVKlygiV65ciTVr51DTn8uaOWOavPn6q/40CUpd3a2pgZWtlCheSC7//rvlvv0NeCdOmSa17B6qp4GhBoeuiq8B7+N16slXX0922YfusNbQ113w6y7gDUWfuqtQHzLmvPtR77HzP/8sSZPeL5kyZzF+/m9fFsyfJz1e6urwmgZtm7ftihW4aSD3xx9/GDsYH3jggVgmVgJefYCe/mze3/Lm232lW/ceZjM9b1nPXQ5WCVXAO3/RD1Ly/3fq28/16tWrxj9dhZ32Ae+6jVslZ85cPl+mc8AbV763bDu6Xe2Kd3VxGpgXLZTX7QMR3+77jnR98SWHpvp9qyGyPgAyY8aMkiFDRoddvdpnmVLFYn1nOQe8+msJ5+9y+4FsAW8wPj8+LywVEUAAAQQQQAABBBBAAAEE4pUAAW+Ay2kl4NWfoO+PPuoQburZnY0bPunwMDD9ifvwkWMcgsBVK5dLx/ZtYs3aXcCr4c6yZT/I0iWLjYC4Xv0npE+//g6Bnf70Xn8OroHFvSqdX3hR+r3znjmc/vRaj5UIRnG2eOXlF+X3S3eD45SpUsrDD2cwdks+1aCRpEmTxhx2186fjHDXnYUvAa+GOXv2HzaOKrAVDe7f6N3TOPbB1rcenaEOzz3XyuGoAFcBbyj61LmN/WK8PPnU3TD7l18uyPPt28i+fXsdlkLn+dbb/czdjRqwVatc3uHM2Q8/GiRt2rY322k49ubrr8naNatEQy4tGhRXrVbD+Km6nnGqxT7g1eMnNPRfuWa9GQbrT+EbPlUv1q1h+3l7IPeMHmliOw5B269csUye79A2kK5ctglFwOt8ZrB+nt/t97Z8v2iB/Pnnn8Y8bGfidu7SVfSoAw1A7QNevedSpUot4ydMlkKFC5tzd3c0hd4PtrN87+X3ln4OFy1aIAvmzTXuufpPPuXx1w4/7dguixcvMo6keDD5g8Y9raGtfQA88euvXB5Jo98F23fuNUNYva++mTrZeNCe/dEgmTNnMY5vsO2yVrwN69dJqxbNHO4B54DX+QbR74LTp07KjZs3JUOGDMb3cqXypSUYn5+g3cB0hAACCCCAAAIIIIAAAgggEFECBLwBLpeVgHfIpyPk2eZ3f669d+8eafBEHZcz0bN59XxY+92etWtVlSMxMQ71nUPNU6dOyotdnnd5Pqk+jOjH9VsczuYdPWq4DB38SYAa/jXTnWpbd+xxCJnHfT5GPhr4gX8duakd6G5mPQuzepUKHoNuXwLejz4ZIq1a3w0L9XiNx2pWcbnzWi+h/hNPyRdfTjCvxlXAG4o+bWeF2kIwfYBV+TIl3K5B23YdZMDAu/fIuh/XSptWzc36y1asdTjmQXdM2naWuupUz4z+eNBQGTZ0sPGwOfsS6oesOZ+5HOz7PxQBrx4f0KnL3V3T3h4Ip8HlkE+Hy6mTJ0UfGmhfAnnI2r343tKd3t1f7GwEp85FH2Y3cvTnDi/rjv/Ondq7PKZD/9igoamt7Nq1U55uUD9Wv85ngevOdN2h7q7oH2/s/yjk/MsDdwGv/nGu79tvGg+Ac1WC+fkJyhcpnSCAAAIIIIAAAggggAACCESMAAFvgEtlJeA9euKsQ2BbrUoFOXXyhNuZOAcrrs7ztA813Z3faT+A8w5a3UFs/6CfAFl8auYcZOgOQQ0D9afKwSiBBrw6tu401V2DPV/p7nIqvgS89uGkdtKi+TOiZx27K74EvKHo0z7k052K1atW9Hgf6vx37ztkPvzq3Lmzxs5DW9l7IMbhjwZ6P+l9FUgJdcD70679DufY6pmuy5f9EMhUXbYJRcCr581WqVrNHE//IKPBdCAlkIA31N9b+tnLnfMRt+eB2x5cZzvuwP7sWlcGuvNX52z7A4YGqxXKlnSoqn9A27hlh/mafk718+qp6MMr9Q8TtqK/qNDw1lacA17dXd2pY1vZumWzx36D+fkJ5J6gDQIIIIAAAggggAACCCCAQOQKEPAGuHaBBrz6s/19B4+Yox48eEDq16nlcRa641Xb2IIKV2GsvwGvhiRHjp8xf3KvIUSxwncfeBYgi9dmI0aNlcZNHAOUTh3bxdrB6bUjDxWsBLy2bo8eiZHHH6tuHi1ge91bwOsc7OlOaj3KwFPxFvCGok+dz649B42znrXo7uXKFcp4ZbcPBvWn5gXy3n1gl/P5rt6Ou/A0WKgDXv082R+h4WpXvFcMDxVCEfAOGjJMnmvRyhxVz0mu81h10Z3X/hZ/A9648r21e2+06C8QtHgLeLWO/Tq7OgamabPm8unwUSafPghP/4DmqegxInqkg62MHPGpsQvdVlw9ZE2Pe/BWgvn58TYW7yOAAAIIIIAAAggggAACCMQvAQLeANcz0IC3evWaMmXaTHNUfQr7a73uPuzJ3XT0zF7bA5RcBRX+Brw6jv0uRt09F5UjS4AavjVzPmNSWzk/xMm3njzX8uUha3oWbJo0aSVT5szSsOHTxlm8GTJmdOjY1dy8Bbx67MCCRXd3gi7+fqF069rZ44S9Bbyh6FMndOzkOYczdS9dvOiV3/nhf7myZzZ3XGpQpoGZfdHzRXfv2ik/rl1jhPiHDkV7HUMrhDrg3bFzn8N6e/tZvk+TtqsUioC3Zq3aMmnKNIep6M5r/WOE+q5atUK2bN4U648Srubub8AbV763tmzfJVmyPGJcku78z5c7u8elsf+Oc/6DhDZ0/k66+NtvPi31wxkymPWWLV0iXTp1MP8daMAbzM+PTxdBJQQQQAABBBBAAAEEEEAAgXgjQMAb4FIGGvC+3KOX9H7j7m6uIYM+ls9Gj/A6C/0Zsf6cWIuGOhqs2ZdAAt5Va9ZL3nz5zW4K5svl9inzXifopYLz+aFa3ZfwM5BxfQl4nfvV3dF6FmfpMmXNtzT01qMjNFC3FW8B7wtdu0uffu+a9UeNHCafDrl7Dqir6/EW8IaiT90FqbshrZbiRfKbZwtraK5HOOjDuNwVNf3553OyYP5c0XOXdReqqxLqgNf5DN6JE8bHOqfWik0oAl6dj/Nn1nmO+t3wx+XLsnbNahk9eoQcO3r31wL2df0NeOPK95b9LldfAt5NW3+SrFmzGZfuKuD9bs4CKVe+gpWlNkL15s0am30EGvAG8/Nj6YJojAACCCCAAAIIIIAAAgggEHECBLwBLlmgAe/QYSOl2bPPmaP27NHdePK7t7J67QbJk/fuEQp6nIIeq2ArgQS8K1b96PBEePuwztt8/HlfH8ylD+iyL2vWrJL2bVr6043PdQMJeG2dHzh0TFKkSGGO1b5tK1mzeqX5b28Br/O16k+zp0ye6HHu3gLeUPRZrVoNmTp9ls+m7io634dRufPI3HmLzKMfPA2gZ0X3eet1mTVzeqxqoQ545y9cIiVL3T0/2JezV/3BClXAmyxZMvl2zgIpUcLxLFl3c/t21gx5/bWesd72N+CNK99b9sF8MALe9Zu2SY4cd48Z8WeNbXWd751AA17tL1ifn0CugzYIIIAAAggggAACCCCAAAKRK0DAG+DaBRrw9ny1t/R69XVz1MGffCRjPhvpdRYbNm+X7NlzmPXsfxqvLwYS8NrvbnO1K9jrpHyo8OVXE6VuvSccai5auEBe6tbFh9aBVbES8C5ZtkqKFClqDux8vqa3gPf5zi/Iu/0/MNuPHTNKBn080OOFeAt4Q9GnhloabtnKzp92yPMd2/oFrrtxdbeoq/LkUw3kxe49JE+evPLggw967LdVi2ayYf06hzqhDnjf7vuOdH3xJXNMPce2fJkSfl2/p8rOAe+PP66Rtq3u/mHHVVv7P7h4e1Ci3qNv9uknJUqUcniwnat+XR014m/AG1e+t4Id8C5aslw0kLUVfeDl1at3/3Dmyw3x19WrxnERtmIl4LX1YfXz48u8qYMAAggggAACCCCAAAIIIBB/BAh4A1zLQAPeWo89LhMnf2OOGsgZvNevX5dC+aMcZh5IwGsfoulP5XUHb7CKHnmgIVKp0o4P7pr49Vfy3rt9gzWMy36sBLzOP9n2N+CtWKmyzPx2rjkvX8JsbwFvKPrUCZ48c8F8cN/58z9LhbK+7Qr1d/EefjiDPF6nrtSoWUvKV6gkadOmdeji3LmzUqn83d20+qb9vfnrr79I2VLF/R3WY/18+fPLytXrHep0bN9GVq1cHpRxnAPeHdu3yTONG3js25+A176j5MmTS/UataRmrcekarXq5pEEtjr6x5u8UdlEQ2Nb8TfgjSvfW8EOeJ13Jnd+vr0sX3b3DO1AboZgBLz24wby+Qlk3rRBAAEEEEAAAQQQQAABBBCIXAEC3gDXLtCAN03atLJn3yFz1IMHD0j9OrU8zkLPZtSjAzQ01XL27BmpXMExOPU34NXdwLor2FYORUdL3cdrBKjh2EwfBqc746Kicju84etuZauTsBLw2p91rPPQXZe6+9JWvO3gTZUqlew7ePfc08uXL0uJYgU9XpK3gDcUfeqE9uw/LGnSpDHmpuFfgbw5HUJAq+vgrn2btu2Nh1vZiqvdqvYB7++XLknJRwsHfTr2Dy7Uzv/44w9jrTQQ9bfoucP2uzj1s6oBuj+fr0ADXue5Fi5cxPj8JUmSxHxLw2UNmW3F34A3rnxvBTvgdb4Xv5k6Wfq+/Ya/y+9QP9gBr/NkfPn8WLoAGiOAAAIIIIAAAggggAACCEScAAFvgEsWaMCrwx07ec4hfNGfBZ86edlNyssAACAASURBVMLtTAYNGSbPtWhlvr9xw3pp+VxTh/r+BrwzZs2RSpWr3A18Zn8nvXre/cl6gCzGeZbf/7DC4WfjGpi91quHzJn9baDd+tUu0IBXdxtr8GUL0nXeuXM+InoUga14C3i1Xsyx06JnpdpKh3atZfWqFW6vYcSosdK4yTPm+66C8FD0+cPy1aJhoK3ozkXdwRhoUTdfw1HncDVntkwOw+7ac9A8x9fVjvVA52jf7pWer8mrvR3DvEkTJ0j/d/r41b0+BE+PfHj8sWpyJCbGbHv0xFm5//77jX9fvXrVeGCfp+LvZ9hTX7O+mycVKlYyq+iRKLqb3Fa+njRVHqtdx/y37qDWndSeSlz43gp2wOu8k1s/61UqlvVq4ckp0IA3mJ8fv25gKiOAAAIIIIAAAggggAACCES8AAFvgEtoJeAd+8V4efKphubIu3fvkkZP1XM5k8yZsxg7bW1BkVZ6qv7jsm/fXof6/oRDTzd5RkaOGmu21x2UpUsWdXueqq9EGhhP+Wamw1x1V2OL5s847B70tb9A6wUS8JavUFG+mf6t6E5MW/nllwtSrvTd8zn1dV8C3v7vDZCOne6eMayhUY+XujoEbNrX042byPsDPjZ30drGdRXwhqLPmrVqy6Qp0xyYdZ4L5s/zSK87tMd8MV4yZMjosPv88NFTEn3wgLzSo7vHP1ho5/a7h12d/7xsxVopWKiQOY/atao6hKeB3hv27TRQ06DZ/qF6+r7udO3QrpXDQwxdjacPPRw2YrT5wLO6tWvIoUPRZlX7kFpfbNqkoWzftjVWVxkzZhI9q9r+oW+udjVrIJ8+fXp547Vesnbtao8Eei/rcQ224rwTvU/fd+WFF7ub7/tyVnS4v7d0ssEOeLXPdRu3Ss6cuUyL06dPSe2aVeXff//1aKw77/WIh3ZtWjh8vwUa8Abz8xOMzwd9IIAAAggggAACCCCAAAIIRI4AAW+Aa2Ul4NUjFzTgsg9tjx87Ko0a1HcIlWrUqCXjv57sEDo6P7HdNn3nUFOPXJg8aYLMmztb/v77b6PaoyVKSrfuL0u9+k86XPW4z8fIRwPvPhgsQBKH0M7Whz5gTM939bVs3rRR9IFXVoqzxVtvvCZ6VIKt6JmlGk6mfzi9PPJINqleo2asB1VpKPtkvdqiR2jYF18CXv1pfHTMCYd10z7++ecf0fNkU6ZIKfqTd9tOYedrdRXwhqJPHdc5CNTX9u7dIy91e8EhpM2S5RGp/XgdqVO3vlSpWk30jFnno0JsO1Y1sF2zZpWMGT1Sftqx3WFXr4bDoz77XPRMV1txdUzJ+AmTjLFs5fLvv0u9OrXMeyNd+vTSokVrmTplotcg1tO9pJ+JBYt+iLUWGu5N+GqcrF2z2ghlbbu49biMZs1bSOMmTaVYMcdzgZ0DXudjEG7cuCG9Xukuy5ctlf/973+GQYOGT8tTDRoanvbFVcBrf4TDkZjDMnjQx7J+3Vrz863t9Z7q/tIr8vqbb5vd6bXo8Rv2u6td/ZGnY7vW5nEk+oeOps2ay/59e437QUuov7e8PVhO5xCKgDcqdx5Z8+NGh3tAzYYO/kS+nvCleWyJrpH+Eat69ZqifhrMa2nXuoVD4B5owBvMz4+V70/aIoAAAggggAACCCCAAAIIRJ4AAW+Aa2Yl4NUhX3v9TenxyquxRteHnf3zz9+SJk1ah5/5a0UNmfRhUxcv/harnXOoaV9B22nw4ypQ1OCzZPFCPv+03hPX3gMxsYJSf3l92UnorU9PFt7a2t7XIyX0AXjOxZeAV9u0aNlaPh401G2I62ke7s4qDkWfGtrt2hsd616z3W96tMCDDz7o8McI29zdBbz216ahot7Tv1+6KClSpjSCdfv7UN/X40b0Dxf2RY+O0B2rzkXvZf2f7XxZd7tifV1nrfdM02eNnZjOIat9Hxr46R9kPNVxDnhdPcjN13l5C3jt+7l27ZrxhwMNZTV0tP/DkdZz9QccvQ4911vX1vm7wt536pRJ0q/Pm2aVUH5vhSvg1Ytz3iFvb6J/mNFwXv844aoEO+ANxufH1/uMeggggAACCCCAAAIIIIAAAvFDgIA3wHW0GvDqsL3feEteermnTyHgn3/+Ka1bPit7du9yOeNAQk3d5fts00ZGABeMEh8C3hMnjsvbb/YW3Unsqvga8GrbEiVLyfSZs42dj+6KBpvz582RwUOHm1Ve6dFN5s+d47JJKPrMmjWbfDlhkhQtWsyv20CtalStaLY5cvxMrF3LnjrUcFetZ0z/xmW1yd/MEN3F7qkEI+DV/osUKSrTZ82JdVyGLyAaiK5auVxe7t7VYTettnXeieyuP32QXOL77nN46F2eXFkdqjufmezL3L5ftEC6v3j3uBD7Nm3bdZABAz/x2I1zwBvK761wBrx6XV1e6GbsfLY/psUX4+eebeLwfRHoDt5gf358mTt1EEAAAQQQQAABBBBAAAEE4ocAAW+A6/jGW32Mn0LbykcffiDjvhjjd28aBkyeOsN8oJRzBxqCbVi/Tjq2by16nq274hzwrli+VGrUfMzlzkvd8afHN+jxCcEsu/cdkrRp01rqcuSIT2XY0MGW+li6fI0UKlzYax9qq//TXarHjx+T4UMHmz9Rd9d4/sIl5lmpGuxF5cjicRwNdxs2aiyVKleVYsWKyX1JksjRo0eMoH7ViuXGWcoaLPV9p7/Zj7fzZkPRpw7eoGEjGfDhJ5I2XTq316ReejzA9OnfyLSpkx3uSd092qPnq8axA2nSpPHYh97TenSG7gL2VPSs2M4vvOh252yDJ+qYRwh4XXAfKrRs1Ua6v/yKsRPWU9CnDvpQsu9mzZTxX34u+plyV/RBbrpb39UOeg01p06eKO/172fsWLY99E53jOaNyubQpc7n+U4vSOu27SRbtuwer+bY0SPSt8+bbv9QYWusaz546IhYO3lt77vbUR+s7y37z6qra3a+yNVrN4iefaxFd1Xnz5PDo8P6TduMBz9q0TUqXCC3x/q6S/ezz7+UKlWqOTwI07mRfmesWa3HkIxwOHdZ6xUsWEiWrVxrNvnqyy9kwAd3P9/uJhCKz48PtzxVEEAAAQQQQAABBBBAAAEE4oEAAW8cWUQ921PPgi1foZKkTp1GTpw4JuvX/Wg8vMf+7Ex303X1kDX9GbbuTCxUuIhE5c4tMYcPGzsNdTcwJe4I6PEAzZ59zpxQruyZfVpzT1dgpU8NIgsUKChly5U37p2/r183ziLev3+vcQ/5cj9qCF24SFEpWqy40ZeWmJjDxkPY9FxXDch8LXocQ/FHS0jpMmUlXbp08ssvv0jM4UOyZfMm82xcX/vyp56e1axjli5dVqKicssfV/6Qn8+dk8OHomXdurU+OdjG09BcP99ly5Y3Pt/ah/4Rxv6hbP7MTT/bhQoVNnz1/1OmSiUnjh+X6OiDsm/vHuPIBn+KHidRpkw5yZEzp1z+/bKcPHlCNm/a4HWdrH5v+TPHe103derUUrpMOSlZqpRkypTZ8D14YL/s2bvb8gMpvV1LMD8/3sbifQQQQAABBBBAAAEEEEAAgcgXIOCN/DU0rsBVwBtPLi1eX4aGqXoWqu0YBz3vUx+IZaWEok8r86EtAggggAACCCCAAAIIIIAAAggggEDoBAh4Q2d7T3sm4L2n3F4H092vjzzyiCxcMN/tTk/9yf2kKdOlcpWqZn/Ll/0gnZ9v77L/UPTp9UKogAACCCCAAAIIIIAAAggggAACCCAQpwUIeOP08vg+OQJe363uRc2xX4yXJ59qaBwhcPLEcdEHkh05EiPHjx2TLI88Ypy1WqVqdYcHsOkZpCWLF3L7s/hQ9HkvLBgDAQQQQAABBBBAAAEEEEAAAQQQQCB0AgS8obO9pz0T8N5Tbq+D2cJYrxXtKnh7wFwo+vRnftRFAAEEEEAAAQQQQAABBBBAAAEEEIh7AgS8cW9NApoRAW9AbCFr5E8Ye+3aNenzVm+ZP2+ux/mEos+QAdAxAggggAACCCCAAAIIIIAAAggggMA9ESDgvSfMoR9k8jczpEKFSsZAV//8U8qUKhb6QRnBrUDx4o9Kh46dpUTJkpI5yyPywAMPSOLEiY36N2/eNNbowoULsmPHNnnv3b7Ga95KKPr0NibvI4AAAggggAACCCCAAAIIIIAAAgjEbQEC3ri9PswungkkSZLEpzDXn8sORZ/+jE9dBBBAAAEEEEAAAQQQQAABBBBAAIHwCRDwhs+ekRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAUsCBLyW+GiMAAIIIIAAAggggAACCCCAAAIIIIAAAgiET4CAN3z2jIwAAggggAACCCCAAAIIIIAAAggggAACCFgSIOC1xEdjBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgfAIEvOGzZ2QEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCSAAGvJT4aI4AAAggggAACCCCAAAIIIIAAAggggAAC4RMg4A2fPSMjgAACCCCAAAIIIIAAAggggAACCCCAAAKWBAh4LfHRGAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCJ8AAW/47BkZAQQQQAABBBBAAAEEEEAAAQQQQAABBBCwJEDAa4mPxggggAACCCCAAAIIIIAAAggggAACCCCAQPgECHjDZ8/ICCCAAAIIIIAAAggggAACCCCAAAIIIICAJQECXkt8NEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBMInQMAbPntGRgABBBBAAAEEEEAAAQQQQAABBBBAAAEELAkQ8FriozECCCCAAAIIIIAAAggggAACCCCAAAIIIBA+AQLe8NkzMgIIIIAAAggggAACCCCAAAIIIIAAAgggYEmAgNcSH40RQAABBBBAAAEEEEAAAQQQQAABBBBAAIHwCRDwhs+ekRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAUsCBLyW+GiMAAIIIIAAAggggAACCCCAAAIIIIAAAgiET4CAN3z2jIwAAggggAACCCCAAAIIIIAAAggggAACCFgSIOC1xEdjBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgfAIEvOGzZ2QEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCSAAGvJT4aI4AAAggggAACCCCAAAIIIIAAAggggAAC4RMg4A2fPSMjgAACCCCAAAIIIIAAAggggAACCCCAAAKWBAh4LfHRGAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCJ8AAW/47BkZAQQQQAABBBBAAAEEEEAAAQQQQAABBBCwJEDAa4mPxggggAACCCCAAAIIIIAAAggggAACCCCAQPgECHjDZ8/ICCCAAAIIIIAAAggggAACCCCAAAIIIICAJQECXkt8NEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBMInQMAbPntGRgABBBBAAAEEEEAAAQQQQAABBBBAAAEELAkQ8FriozECCCCAAAIIIIAAAggggAACCCCAAAIIIBA+AQLe8NkzMgIIIIAAAggggAACCCCAAAIIIIAAAgggYEmAgNcSH40RQAABBBBAAAEEEEAAAQQQQAABBBBAAIHwCRDwhs+ekRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAUsCBLyW+GiMAAIIIIAAAggggAACCCCAAAIIIIAAAgiET4CAN3z2jIwAAggggAACCCCAAAIIIIAAAggggAACCFgSIOC1xEdjBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgfAIEvOGzZ2QEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCSAAGvJT4aI4AAAggggAACCCCAAAIIIIAAAggggAAC4RMg4A2fPSMjgAACCCCAAAIIIIAAAggggAACCCCAAAKWBAh4LfHRGAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCJ8AAW/47BkZAQQQQAABBBBAAAEEEEAAAQQQQAABBBCwJEDAa4mPxggggAACCCCAAAIIIIAAAggggAACCCCAQPgECHjDZ8/ICCCAAAIIIIAAAggggAACCCCAAAIIIICAJQECXkt8NEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBMInQMAbPntGRgABBBBAAAEEEEAAAQQQQAABBBBAAAEELAkQ8FriozECCCCAAAIIIIAAAggggAACCCCAAAIIIBA+AQLe8NkzMgIIIIAAAggggAACCCCAAAIIIIAAAgggYEmAgNcSH40RQAABBBBAAAEEEEAAAQQQQAABBBBAAIHwCRDwhs+ekRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAUsCBLyW+GiMAAIIIIAAAggggAACCCCAAAIIIIAAAgiET4CAN3z2jIwAAggggAACCCCAAAIIIIAAAggggAACCFgSIOC1xEdjBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgfAIEvOGzZ2QEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCSAAGvJT4aI4AAAggggAACCCCAAAIIIIAAAggggAAC4RMg4A2fPSMjgAACCCCAAAIIIIAAAggggAACCCCAAAKWBAh4LfHRGAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCJ8AAW/47BkZAQQQQAABBBBAAAEEEEAAAQQQQAABBBCwJEDAa4mPxggggAACCCCAAAIIIIAAAggggAACCCCAQPgECHjDZ8/ICCCAAAIIIIAAAggggAACCCCAAAIIIICAJQECXkt8NEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBMInQMAbPntGRgABBBBAAAEEEEAAAQQQQAABBBBAAAEELAkQ8FriozECCCCAAAIIIIAAAggggAACCCCAAAIIIBA+AQLe8NkzMgIIIIAAAggggAACCCCAAAIIIIAAAgggYEmAgNcSH40RQAABBBBAAAEEEEAAAQQQQAABBBBAAIHwCRDwhs+ekRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAUsCBLyW+GiMAAIIIIAAAggggAACCCCAAAIIIIAAAgiET4CAN3z2jIwAAggggAACCCCAAAIIIIAAAggggAACCFgSIOC1xEdjBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgfAIEvOGzZ2QEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCSAAGvJT4aI4AAAggggAACCCCAAAIIIIAAAggggAAC4RMg4A2fPSMjgAACCCCAAAIIIIAAAggggAACCCCAAAKWBAh4LfHRGAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCJ8AAW/47BkZAQQQQAABBBBAAAEEEEAAAQQQQAABBBCwJEDAa4mPxggggAACCCCAAAIIIIAAAggggAACCCCAQPgECHjDZ8/ICCCAAAIIIIAAAggggAACCCCAAAIIIICAJQECXkt8NEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBMInQMAbPntGRgABBBBAAAEEEEAAAQQQQAABBBBAAAEELAkQ8FriozECCCCAAAIIIIAAAggggAACCCCAAAIIIBA+AQLe8NkzMgIIIIAAAggggAACCCCAAAIIIIAAAgggYEmAgNcSH40RQAABBBBAAAEEEEAAAQQQQAABBBBAAIHwCRDwhs+ekRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAUsCBLyW+GiMAAIIIIAAAggggAACCCCAAAIIIIAAAgiET4CAN3z2jIwAAggggAACCCCAAAIIIIAAAggggAACCFgSIOC1xEdjBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgfAIEvOGzZ2QEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCSAAGvJT4aI4AAAggggAACCCCAAAIIIIAAAggggAAC4RMg4A2fPSMjgAACCCCAAAIIIIAAAggggAACCCCAAAKWBAh4LfHRGAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCJ8AAW/47BkZAQQQQAABBBBAAAEEEEAAAQQQQAABBBCwJEDAa4mPxggggAACCCCAAAIIIIAAAggggAACCCCAQPgECHjDZ8/ICCCAAAIIIIAAAggggAACCCCAAAIIIICAJQECXkt8NEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBMInQMAbPntGRgABBBBAAAEEEEAAAQQQQAABBBBAAAEELAkQ8FriozECCCCAAAIIIIAAAggggAACCCCAAAIIIBA+AQLe8NkzMgIIIIAAAggggAACCCCAAAIIIIAAAgggYEmAgNcSH40RQAABBBBAAAEEEEAAAQQQQAABBBBAAIHwCRDwhs+ekRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAUsCBLyW+GiMAAIIIIAAAggggAACCCCAAAIIIIAAAgiET4CAN3z2jIwAAggggAACCCCAAAIIIIAAAggggAACCFgSIOC1xEdjBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgfAIEvOGzZ2QEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCSAAGvJT4aI4AAAggggAACCCCAAAIIIIAAAggggAAC4RMg4A2fPSMjgAACCCCAAAIIIIAAAggggAACCCCAAAKWBAh4LfHRGAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCJ8AAW/47BkZAQQQQAABBBBAAAEEEEAAAQQQQAABBBCwJEDAa4mPxggggAACCCCAAAIIIIAAAggggAACCCCAQPgECHjDZ8/ICCCAAAIIIIAAAggggAACCCCAAAIIIICAJQECXkt8NEYAAQQQQAABBBBAAAEEEEAAAQT8E+jwfGfp1PkFl43++/dfuf7333Li+HEZ/+Xnsmf3Lv86D1PtJEmSyN4DMZIoUSJjBu3btpStWzaHaTYMi0DCEiDgTVjrzdUigAACCCCAAAIIIIAAAggggECYBT4dPkqaNmvu0ywu/vabtGrRTA4divapfrgqJUuWTGKOnTaH79rleflhyffhmg7jIpCgBAh4E9Ryc7EIIIAAAggggAACCCCAAAIIIBBuAX8CXp3rf//9J0/Ue0yOxMSEe+puxyfgjbNLw8QSgAABbwJYZC4RAQQQQAABBBBAAAEEEEAAAQTijoB9wHvw4AGpX6eWObl06dNLmTLl5JVer0nRosXM18+dOyuVypeOOxfhYiaVKleRJPclMd7ZunWz/Pvvv3F6vkwOgfgiQMAbX1aS60AAAQQQQAABBBBAAAEEEEAAgYgQ8BTw2l/AN9O/larVqhsv3b59W3Jlz+zX9SVOnFhu3brlVxv7ynqu7s2bNwNu70tDq3O0HyOYffkyd+ogEFcECHjjykowDwQQQAABBBBAAAEEEEAAAQQQSBACvga8OXNFyboNW0yTZ5s+7fHBZdmz55CPPhkiBQoWlPTpHxYNaPV4h0uXLsqqlSukX583jaDYU2nXvqO0adtecuTMJXrsgpbr16/Lxg3r5NTJk1KhUmXjtaGDP5E1q1c6dDVxyjTJmDGTMUaTRk8aY7sqL/foJY2ebixZs2WXBx980AihL128KDExh+WN3r3k7NkzLts1aNhIunZ72Xhv/rw5Mn7c59KzV2/R17PnyGnM98aNG/Lrr79I/3f6yorlSxPE/cRFIkDAyz2AAAIIIIAAAggggAACCCCAAAII3EMBXwNeDWiPnTxnzqxTx3ZuQ8vnO78g/d55T3QXq7vy+6VL8lzzJnL40KFYVVKlSiVTp38rJUqU9Eli+LAhMmLYUIe6R46fkaRJkxqvFS+SX65cueLwfpq0aWXWt/OkYKFCbsfQHcPv9H1Lpk+bGqvO+wM+kvYdnjdeP37sqKRImdIIlN2VsWNGyaCPB/p0PVRCIJIFCHgjefWYOwIIIIAAAggggAACCCCAAAIIRJyArwFvmbLlZM68Reb1lS1V3Nid6lzeeKuPdH/pFfPlv/76S47EHJYrf16RnDlySlTuPOZ7v/xyQcqVfjRWH2vXb5aoqNzm67ZdtTf/d1PSpk0nDzzwgEObQALeXXsOip4xbCtXr16Vc2fPSuo0qSVTpswO4fRrvXrI7O9mOYxpH/A6X4DuFtZA3D7g1msoVaKIXP7994i7R5gwAv4IEPD6o0VdBBBAAAEEEEAAAQQQQAABBBBAwKKArwHv4qUrzQetXbt2TQoXuBvA2qaggelPu/abwebUKZOMHbD2RzGULVdeZsyaI/fff7/R7IP335UJ48eZV6HHMnzw4cfmv1etXC66W9j+/N7yFSrKF+MmmAGtvwHvSy/3lNfffNsYQ+f26ZBBMnrUcHPMLFkekQXf/2AEvVo0/C1WOJ/DdTgHvNrPt7NmyJjPRsmpkyeMdm3bdTCuJVGiRMa/1UOPpqAgEJ8FCHjj8+pybQgggAACCCCAAAIIIIAAAgggEOcEvAW8epbu8JGfiQaztjJk0Mfy2egRsa5Fg9tKlasYr69du1ratW7h8nr1rNper71uvKe7e2vXqmbWi445YZyFq2X9uh+ldctnXfYxf+ESKVmqtPGevwFvzLHT5pm+M2dMkzdffzXWGA899JDsPRBj7MTVMuazkTL4k4/MevYB78XffpNGDeq7PK933oLFUqp0GaPdtq1bpNkzjeLcPcCEEAimAAFvMDXpCwEEEEAAAQQQQAABBBBAAAEEEPAiYB/w6pmz58//bLR4INkD8lCKFGbYautGjyrQIwtclYOHj4sGo1oeLVZQ/rh82WU9raN1tejZuHpGrpa06dLJ7r3Rxn/rjlg9vsHVMRD6fqABb778+WXl6vXGGLorWMfWHbquymdjvzQemqZl//598mS92mY1+4B33Y9rpU2r5i770OMq9NgKLWfOnJYqFctyTyIQrwUIeOP18nJxCCCAAAIIIIAAAggggAACCCAQ1wTsA15Pc7t+/bp0bN9aNm/a6LKaHkNw8swF871Tp056vNScOXMZ72vIGpUji/HfTz7VQMZ+8ZXx33pWYehj/wAAIABJREFUbYni7h+AFmjA+2zzFjLk0zu7j3/79VcpU6qY23k+3eQZGTlqrPG+7tItXbKoWdfXgLdxk6YyYtQYo527M4fj2j3BfBCwIkDAa0WPtggggAACCCCAAAIIIIAAAggggICfAs4Br/1Zt/YPCbtw4bxULFfK4Sxc+6GKFCkqS5at8nP0O9VzZstk/P87774vnbp0Nf7b+egG544DDXjtg9lD0dFS9/Eabudsf003btyQvFHZzLq+Bry1HntcJk7+xmhHwBvQ7UGjCBMg4I2wBWO6CCCAAAIIIIAAAggggAACCCAQ2QKezuD9ZPCn0qJla/MCd+38SZ5u+ITLC36sdh35etJU8z0NaH0pN27elPp1ahlVP/xokLRp29747+iDB6VenZpuu7A/23b4p0NkxPChDnWPHD8jSZMmNV7TYxj0KAgtI0aOkcbPNDX+e9eunfJ0g/pux8iZK0rWbdhivG+/01j/TcDry+pSJyEKEPAmxFXnmhFAAAEEEEAAAQQQQAABBBBAIGwC3h6yZh+k6iTdncHrfH5uruyZ/b6m9h07yfsfDDTa6Y7h8mVKuO0j0B28L3Z7Wd7q08/o9+zZM1K5wp0HoLkq9rtv9ZzeooXymtUIeP1eXhokEAEC3gSy0FwmAggggAACCCCAAAIIIIAAAgjEDQFvAW+SJElk09afJFOmu4HtRx9+IOO+uHOurH05dvKcaH0tuiv34MEDfl1k2XLlZfbchUYb3TFbMF8u+ffff132EWjAW7FSZZn57Vyjz3/++UcK5M3pdo6v9n5DXun5mvH+iRPHpUbVimZdAl6/lpbKCUiAgDcBLTaXigACCCCAAAIIIIAAAggggEBcE7h9+7bow8JCVULdfyDz9hbwap8PP5xBNm7ZIQ888IA5RKeO7WTF8qUOQ27fuVcyZrxznu7xY0elZvXKXqeULFkyM8RNnjy5RMecMNfg66++lPffeydWH1mzZpPFP6wQ3TWsZfiwITJimG9HNDz00ENy8PBxs883eveSWTOnu5zn7r3R5hirVi6Xju3bmPUIeL0uLRUSqAABbwJdeC4bAQQQQAABBBBAAAEEEEAAgbgg8FDSxFK3aCbJm+GhkExn+cFfZdfpKyENkf2duC8Br/ZZvPijsuD7pWJ78NrNmzflyXq15dChaHPIps2ai/ZnK4sWLpCePbqJ1nUu+fLnl+Ejx0iqVKmkWuXy5ttffT1ZHq9Tz/y3HgkxftzncubMaalarYY0erqx1H/iKQdDfwJe7fi7OQukXPkKxhh69ELd2jXk3LmzDlPs26+/dOnazXhNg/nqVSvKqZMnzDoEvP7eadRPKAIEvAllpblOBBBAAAEEEEAAAQQQQAABBOKgQMpk98mXbUtI3SIZQzK77tP2yvRtZyMy4FWQxk2ayohRd49muH79ulSuWEZ+v3TJ9Fq8dKUULVrM/LfWWbN6pRw8cEAefOhBKVu2vOTNm0/SpU9v1NHgtkrFsmZ9ff2nXfvNINmXhfA34M2cOYts3rbTHOPGjRvGLl59iFz69A9Lo8ZNpEiRoubQy5YukS6dOjhMhYDXl5WhTkIUIOBNiKvONSOAAAIIIIAAAggggAACCCAQRwQIeA8YZ+d6KvY7W7XeL79ckErlS5u7dPU4h9lzF0hU7jw+rapzwKuNdLfwjG/nSooUKVz2oWPqrmA9qkHLwAHvy5fjxjrUPXL8jCRNmtR4rXiR/HLlyhWH9zs831n6vzfAa9iuZ+82eKKOsdPXvhDw+rS8VEqAAgS8CXDRuWQEEEAAAQQQQAABBBBAAAEE4opAQgx4Bw8dLs2fa2kswf79+4xjF7yVb6Z/K1WrVTerrV/3o7Ru+axDs5at2kiffv0lZcqULrvTnb3r162Vz0aNkL1798Sqo+1e7tFL9MFruXJFyZU/r8ixo0fkx7VrZMrkibJy9TrJl7+A0a5Vi2ayYf06hz5ijp0WPd9XS9FCeWMFtPq6HhMxY+YcyZAx9o5tPZZh0sQJ8t67fV3O/51335dOXboa761evVI6tG3lsl61ajVk6vRZxnvnz/8sFcqW9MbL+whEtAABb0QvH5NHAAEEEEAAAQQQQAABBBBAILIFEmLAG+oV0120j5YoKSVKlpJEkkiOHj0ie/fslosXf7M09N4DMZI6dWqjj2KF88mff/4ZcH9p0qaV6tVrSNGixY2dvut+XOMydA54ABoikIAECHgT0GJzqQgggAACCCCAAAIIIIAAAgjENQEC3ri2Iq7n06BhI/ls7JfGm3p+bt6oO0c1UBBAIPwCBLzhXwNmgAACCCCAAAIIIIAAAggggECCFSDgjRtLv3b9Zrl08aLMnzdHtmzZJEePHBE9MkEfjta5S1d5vvML5tm5U6dMkn593owbE2cWCCAgBLzcBAgggAACCCCAAAIIIIAAAgggEDYBAt6w0TsMfPjoKXnggQccXtOAN1GiRA6v6Tm+RQrmkVu3bsWNiTMLBBAg4OUeQAABBBBAAAEEEEAAAQQQQACB8AkQ8IbP3n5kVwGv88wORUfL8x3ayNmzZ+LGpJkFAggYAuzg5UZAAAEEEEAAAQQQQAABBBBAAIGwCRDwho3eYeCatWpLvfpPSPFHSxgPUnvwwYfk5o0bcuGXC3L82DH5Ycn3xv8oCCAQ9wQIeOPemjAjBBBAAAEEEEAAAQQQQAABBBKMAAFvgllqLhQBBEIkQMAbIli6RQABBBBAAAEEEEAAAQQQQAAB7wIEvN6NqIEAAgh4EiDg5f5AAAEEEEAAAQQQQAABBBBAAIGwCRDwho2egRFAIJ4IEPDGk4XkMhBAAAEEEEAAAQQQQAABBBCIRAEC3khcNeaMAAJxSYCANy6tBnNBAAEEEEAAAQQQQAABBBBAIIEJEPAmsAXnchFAIOgCBLxBJ6VDBBBAAAEEEEAAAQQQQAABBBDwVYCA11cp6iGAAAKuBQh4uTMQQAABBBBAAAEEEEAAAQQQQCBsAgS8YaNnYAQQiCcCBLzxZCG5DAQQQAABBBBAAAEEEEAAAQQiUYCANxJXjTkjgEBcEiDgjUurwVwQQAABBBBAAAEEEEAAAQQQSGACBLwJbMG5XAQQCLoAAW/QSekQAQQQQAABBBBAAAEEEEAAAQR8FSDg9VWKeggggIBrAQJe7gwEEEAAAQQQQAABBBBAAAEEEAibAAFv8Ohv374dvM5c9JQoUaKQ9k/nCCAQmAABb2ButEIAAQQQQAABBBBAAAEEEEAAgSAIEPAGAVFENNxNmixNcDpz0cutWzfk9q2bcuvWfyEbg44RQCAwAQLewNxohQACCCCAAAIIIIAAAggggAACQRAg4A0C4v8HvDnztJQylUcEp0OnXo4d/lr27ugvtwl4Q+JLpwhYESDgtaJHWwQQQAABBBBAAAEEEEAAAQQQsCRAwGuJz2ysO3gJeINjSS8IRJoAAW+krRjzRQABBBBAAAEEEEAAAQQQQCAeCRDwBmcxCXj9d0yePLn8888/xvEWFAQiWYCAN5JXj7kjgAACCCCAAAIIIIAAAgggEOECBLzBWcCEFPCOHjNOKlasZMDdun1LHqtRRa5eveoVMnXq1PLhR4OlWvUakiJFCkmSJInR5saNG3L9+nU5d+6szJ3znUz/Zopcu3bN7O+9DwbKU081dNn/5s2b5OXuL7gdO9C5er0YKiBgJ0DAy+2AAAIIIIAAAggggAACCCCAAAJhEyDgDQ59Qgl4kyZNKoePnpLEiRObcKNGDpNPhwzyCNm+Yyfp/94Ah3buGty6dUuicmQx354xa45UqlzFZfWjR2LksZpVXb4X6FyDc0fQS0ISIOBNSKvNtSKAAAIIIIAAAggggAACCCAQxwQIeIOzIAkl4O3yQjfp+05/B7Tz53+WCmVLuoWsU7e+jJ8wyXz/33//lZiYw7J+3VpJmTKVFC5cRHLkyCkZMmY06+TMlsn87ypVq0mZsuWkZKnSUqNGLeP1Xbt2yto1q+RQdLQs/WGxy7EDmWtw7gZ6SWgCBLwJbcW5XgQQQAABBBBAAAEEEEAAAQTikAABb3AWI6EEvGvXb5aoqNzGubk//3xOsmbNZgBWrVROTp8+5RJz/aZtRoCrZeqUSdKvz5su65UqXUaGDR8lUbnziH3Aa6vc/LmWMnjocOOfY8eMkkEfD/S4eIHMNTh3A70kNAEC3oS24lwvAggggAACCCCAAAIIIIAAAnFIgIA3OIuREALejBkzyfadew2w/fv3yeJFC+XNt/sa/5793Sx5rVcPl5gnTp83jmbQs3bzRt0JhD2VggULyaFD0bGq+BPwBjpXb3PjfQRcCRDwcl8ggAACCCCAAAIIIIAAAggggEDYBAh4g0OfEALeAQM/kbbtOhhgr/Z8WZYsXiTRMSckUaJExkPWihbK6zHgVaNihfP59EA2Vx35E/AGOtfg3A30ktAECHgT2opzvQgggAACCCCAAAIIIIAAAgjEIQEC3uAsRkIIeHfvjZa06dIZO3Hz5c5uHNOweOlKKVq0mIH43LNNZPOmjbFAd+87JGnTpjVeX7F8qXTq2C4gdH8C3kDnGtDEaJTgBQh4E/wtAAACCCCAAAIIIIAAAggggAAC4RMg4A2OfXwPeIsVKy7f/7DCwNqwfp20atHM+O9nmj4rw0aMjvW6vaoe49Ct+93jGzQg1iMe9uzeZQTC+rC1a9eueV0IXwNeK3P1OgkqIOBCgICX2wIBBBBAAAEEEEAAAQQQQAABBMImQMAbHPr4HvCOnzBJ6tStb2C1aP6MbNq4wfhvPZ7hyPEzcv/99zvs7HVWnbdgsehD1NwVPeJhzepVMmTQR24f1uZrwGt1rsG5I+glIQkQ8Cak1eZaEUAAAQQQQAABBBBAAAEEEIhjAgS8wVmQ+B7wxhw7LcmSJZO//vpLihTM44A2feZsqVylqvHaG717yayZ012itmzVRjp36SpRufMYwbCroo4fDxwg474YE+ttXwPeYMw1OHcFvSQUAQLehLLSXCcCCCCAAAIIIIAAAggggAACcVCAgDc4ixKfA976TzwlX3w5wYDa+dMOef+9dxzQKlasLG/16We8dig6Wuo+XsMjatKkSaVChUpSoVIlKVu2vOTLX8A8o9fW8Im6j8mBA/sd+vEl4A32XINzd9BLfBcg4I3vK8z1IYAAAggggAACCCCAAAIIIBCHBQh4g7M48Tngnb9wiZQsVdonKHUoVjif6JEL/pTH69ST4SM/k5QpUxrNli/7QTo/397vgPdezNWf66JuwhAg4E0Y68xVIoAAAggggAACCCCAAAIIIBAnBQh4g7Ms8TXg1d22h4+eksSJE/sMNWrkMPl0yCCf69sqdn/pFXnjrT7GPw8ePCD169TyK+C9l3P1++JoEK8FCHjj9fJycQgggAACCCCAAAIIIIAAAgjEbQEC3uCsT3wNeF/o2l369HvXQFowf55MmviVS7BMmTKbxzicP/+zVChb0qinwXD5ChVl86aNXqErVqosM7+da9Tbvm2rNG3S0K+A1+pcvU6QCgi4ESDg5dZAAAEEEEAAAQQQQAABBBBAAIGwCRDwBoc+vga86zZulZw5cxlIZUsVl19//cUt2K49ByVd+vTG+1UrlZPTp09JliyPyJbtu+TY0SPyUrcXjJ257sq8BYulVOkyxttDBn0sn40e4VfAa3WuwbkT6CUhChDwJsRV55oRQAABBBBAAAEEEEAAAQQQiCMCBLzBWYj4GPBmzJhJtu/cawCdPXtGKle4E766KwMGfiJt23Uw3p47+zvp1fMlM+C1tdm7d49s27JZNm7cIFu3bJJ06dJL1WrVpfvLr0i2bNmNanp+b/kyj8q1a9eMfydPnlxSpkwljZs0NXcTT50ySUaNGCZ//33dqB+MuQbnTqCXhChAwJsQV51rRgABBBBAAAEEEEAAAQQQQCCOCBDwBmch4mPAax/YDv90iIwYPtQjVubMWWTrjt1mSFu0UF6xf80X6Rs3bkjDJ+s67PSdMWuOVKpcxWXzIzGHpXatahKMufoyP+og4EqAgJf7AgEEEEAAAQQQQAABBBBAAAEEwiZAwBsc+vgY8OruXd0Zq9dWrHA+Y6est7Jp60+SNWs2o1qDJ+qI7tgtUqSovNi9h9SoWUtSpkzpsoubN2/KksXfS5+3escaZ/rM2VK5SlWPAW+w5urt+ngfAQJe7gEEEEAAAQQQQAABBBBAAAEEEIhTAgS8wVmO+BjwBkfGsRc9bqFAwUJSoEBBSZ/+YTl+/Jjs/GmHx7N9QzEP+kQgmALs4A2mJn0hgAACCCCAAAIIIIAAAggggIBfAgS8fnG5rawBb7ZcjaV46feC06FTL6eOzZTofcPk9q3/QtI/nSKAQOACBLyB29ESAQQQQAABBBBAAAEEEEAAAQQsChDwWgT8/+Ya8CZJ8pBIotvB6dCpl1u3/ie3b/1PRPR/FAQQiEsCBLxxaTWYCwIIIIAAAggggAACCCCAAAIJTICAN4EtOJeLAAJBFyDgDTopHSKAAAIIIIAAAggggAACCCCAgK8CBLy+SlEPAQQQcC1AwMudgQACCCCAAAIIIIAAAggggAACYRMg4A0bPQMjgEA8ESDgjScLyWUggAACCCCAAAIIIIAAAgggEIkCBLyRuGrMGQEE4pIAAW9cWg3mggACCCCAAAIIIIAAAggggEACEyDgTWALzuUigEDQBQh4g05KhwgggAACCCCAAAIIIIAAAggg4KsAAa+vUtRDAAEEXAsQ8HJnIIAAAggggAACCCCAAAIIIIBA2AQIeMNGz8AIIBBPBAh448lCchkIIIAAAggggAACCCCAAAIIRKIAAW8krhpzRgCBuCRAwBuXVoO5IIAAAggggAACCCCAAAIIIJDABAh4E9iCc7kIIBB0AQLeoJPSIQIIIIAAAggggAACCCCAAAII+CpAwOurFPUQQAAB1wIEvNwZCCCAAAIIIIAAAggggAACCCAQNgEC3rDRMzACCMQTAQLeeLKQXAYCCCCAAAIIIIAAAggggAACkShAwBuJq8acEUAgLgkQ8Mal1WAuCCCAAAIIIIAAAggggAACCCQwAQLe4C347du3g9eZi54SJUoU0v7pHAEEAhMg4A3MjVYIIIAAAggggAACCCCAAAIIIBAEAQLeICCKiIa7qe+/Lziduejl5q3bcvP2bfkvtBlyyOZPxwjEZwEC3vi8ulwbAggggAACCCCAAAIIIIAAAnFcgIA3OAukAW+zR9LI4CJZg9OhUy9Tz/wuAw9fkP9C0judIoCAFQECXit6tEUAAQQQQAABBBBAAAEEEEAAAUsCBLyW+MzGBLzBcaQXBCJRgIA3EleNOSOAAAIIIIAAAggggAACCCAQTwQIeIOzkAS8wXFMSL0kT55c/v7774R0yfH2Wgl44+3ScmEIIIAAAggggAACCCCAAAIIxH0BAt7grFFCCnhHjxknFStWMuBu3b4lj9WoIlevXnULWf+Jp2TAhx+b7w/88H2ZN3e22/oFChaUadO/M99fMH+uDPigv/nvhx56SH5cv8XnhTt8+JC0atHMrD9/4RLJli27Q3u9jr+uXpU//vhDNmxYJ5+PGe0yfE2WLJls2LxdEonrB94906ShnDp5wuXcypYrL6++9oZE5c4tDz+cQe6//36j3j///COXL/8uep1jRo+UP//80+215cwVJXPmLjTf//77hfLeu319tqBiaAQIeEPjSq8IIIAAAggggAACCCCAAAIIIOCDAAGvD0g+VEkoAW/SpEnl8NFTkjhxYlNl1Mhh8umQQW6VurzQTfq+czegvfjbb1K6ZFG39WfPXSgahtrKhvXrHALaNGnTyp59h3xYlTtVfvv1VylTqphZf3/0UUmZMqXH9rdu3ZLer74ic2Z/61BP22l7d6VRg/qye9dOh7fVbPSYL6Re/Se9zlnvo8XfL5TuL3ZxWXf4iM+kSdO7YbWGwwXy5vTaLxVCK0DAG1pfekcAAQQQQAABBBBAAAEEEEAAAQ8CBLzBuT0SSsDrHNaq3vnzP0uFsiXdQrpq81K3LrJo4YJYbTJnziJbtu+SRInu7pD1FPBqwHnyhOsds7bOow8ekJ6vdDfHsgW8GuJu23pnJ7CGsGnSpJFcUbnN8FrXtEunDrJ82Q9mW53XKz1fE93A2617D9EdvdrPyBGfGnW+/upLhx24GoTv3HNQ0qZNa/ZxKDpa9u7dLYcORUvBgoWkaLHikidPXqMvLb/8ckHKlX7UpaercPqFzh1l6Q+Lg3Mj00tAAgS8AbHRCAEEEEAAAQQQQAABBBBAAAEEgiFAwBsMRZGEEvCuXb9ZoqJyG9f788/nJGvWbAZg1Url5PTpUy4xXQW8586dlUrlS8eq/+VXE6VuvSccXvcU8G7ftlWaNmno1yLaQtK//vpLihTM49BWg95Fi5dLwUKFjNd37fxJnm7oOB9bg917oyVtunTy77//Sv48OVzOYfDQ4dL8uZbGexpGv9y9q0NgbGuUJEkS+XT4aGn0dGP59ddfXAa8lSpXkRmz5hhNNCS2zXHnTzukcSPvu4P9QqKyXwIEvH5xURkBBBBAAAEEEEAAAQQQQAABBIIpQMAbHM2EEPBmzJhJtu/ca4Dt379PFi9aKG++fef819nfzZLXevVwiWkf8O7Yvk3KlC1n1GvXuoWsXbvabKNn62r4qrteNbi1HdNwLwNenYzupI05dtqYl6sQ2DZhbwFvVO48subHjeZu5Dq1q8vhQ56PltAdvU81bCRDB38Sy3LajO+kStVqxuu1a1WVBYuWiprpDmI9puG///4Lzs1ML34LEPD6TUYDBBBAAAEEEEAAAQQQQAABBBAIlgABb3AkE0LAO2DgJ9K2XQcD7NWeL8uSxYskOuaEEWDqQ9aKFsrrEtM+4G3ftpV8PWmqEeKeOH5MalS787A2LQM/Hiyt27QzdgfrrtkFi+4cjXCvA14d8+iJs8ZD0G7evCl5cmV1eV3eAt6vvp4sj9epZ7RdvWqFdGjXOuCbTY2PHD9jzMl2hrE+7K5ho6eNPj8c8J6MH/d5wP3T0JoAAa81P1ojgAACCCCAAAIIIIAAAggggIAFAQJeC3h2TRNCwGsLNG/cuCH5cmc3gtjFS1dK0aJ3HmD23LNNZPOmjbFA7QNePU6hQ8dO8uRTd45VeKZxA9FdvRr46sPb9IiEjRvWyxu9e8nGLTuMOvc64E2ePLkcOnLSGPvy5ctSolhBlzeJt4BXd+/mznMn9C5fpoRcuHA+4JutRcvW8sngO+f8TpwwXt7r30/y5c8vK1evN147ceK41KhaMeD+aWhNgIDXmh+tEUAAAQQQQAABBBBAAAEEEEDAggABrwU8u6bxPeAtVqy4fP/DCuOK7QPXZ5o+K8NGjI71ur2qc8B74vhx2bFrn7HzN/rgQalXp6b07NVber32utGsWpUK8r+bN30KeLW+7rL1VE6eOC6P1axqVvF0Bq9W+mb6t1K1WnWj/oL586THS11ddu8t4D1w6JikSJHCOEIhKkcWSzfashVrzTN3S5coKhcv/mb099Ou/fJwhgzGf9u/bmkwGvstQMDrNxkNEEAAAQQQQAABBBBAAAEEEEAgWAIEvMGRjO8B7/gJk6RO3foGVovmz8imjRuM/7Y/OsB+Z6+9qnPAq+fr2p8nW7d2DZk9b5GkTJlSdu3aKU83qC/ZsmX3OeD1toK//fqrlCl1Z5exFlvAqw9Ha9WimfFa5syZJXfuvNKqTVvJlCmz8dqff/4pVSqWkStXrrgcwlPAqy4nz1ww2v3xxx/yaNEC3qbp9v1UqVLJ3gMxhvWpUyelWuXyZt33Phho7IjWMmniBOn/Tp+Ax6Fh4AIEvIHb0RIBBBBAAAEEEEAAAQQQQAABBCwKEPBaBPz/5vE94NWHjunDx1w9dGz6zP9j7y7ArKr6PY7/QVJeaUFeSrq7u1E6FQnpUFDU18KkEelQFFFARRQJKSkRhu7uljAABZHu+/zX3HM8M3NmTu3h1Hfd5z7MnL3W2mt91h7vfX6zZu1ZUqly5A5ZPVphxnfTo6A6C3izP55DVq/daOpdvXrVvCxMS8N6dWTPnt1uB7wanq5ZvSrORTxy+JCMHRN5vIEWW8AbVyMNsDs82zrOF5fFFfDqURN6Zq4W25m53j5pr73RR17s/YppPnTIIPlkQuSOaS3p0z8q23buNV9fvHBBihct4O1taOeDAAGvD3g0RQABBBBAAAEEEEAAAQQQQAAB3wQIeH3zs7UO5YC3Xv2G8ulnX5ipbt+2Vfr3ey8KWoUKlaTP2++azw4eOCBP1Kke5bqzgFcrzFu4RIoXL2Gvq0Fs7ZpVzffu7uDV3cB6rq8nxVXAqy+MK1oorzlaIa7i6ogGWyge14va3Bn3pq075bHHIo94eLplU9Gdx45l6lfTJU2aNOaj+k/Ukn37IgNfyoMTIOB9cNbcCQEEEEAAAQQQQAABBBBAAAEEogkQ8FrzSIRywDt3/iIpUbKUW1DqUKRgHtGQ1FZiC3iLFi0mCxYts9dzPPrhQQS8165dkxpVK5r7J02WTBYtWW7OzNWyY/s2adq4fpxzdhXwrt+0TTJnzmL6KFYkv/x98aJbho6VHHc6u9N46ZJF0r1rJ3eqUsdCAQJeCzHpCgEEEEAAAQQQQAABBBBAAAEEPBMg4PXMK7baoRrw6lEDh46elIQJE7oNNW7sKBk5/EN7/dgCXq2wImKt5MqdR86cOS2Vype2t3kQAW/04yby5M0rS5atlESJEplxzJo5Q159pXes83YV8H47Y7ZUrFTZtP/4o7EybOgQtw1tFUeP+Uiat4w8J9idcuPGDcmXO7s7ValjoQABr4WYdIUAAggggAACCCCAAAIIIIAAAp4JEPB65hVb7VANeHs810vefvd9M+15c3+QqVM+d0qgLyazHePw+++/Sfky/x69EFfAmynTf6VI0WKyf99eE/KJ+M3IAAAgAElEQVTaij8CXr23vkhOXyhnK0MGDZCJn37sdM6uAt42bZ+VDz4cYdrqMQ2lShR2uYtXX6RWtlx52bRxg2m37+Axs6tYX2CnxzPEVoYNHyV58ka+yK1Ht86yZPGP1jzY9OKWAAGvW0xUQgABBBBAAAEEEEAAAQQQQACB+BAg4LVGNVQD3tXrNkn27I8bpDIli8q5c2djBduxa7+kTZfOXK9SsaycOnXSfB1XwBtbZ/4KeHU8L738qvzvtTfsQ+vauYP8tGxJjKG6Cni1QcSaDZIjR07TVj1aNG0Uq2G1ajVk/ISJcuPGdSlbqpjZ/au7gLXoS9/0CIvYSsunWsnI0ePMZXeOl7DmqacXmwABL88CAggggAACCCCAAAIIIIAAAgj4TYCA1xr6UAx4M2TIKFu27zZA0Y9QcKY2cPBQad8h8vzXObNmyisvv2C+js+AVwPnGd9Nj3MRfzlxwhy3YCu2l6xFP6LBsZPPPp8iTzwZeQav7r5t8GRtOXjwgPk+ffpHzZEVy1eukVSpUsmtW7fsx0tED8D1+ImfV64R3Zlr62va11/KiuU/yY4d26R48ZJSoVIlqVylmuiZxFrOnv3DBLzTv5sllSpXMZ91aNdaIiJWxDpP7f/oiTPmeAl9OZwe06DjojwYAQLeB+PMXRBAAAEEEEAAAQQQQAABBBBAwIkAAa81j0UoBryOge3okcNlzOjI4wZiK489lkk2bd1pLutL1goXyG2+js+A153VO3/unJQuWcRe1Z2AVysvX7HafuyBvpCtUoXScvvWLdH2sZXGDZ+UXTt3RLncoGEjGT5yrKRIkcKd4cqRw4ekTq1qcuT4aUmcOLHovQvkzeGy7Xffz5EKFSuZeoMH9pfPJk5w2YYK1ggQ8FrjSC8IIIAAAggggAACCCCAAAIIIOCFAAGvF2hOmoRiwKu7d3UXr86tSME8JrR1VdZv2iaZM2cx1RrVryu7d++SLt16yPt9B5jPWjRrJFu3bHbVjejZvBu3RAalq1dFyLNtW9nb6K7Z3fsOu+zDVkF31erxErZiC3gdQ2hnnSVPnlw2btkpqVOnNpd1F3PdWtVk/6Hjsd7bNufoFXRn7cjR46V+g4aiL66LXtT4l19OyJQvJsmXUydLk6bNZNxHn5pqS5csku5dI3dGx1Vq1qojU76cZqpoSFy7ZlVXTbhukQABr0WQdIMAAggggAACCCCAAAIIIIAAAp4LEPB6buasRSgGvNbI0Et0gaRJk0qp0mWkcOGicuXKZTlx4rh5qZoerUAJTgEC3uBcN0aNAAIIIIAAAggggAACCCCAQEgIEPBas4wa8DbKmFLezvuYNR1G62X2b3/L+OPnhVNV44WXThHwSYCA1yc+GiOAAAIIIIAAAggggAACCCCAgC8CBLy+6P3bVgPeFA8llPuR79KyvNy9d1/M//7/y7osvwEdIoCA1wIEvF7T0RABBBBAAAEEEEAAAQQQQAABBHwVIOD1VZD2CCAQ7gIEvOH+BDB/BBBAAAEEEEAAAQQQQAABBPwoQMDrR3xujQACISFAwBsSy8gkEEAAAQQQQAABBBBAAAEEEAhOAQLe4Fw3Ro0AAoEjQMAbOGvBSBBAAAEEEEAAAQQQQAABBBAIOwEC3rBbciaMAAIWCxDwWgxKdwgggAACCCCAAAIIIIAAAggg4L4AAa/7VtREAAEEnAkQ8PJcIIAAAggggAACCCCAAAIIIICA3wQIeP1Gz40RQCBEBAh4Q2QhmQYCCCCAAAIIIIAAAggggAACwShAwBuMq8aYEUAgkAQIeANpNRgLAggggAACCCCAAAIIIIAAAmEmQMAbZgvOdBFAwHIBAl7LSekQAQQQQAABBBBAAAEEEEAAAQTcFSDgdVeKeggggIBzAQJengwEEEAAAQQQQAABBBBAAAEEEPCbAAGv3+i5MQIIhIgAAW+ILCTTQAABBBBAAAEEEEAAAQQQQCAYBQh4g3HVGDMCCASSAAFvIK0GY0EAAQQQQAABBBBAAAEEEEAgzAQIeMNswZkuAghYLkDAazkpHSKAAAIIIIAAAggggAACCCCAgLsCBLzuSrmud//+fdeVfKiRIEECH1rTFAEE4kuAgDe+ZOkXAQQQQAABBBBAAAEEEEAAAQRcChDwuiRyq4IJdx9J7lZdbyrdv3NXEty9Jwlu3/WmOW0QQCAeBQh44xGXrhFAAAEEEEAAAQQQQAABBBBAIG4BAl5rnhANeG8+WUquv9bCmg6j9ZJ03kZJNnGRJCTgjRdfOkXAFwECXl/0aIsAAggggAACCCCAAAIIIIAAAj4JEPD6xGdvTMBrjSO9IBCMAgS8wbhqjBkBBBBAAAEEEEAAAQQQQACBEBEg4LVmIQl4rXH0Ry+pUqWSO3fuyNWrV/1xe+4ZAgIEvCGwiEwBAQQQQAABBBBAAAEEEEAAgWAVIOC1ZuVCOeCdO3+RZMmS1S2oO3fvSPkyJex15y5YLFkyZ5EzZ05L08b14+zjm29nSr58+eXixQtSp1Y1e90UKVLIqjUbY7TVe136+5JcuPCXzJo5Q2bP+t6tMSZJkkQ+HDZKSpctK489lkn0ey03btyQ33/7VdauXSPvvdNHYntpXr36DWXgoA+cjufixYuybesWGTF8qPx98WKUOrHNI7ZBHzp0UNq2fsqtOVHJvwIEvP715+4IIIAAAggggAACCCCAAAIIhLUAAa81yx/KAe/eA0flkUcecRsqe5aM9rr7Dh6T//znP3L58mUpXCB3nH1s3b5HHs2QQW7fvi25c2Sx102dJo3s2nPQ5f11B26jBk/IsaNHYq1bsVJl+ezzqS7nc/HCBROu7tu3N0Zf3Xv0lHfe6xvnePR5+O7bb6TPG696PA9bg/PnzknpkkVczpsK/hcg4PX/GjACBBBAAAEEEEAAAQQQQAABBMJWgIDXmqUPh4BX53joYNxBq+6qbfBk7XgLeDXE3bN7l+n/4RQpJF26dJI5879hsO7CrVS+tPz55/kYC9uocRP5aMJn9s+vXbsmmzZtkC2bNknixImlTNlyUrZcefuOXp1vy+aNZeuWzVH6cgx4f/31jJw+dcq0SZ06tWTOklWSJk1qr//5Z5/KwAGRYbBjUK3j/OXEiTgfvgP798nLL/Wy5gGll3gVIOCNV146RwABBBBAAAEEEEAAAQQQQACBuAQIeK15PsIh4L1y5YoUyp/LIzCrd/Bu2bzJhK6ORQPen1asFj0CQcuIYUNl/LjRMca5e99h0fN2tezdu0eebtEkxrm7adOlk3kLFku2bNlNPQ1wK5YrFaUvx4B36JBB8smE8VGu9+03UDp37W4+0+ciZ/b/yr1796IEvM7m4REslQNKgIA3oJaDwSCAAAIIIIAAAggggAACCCAQXgIEvNasNwGvc8cHEfDqnZs2byFjx00wg3AWnr7R523p9cJL5rqeB6y7fOMqe/YfkZQpU5oqb735mkz/5mt7dVcBr1ZcsmylFChY0LR5tk0rWb06goDXmh+1gOyFgDcgl4VBIYAAAggggAACCCCAAAIIIBAeAgS81qwzAa9zxwcV8BYsWEgWL1thBqFn8NasXjnKgBx373Zo11oiIiLrxlY6du4q/QcMNpdPnz4llSuUsVd1J+AdOmyktG7TzrTR3cS6q9jxiAZ28FrzcxcovRDwBspKMA4EEEAAAQQQQAABBBBAAAEEwlCAgNeaRSfgde74oALeVs+0kWEjIo9l0PBWQ1zH8svpPyRBggTy999/S7HC+dxa9CPHT5uzdfWs3gJ5c3gU8I4d/4k0bdbctHn/3bfky6mTCXjdUg/OSgS8wblujBoBBBBAAAEEEEAAAQQQQACBkBAg4LVmGcMh4FWpO3fuxAmmZ83myZnVXudBBLwJEyaU7bv2S5o0acx9e3TrLEsW/2gfg57Ru37TNvP9kcOHpHbNqm4t+tbte+TRDBlM3cezPmbO09Xiagdv8uTJZeeeg5IsWTJTv0rFsnLq1MkoAa87lr+cOC61alRxa6xU8q8AAa9//bk7AggggAACCCCAAAIIIIAAAmEtQMBrzfKHS8Drjlb2LBnt1awOeDWgfavP65IoUSLR4LZI0WLyTOu29jB1x/Zt0rRx/SjDbNS4iXw04TPz2YoVy6VT+7buTEMWLf1ZChUqbOrWf6KW7Nu313wdV8BbsVJlGTf+E3swfPzYUalRrZJp53hEgzsDOH/unJQuWcSdqtTxswABr58XgNsjgAACCCCAAAIIIIAAAgggEM4CBLzWrH44BLy6O/fHhQviBNMdvi/37mmvY3XAG9vN1f+TCePlww8iz811LHoWrp6Jq0V39uoOX3fKwsU/SZEiRU3Vp1s2lU0bN5ivHQPemzdvyvXr181RDrpzV4+BsJXbt29L9SoVzEvdtDgGvHpUxJrVq+IchobZY8dEjpsS2AIEvIG9PowOAQQQQAABBBBAAAEEEEAAgZAWIOC1ZnnDIeC9cuWKFMqfyyMwW8DrTlvbkQgajObOkcV+H3d2vm7dsllaNGvkdGz58xeQpcsjzLW9e/dIgydruzUHPdZBdwlryZ/ncRPkanEMeGPrSMfTpXN7+fviRafz4CVrbi1B0FQi4A2apWKgCCCAAAIIIIAAAggggAACCISeAAGvNWtKwOvccceu/ZI2XTq5detWlLN5ndXes/+IpEyZUq5evSoF8+V0Gozu2bNbunZqb64VLFRYJk/92r5rdvTI4TJm9IgYXeuuWn3JmpZz585KmZKRu3Jdlf2HjkuKFClijN0x4D1x4ricOH5MdHfzLydOyJ49u2TL5s3y669nYnTvGFQT8LrSD67rBLzBtV6MFgEEEEAAAQQQQAABBBBAAIGQEiDgtWY5CXidOy79KULyFyhgXlCmLyqLqxw9cUYSJ05sjjSoVL60vWpcweiz7TvKoCEf2uu+0LO7LJg/L8ZtDhw+IQ8//LAZh7707PTpU3GOpXSZsjL7h8jjKM6e/UPKlipmr+/qJWuxdUzAa83PWiD2QsAbiKvCmBBAAAEEEEAAAQQQQAABBBAIEwECXmsWmoDXuaPusK1Vu6652KFda4mIWOG0YvESJWXegsXmWvTdra6C0SFDh0vbdpG7enUnbZOGT8ru3bui3Ofrb2ZI1WrVnfbvbEArV62TnLlym0vfTPtK3u7zur0aAa81PzOh1AsBbyitJnNBAAEEEEAAAQQQQAABBBBAIMgECHitWTACXueOjjtsdWdutcrlRV/E5lj0CIUly1aanb5aRgwbKuPHjbZXcRXwasUf5v0oJUtF7vq9ceOGuc8ff/xu7yNN2rSyfec+SZgwofkstuMc9JruCNZxa7l27ZoUKZgnypgJeK35mQmlXgh4Q2k1mQsCCCCAAAIIIIAAAggggAACQSZAwGvNgoVDwKsvP/v0k4/iBLtz+06Mc3A3btkhmTL917Q7f+6c9O/3rqxeFWF221aoWFn69h8oWbJkNdcvXrwoxYvkj3IPdwLeRIkSib4ULWPGyGMgLvz1l5QvW0Ju3rxp76tf/0HSqUs3+/e6y/eLzydKxMoVkuihRFKrdh157vle9p27WvG9d/rIV19OiTIeKwJePQt4xnfT47TUM31nzZxhzQNKL/EqQMAbr7x0jgACCCCAAAIIIIAAAggggAACcQkQ8FrzfIRDwOuuVPYsGaNU1Z21ep6tbfdsbP2oYeeOz8qKn3/yOODVBunTPypr1m82Z+1qOXjggDxRJ/JYBlsZ/MEwc5yD7hqOq+hYxowa4fSlbVYEvO5YahheumQRd6pSx88CBLx+XgBujwACCCCAAAIIIIAAAggggEA4CxDwWrP6BLz/OkYPePWK7uD9YurXUqhQYafgRw4fMuHuqVMnY1xPlSqV7N532Hy+edNGeapFk1gXrWjRYjJv4RJ7mKw7YF99pXeU+ho4f/rZF5IhQ8YYQa+uox4l0alDWzlyOPKe0UuXbj3k/b4DzMeDB/aXzyZOcOshcpyHOw10l2+ZkkXdqUodPwsQ8Pp5Abg9AggggAACCCCAAAIIIIAAAuEsQMBrzeqHcsBrjVBkL0mTJhV9oVrJkqXloYcekt27dsqOHdvk8uXLVt7G7b40EK5Uuarcun1L1q1ZLQcPHnC7LRURsAkQ8PIsIIAAAggggAACCCCAAAIIIICA3wQIeK2hNwFvjaJyo3s9azqM1kuSZdsl2TcrJeHtu/HSP50igID3AgS83tvREgEEEEAAAQQQQAABBBBAAAEEfBQg4PUR8P+ba8B7P3lSSSD3rekwWi/3794TuXdfEuq/FAQQCCgBAt6AWg4GgwACCCCAAAIIIIAAAggggEB4CRDwhtd6M1sEELBegIDXelN6RAABBBBAAAEEEEAAAQQQQAABNwUIeN2EohoCCCAQiwABL48GAggggAACCCCAAAIIIIAAAgj4TYCA12/03BgBBEJEgIA3RBaSaSCAAAIIIIAAAggggAACCCAQjAIEvMG4aowZAQQCSYCAN5BWg7EggAACCCCAAAIIIIAAAgggEGYCBLxhtuBMFwEELBcg4LWclA4RQAABBBBAAAEEEEAAAQQQQMBdAQJed6WohwACCDgXIODlyUAAAQQQQAABBBBAAAEEEEAAAb8JEPD6jZ4bI4BAiAgQ8IbIQjINBBBAAAEEEEAAAQQQQAABBIJRgIA3GFeNMSOAQCAJEPAG0mowFgQQQAABBBBAAAEEEEAAAQTCTICAN8wWnOkigIDlAgS8lpPSIQIIIIAAAggggAACCCCAAAIIuCtAwOuuFPUQQAAB5wIEvDwZCCCAAAIIIIAAAggggAACCCDgNwECXr/Rc2MEEAgRAQLeEFlIpoEAAggggAACCCCAAAIIIIBAMAoQ8AbjqjFmBBAIJAEC3kBaDcaCAAIIIIAAAggggAACCCCAQJgJEPBat+D379+3rjMnPSVIkCBe+6dzBBDwToCA1zs3WiGAAAIIIIAAAggggAACASWQJGFyuXXvRryNKTI4ui8EPPFGHLYdE/Bas/T6M5oiSWqJr4j37r3bcvf+Hbl775Y1A6YXBBCwTICA1zJKOkIAAQQQQAABBBBAAAEE/CeQ5KEU0qb4B1Iua4t4GcTCAyNl4cGRBLzxohvenRLwWrP+GvBWyt5GOpYeY02H0XpZeWyyzNzdV+7cJ+CNF2A6RcAHAQJeH/BoigACCCCAAAIIIIAAAggEioAGvO1KDJPy2VrGy5AW7B8u8w8MJ+CNF93w7pSA15r1J+C1xpFeEAhGAQLeYFw1xowAAggggAACCCCAAAIIRBMg4OWRCFYBAl5rVo6A1xpHegkNAT1OKFmyZHL9+vXQmJCLWRDwhsUyM0kEEEAAAQQQQAABBBAIdQEC3lBf4dCdHwGvNWsbygHv3PmLJEuWrAbq3PlzUv+JWnGiTZw0WUqVKmPq3Jf7UqFsSblz5475vu4T9WTIB8Octr906W+pVaOK/Vq9+g1l4KAPotTV/m7cuCHXrl6T8+fPybq1a+SLzyfKrVtxH13hOAdbh3fu3jHtLly4IEcOH5Kvv5wiu3fvinNujmPq3+9dWTB/nssHKEWKFLJqzUaX9WwVDh06KG1bP+V2/YGDh0q9eg3crv/iC8/JhvXrnNbP/ngOmT1nvv3awoXzpd/777jV95P1Gkift96RTP/NbMJds/7375uQ9/Llf2TTxo1mrXbu2G6urYhYKylTpnKr7+iVOjzbWvbt2+tV2/hoRMAbH6r0iQACCCCAAAIIIIAAAgg8YAEC3gcMzu0sEyDgtYYylAPevQeOyiOPPGKH+t/LL8rsWd87hcuWLbusWb85yrW8ubLJzZs3zWedu3aXvv0GOm2rIXCuxzPbr3Xv0VPeea+vywW6d++eCSyf79FFLl265LR+9DnE1un5c+dk5IgP5dvp05xWcRzT0CGD5JMJ412OL3WaNLJrz0GX9WwVdAylSxZxu/7M2fOkbLnybtd/qXdPmTtnttP6o8d8JM1b/hsua5ieL3f2OPtOkiSJLFseITly5nJrDN99+428+fr/5Ngvv0qiRIncahO9Uod2rSUiYoVXbeOjEQFvfKjSJwIIIIAAAggggAACCCDwgAUIeB8wOLezTICA1xrKcAp4z579Q8qWKuYU7qtvvpNq1WpEueYY8GoAbAsQX/nf66behb/+ki+/nCz//POPTP78M3tbxzD111/PyOlTpyRp0qSSOnVqeeSRlJIuffoo55KfO3dWqlYq5/RYAFvAq2Hw5k0bJWHChKaPlKlSSurUaUR32TqW9999S76cOjnGHH0NeDUw/eXEiTgfugP798nLL/Vy+8F0DHiPHT0it29H7paOrbzx+iuya+cOp5edBeE9unWWJYt/jLW/xctWSMGChezXdR3U+Mjhw1KocGHJnTuPZMmaTTQI1rJwwTzp9Xx3+e77OZImTdoY/ebKnVsSJ05sPj944IDT+77Qq7vpP1AKAW+grATjQAABBBBAAAEEEEAAAQR8ECDg9QGPpn4VIOC1hj+cAl4V69q5g/y0bEkUPN2punP3gRgvg3QMeB0bnDxz1nyrf2rv7NgHV2GqhrI9nu8lzz3/ggl+tZw6dVKqVS4vGuQ6FltweeXKFSmUP+ZO0zJly0mft96V0mXK2pu99OLzMveHOVH6cTUmZ0+T4w7eLZs3Scvmja156P6/F8eAt0SxgiYw96ZUrFRZvp0RubNXg9X8BQqYr7dv2yrNmjg/AqJo0WKyYNEyU+/atWtSu0YV0TA+etGduu/1HSDtnu1gwmINeGMrEWs2SI4cOc3xDo9nfcybqTzwNgS8D5ycGyKAAAIIIIAAAggggAAC1gsQ8FpvSo8PRoCA1xrncAh4T58+JZky/df8Wb0GqVUq/huGquKYcROkWfMWJpjTM23z5stvcOMr4LWtXK7ceWTx0p/tIe+OHdulaaN6URbWVcBrqzzuo0+lSdNm5ludh4axW7f8e+REKAe833w7UypXqWrmXrtmFZm3YInZ2axhuR7T4Oyc47ffed+E7Fo+/+xTGTgg7iM19KgP3TGtz1JshYDXmv8m0QsCCCCAAAIIIIAAAggggICHAgS8HoJRPWAECHitWYpwCHhPHD8mO3fskGYtWhq0Z55ubn9Zl/75/f5Dx82f1q9Ysdz86X2JEiVNvfgOePUe+fMXkB+XLLef6VqpfGk5c+a0fXHdDXi1wZSvvpGaNWubttF33IZqwJsgQQI5cvy0Wb8/z5+XUiUKy/iPJ0rjJk2Nw6CB/WTSxE9i/LAMGzFaWj3TxnyuO7p1Z7evhYDXV0HaI4AAAggggAACCCCAAAIIeCVAwOsVG40CQICA15pFCJeAt0mjerJzz0Fzhq3u0q1dM3LH5zvv9pXuz/U0u141XP3400kPNODVMcyaM1/0qAUt+pK0Pm+8al9cTwLe9OkflW0795q2uns1R7ZM9n5CNeBt3aadDB020sxzyheTpF/fdyVP3ryyfMUa89mJE8elepUKMX5Y2rR9Vj74cIT5XHf4Nm/SQPbs2e3TDxUBr098NEYAAQQQQAABBBBAAAEEEPBWgIDXWzna+VuAgNeaFQiXgLd61Yoy5ctpUrNWHQPXqH5dE+jp7t2HH37YvuN17oLFDzzgfe2NPvJi71fMuKKfG+tJwKvtDx+LfKGblnKli8sff/xuvvY14NU+7tyJ+yVov5w4LrVqVHH7wXQ8g9dV39rpc927xDg/eelPEfYzd0sVLyx//nne3H/bjr2S/tFHzdeOn9sGp0a79x2WZMmS2cerL+HTl7ht3rxJVvy8XPTFb54UAl5PtKiLAAIIIIAAAggggAACCCBgmQABr2WUdPSABQh4rQEPp4A3c+Yssm7jVvMyNQ13582dI+++189A6tmtRw4fFn8EvMVLlJR5CxabcUQ/I9jTgHdFxFrRs321PNumlaxeHWG+tiLgdfXEnT93TkqXLOKqmv26Y8DrTqOXeveUuXMiX6amJWXKlCak1fU8efIXqVopche0ln4DBkunzl3N11OnfCF933s7xi1q1a4rEydNNsc7OCsaOmtoPWXy5zLt6y9dDpGA1yURFRBAAAEEEEAAAQQQQAABBOJDgIA3PlTp80EIEPBaoxxOAa+KOR6HcPPmTbPbdf/+fVKvbk0D6o+AN1u27LJmfeQL0fT8XT0qwlY8DXiXLFspBQoWNM07tGstERErzNe+Brx///23rFm9Ks6HTo++GDsm8rgEd4pjwPvz8mVy7dr1OJuNHjU8yq5ax53PQ4cMkk8mjLe3dzyu4uKFC1K8aAGnfWu9ocNGSMVKVcyL2WIrui6NGjwhF/76K9Y6BLzurDp1EEAAAQQQQAABBBBAAAEELBcg4LWclA4fkAABrzXQ4Rbw5sufX5YtjxpUtmjWSLZuiQxY/RHwdujYWQYM+sDcX3cWN6wXeYyEFk8DXt3RmipVKtO2auXycvKXE+ZrXwPe6C9ts+Lpcwx4SxQrGGd46ux+m7bulMceizxn+OmWTUUDe8cy9avpkiZNGvNR/Sdqyb59kecTx1ayZs0mVapWk3LlK0rRokXl8Rw5zZnNtrJjx3Zp2qherO0JeK14KugDAQQQQAABBBBAAAEEEEDAYwECXo/JaBAgAgS81ixEuAW8quZ4bmv0l3D5I+Cd8OkkadCwsVnQeXN/kN4vPGdfXE8CXg0jj5/8zRxZoOuqL1nTf7WEWsCb/fEcsnrtRrd/CJYuWSTdu3Zyu75W1CMgBn8wXBo3aWpvp6b6AjtnhYDXI14qI4AAAggggAACCCCAAAIIWCVAwGuVJP08aAECXmvEwzHgLVO2nDmqQUunDu1kxc8/2TEfdMCbJEkS2bJ9j6ROndqMIfpOU08C3i7desj7fQeYfg7s3y9P1q1hn1eoBbyjx3wkzVs+5fYPwY0bNyRf7uxu13esqC/isx3fYDurmYDXK0oaIYAAAggggAACCCCAAAIIxIcAAVQIxQ8AACAASURBVG98qNLngxAg4LVGORwDXpWrXKWqPJTwIVm1amUUyAcd8C5fsVry5M1nxvDHH79LudLFo4zH3YC3Zq06Mnnq12b3rpaez3WVHxcuCNmAd9/BY/Kf//xHbt++bY5niK0MGz7K7tujW2dZsvhHU1VfbHfs6BG5fPmyyx8k285crVimZFE5d+6s0zbs4HVJSQUEEEAAAQQQQAABBBBAAIH4ECDgjQ9V+nwQAgS81iiHa8Abm96DCnj1iIFxH30ixYuXMEPRdWjwZO0Y58S6Cng10H22fUfp23+QJEqUyPSl5wnrucKOJZR28FasVFm+nTHbTG/9urXSulWLWH8YWj7VSkaOHmeu79i+TZo2rm++njt/kRQuUlS++Hyi6AvabEdZRO+oZKnSMmfuQhOcX716VQrmyxnrvQh4rflvEr0ggAACCCCAAAIIIIAAAgh4KEDA6yEY1QNGgIDXmqUg4I3qGFvAq+fbpk//qKm8Zftu8++Rw4ekzTNPya3bt+TvixftHTmGqStX/iwrf14uyZIll0z//a9kyJBBihQtJtmy/XtcgK7BwAF95YtJE2Msqi3gvXXrlgwa0FcSJEwo6dKlMy8Xy5w5i+hxE3rMg62cPfuH1Kha0YSRjsVxTPrCtI0b18f6AOkZs6NHDpdUqVPLrj0HTT3dtTrju+lxPnS/nDghs2bOcPvBdHzJ2pTJn8uVK3Hvpv3m66/k999/k+nfzZJKlauY+3Ro11oiIlbEek8NZo+eOGPCb52XHtOglhrwlihZyrS7cuWKRKz8WbZs2SyrIlbKn+fPmV2/nTp3k4aNGttftKYmY0aPiPVeBLxuLz0VEUAAAQQQQAABBBBAAAEErBQg4LVSk74epAABrzXaBLxRHWMLeDt16Sb9+g9yiq7HBOTOkcV+zTFMdbVKly5dkpde7CkrVyx3WtUW8LrqR9dRj5vo1L6t05eAeTImvVfeXNkk+cMP2wNeV/fX6+fPnZPSJYu4U9XUcQx43Wn0Uu+eMu+HOXLk+GlJnDixXLt2TQrkzeGy6Xffz5EKFSuZeoMH9pfPJk4wu3JLlS7jsq2twooVy41tXIWA121OKiKAAAIIIIAAAggggAACCFgpQMBrpSZ9PUgBAl5rtMMh4D1+7KjUqBYZ8Lkqjjs78+TManZ7aunYuav0HzDYafPoAa/jy86iN9BdpLpjVM9/HTNqRJy7T7VtbAGvrpve96+//pQli36U0aOGi4bFsZW4xuSsjc49efLksnvfYVdk9uu6y1fPqHW3OAav7rTp/cJzptq4jz41/y5dski6d+3ksqmeTzzly2mmnu66rl2zqiRNmlTate8orVu3ldx58trPLo7eme6IfuvN1+Xn5ctc3mflqnWSM1duc9zD41kfc1k/ECokSJMmzf1AGAhjQAABBBBAAAEEEEAAAQQQ8F6AgNd7O1r6V4CA1xr/UA54rRGil3AQyJTpv5I3bz7JkSuX3Lt7V3bt2in79u6RO3fuhPT0CXhDenmZHAIIIIAAAggggAACCISLAAFvuKx06M2TgNeaNdWAt0yWZvJU0X7WdBitl/Unv5MfD4ySO/cjd8JSEEAgcAQIeANnLRgJAggggAACCCCAAAIIIOC1AAGv13Q09LMAAa81C6ABb9JEKUQkfv5Q+969u3L//l3R/6EggEBgCRDwBtZ6MBoEEEAAAQQQQAABBBBAwCsBAl6v2GgUAAIEvAGwCAwBAQSCWoCAN6iXj8EjgAACCCCAAAIIIIAAApECBLw8CcEqQMAbrCvHuBFAIFAECHgDZSUYBwIIIIAAAggggAACCCDggwABrw94NPWrAAGvX/m5OQIIhIAAAW8ILCJTQAABBBBAAAEEEEAAAQQIeHkGglWAgDdYV45xI4BAoAgQ8AbKSjAOBBBAAAEEEEAAAQQQQMAHAQJeH/Bo6lcBAl6/8nNzBBAIAQEC3hBYRKaAAAIIIIAAAggggAACCBDw8gwEqwABb7CuHONGAIFAESDgDZSVYBwIIIAAAggggAACCCCAgA8CBLw+4NHUrwIEvH7l5+YIIBACAgS8IbCITAEBBBBAAAEEEEAAAQQQIODlGQhWAQLeYF05xo0AAoEiQMAbKCvBOBBAAAEEEEAAAQQQQAABHwQIeH3Ao6lfBQh4/crPzRFAIAQECHhDYBGZAgIIIIAAAggggAACCCBAwMszEKwCBLzBunKMGwEEAkWAgDdQVoJxIIAAAggggAACCCCAAAI+CBDw+oBHU78KEPD6lZ+bI4BACAgQ8IbAIjIFBBBAAAEEEEAAAQQQQICAl2cgWAUIeIN15Rg3AggEigABb6CsBONAAAEEEEAAAQQQQAABBHwQIOD1AY+mfhUg4LWO//79+9Z15qSnBAkSxGv/dI4AAt4JEPB650YrBBBAAAEEEEAAAQQQQCCgBAh4A2o5GIwHAgS8HmDFUVXD3dQPJ7amMye93L57T+7cvS+37sZviBxvE6BjBEJYgIA3hBeXqSGAAAIIIIAAAggggED4CBDwhs9ah9pMCXitWVENeNuVyyLj2xS1psNovXy+5qS8O/cAAW+86NIpAr4JEPD65kdrBBBAAAEEEEAAAQQQQCAgBAh4A2IZGIQXAgS8XqA5aULAa40jvSAQjAIEvMG4aowZAQQQQAABBBBAAAEEEIgmQMDLIxGsAgS81qwcAa81joHYS5IkSeTOnTty7969QBweYwoAAQLeAFgEhoAAAggggAACCCCAAAII+CpAwOurIO39JUDAa418OAW84z+eKBUqVDRw9+7fk1rVK8vly5djhaxXv6EMHPSB29DNmzaUU6dOysDBQ6VevQYx2t26fUuuXrkiO3fukDGjRsivv55x2ne/AYOlYcPGTq9t2LBeXuzVw+m1DBkyysDBH0i+/AUkY8bH5OGHHzb1bt++LZf/+UfWrVsrw4d9ICd/ORHnnJavWC2pU6cxdU6fPiXNmsSci9soVAxoAQLegF4eBocAAggggAACCCCAAAIIuCdAwOueE7UCT4CA15o1CZeAV3ezHjp6UhImTGiHGzd2lIwc/mGskN179JR33uvrNnSj+nVl9+5dMnP2PClbrrzLdj/MniUvv9QrRr1vZ8yWipUqO21/9MhhqVWjSoxrPXv1lldff1MSJUrk8r4aQlepWNZpvZq16siUL6dFuVa7ZhU5cviwy36pEHwCBLzBt2aMGAEEEEAAAQQQQAABBBCIIUDAy0MRrAIEvNasXLgEvM7C2t9//03KlynhVsB74a+/5Ny5c3Gid2zfRrRPx4B3x/ZtcvPmTXnooYckderUkjlLVvvOWu3s66+myrtvvxml38pVqkrpMmWlRMlSUr16TXNtx47tErHyZzl44IAsWfxjlPrTpn8vVapWs3929uwfsnXLZtm1c6dkypRJihQtJrnz5DX3t5XsWTI6nYuzcHr+vLmx7hq25imkF38JEPD6S577IoAAAggggAACCCCAAAIWChDwWohJVw9UgIDXGu5wCXgj1myQHDlyis73t99+lcyZsxhA3cmqO1qdFcdQeOiQQfLJhPFuoTuGpCWKFRQNhx2LHsHQqXNX89G1a9ekQN4cTvtt9UwbGTZitLk24eNx8uEHg2PUq1Gztkz96hvzuc5Nx+isnl7v1uN5ebPPO5I4cWJxFvDq7l/d5az/njt3VtKnf9TseL569aoUzJfTrblTKbgECHiDa70YLQIIIIAAAggggAACCCDgVICAlwcjWAUIeK1ZuXAIePVs2i3bdxuwvXv3yI8L5subb71jvp81c4a8+kpvp5jxFfDqzbZu3yOPZshg7lumZFETqEYvrgLeBAkSyK69hyRVqlSm6fAPP5CPxo+J88FImTKlvPt+f3njtVdi1OvQsbMM+P8zhz/+aKyUK1fB7CTW0qFda4mIWGHNQ0cvASNAwBswS8FAEEAAAQQQQAABBBBAAAHvBQh4vbejpX8FCHit8Q+HgFdfeta+QycD9r+XX5RFPy6QA4dPiAak+pK1wgVyO8WMz4BXX2SWJ28+c199idn2bVtjjMFVwNuseUsZM+5j0053CetuYV/Kioi1kit3HrMTuGihvFKxUhWZOGmy6XLjhvXS6qlmvnRP2wAUIOANwEVhSAgggAACCCCAAAIIIICApwIEvJ6KUT9QBAh4rVmJcAh4d+4+IGnSppXbt29LnpxZTYD545LlUrhwEYP4zNPNZcP6dTFA4zPgtY1Jb5o3VzZzTm/04irgHTTkQ3m2fUfTzJ3du3E9MeqjY9Jy5PAhqV2zqvn68LFTkjRpUrlz546xu3fvnjUPHr0EhAABb0AsA4NAAAEEEEAAAQQQQAABBHwTIOD1zY/W/hMg4LXGPtQD3iJFisrCxT8ZrLVrVkvb1k+Zr1u0fFpGjYk8U9fxc0dVx4D3xo0bcu3qVafoly79LdWrVrRfc3UGr+NRCHG96M1VwDtrznwpU7acuW/rVi1k/bq1Xj8U77zbV7o/19O0f//dt+TLqZE7d7+Y8pXUrvNEjM+9vhENA0qAgDegloPBIIAAAggggAACCCCAAALeCRDweudGK/8LEPBaswahHvBO+mKq1H2iXowQVI9nOHL8tHnhmOPOXkdVx4A3Lm3d3Zrr8cz2Ko4Bb49uneWvv/6UlClTyeM5ckjjJs2kePESpq7ad+rQTlauWO60e1cB7+ZtuyRjxsdM2/x5Hpfr1697/VDYzgTWHbo6F9tO3eIlSsq8BYtNv0ePHJZaNap4fQ8aBp4AAW/grQkjQgABBBBAAAEEEEAAAQQ8FiDg9ZiMBgEiQMBrzUKEesBrO2LgypUrUih/riho07+bJZUqRwaW+tKxGd9Nj3LdMeA9f+6cnHXyIjRtcPHCBWnX5ml7W8eAN7ZV0ja6m3jfvr2xLqSrgNfxmIcc2TJ5fXxCnrx5ZfmKNWYcWzZvkpbNG0cZ0+59h82L3PRZKV60gPx98aI1Dx+9+F2AgNfvS8AAEEAAAQQQQAABBBBAAAHfBQh4fTekB/8IEPBa4x7KAW+9+g3l08++MFD6ErP+/d6LglahQiXp8/a75rODBw7IE3WqR7luxRm8sa1SzeqV5djRI3EuoquAd9HSn6VQocKmjyaN6snOHdu9eig+mvCZNGrcxLQdPWq4RKxcEaWft95+T8pXiDyCYuInH8uQwQO8ug+NAk+AgDfw1oQRIYAAAggggAACCCCAAAIeCxDwekxGgwARIOC1ZiFCOeCdO3+RlChZyi0odShSMI9cvnzZXt+KgLde3Zpy4cIF0+fnU74SPRNYyz///COVypcy/8ZWXAW8Y8d/Ik2bNTfNBw3sJ5MmfuLWXKNXOnD4hDz88MNutdWdzKVLRr6cjhL8AgS8wb+GzAABBBBAAAEEEEAAAQQQEAJeHoJgFSDgtWblQjXgTZIkiRw6elISJkzoNtS4saNk5PAP7fWtCHhLFCsoF/76y/SpY1q/cZs8miGD+f706VNSpWJZc/SBs+Iq4O3ctbv07TfQNN27d480eLK223O1VaxZq45M+XKaR+1q16wiRw4f9qgNlQNTgIA3MNeFUSGAAAIIIIAAAggggAACHgkQ8HrEReUAEiDgtWYxQjXg7fFcL3n73fcN0ry5P8jUKZ87BdOXlNmOcfj999+kfJnIF6BpsTrg1T4feyyTrF63SZImTWrusWH9Onnm6chduNGLq4A3c+Yssm7jVtEXxmnp1qWjLFsa+UK0uErFSpVl/bq1psqsOfOlTNly5uuXe/eSkyd/iXUsz7Rua67NnzdXXuzVw9VtuB4EAgS8QbBIDBEBBBBAAAEEEEAAAQQQcCVAwOtKiOuBKkDAa83KhGrAqyFq9uyPG6QyJYvKuVhekKbXd+zaL2nTpTN1dUftqVMnzdfxEfBqvyVLlZY5cxfag9lpX38p77z1RowFdRXwaoMhQ4dL23btTdtr165Jx/ZtZNPGDU4fjixZsprdunnz5ZfsWTJKokSJ5Mjx02aXsx4VoUdUxFb0JWu79h4yY7569aoUzJfTmgeQXvwqQMDrV35ujgACCCCAAAIIIIAAAghYI0DAa40jvTx4AQJea8xDMeDNkCGjbNm+2wCdOXNaKpUvHSfWwMFDpX2HTqbOnFkz5ZWXXzBfx1fAq307hrf6fd/335GpkyN3GSdPnlweeSSlNGve0r4L+euvpsq4MaPk+vVrUc4J1sBVg1cNYG1l+U9LZf68H2T16lWSJXMWqVK1upQtX16qVathP7JCA96OnbtK/wGDTbNZM2fIq6/0jtNpRcRayZU7MgTu2L6trFyx3JqHkF78JkDA6zd6bowAAggggAACCCCAAAIIWCdAwGudJT09WAECXmu8QzHgdQxsR48cLmNGj4gTS49N2LR1p6mjL1krXCC3+To+A17tv//AIdKxUxdzL12HDu1ay6pVK+XbGbNFj1FwVo4cPiS1a1aNcilP3rwyeeo0yZYtu1sPxe3btyV3jiziGNhWr1pRThw/Fmf7Lt16yPt9B5g6mzdtlKdaNHHrflQKXAEC3sBdG0aGAAIIIIAAAggggAACCLgtQMDrNhUVA0yAgNeaBQnFgFd37+ouXp2bHjugoa2rsn7TNtEzbbU0ql9Xdu/eJY6B5uCB/eWziRNcdWOuf/f9HKlQsZL5unjRAnLxwoVY282Y+YOUr1DRXNfgtXTJIjLhk0lSqXIVp22cBby2it16PC8vvfyqPPLII07b6sve5v4wW0aNHCY3b96Uw8dOmSMXzp87Z+7rqji+uM4WErtqw/XAFiDgDez1YXQIIIAAAggggAACCCCAgFsCBLxuMVEpAAUIeK1ZlFAMeK2RCd5eNLQtXLiIOes3QcKEcvrUKdm8aYNbQXfwzpqReyNAwOuNGm0QQAABBBBAAAEEEEAAgQATIOANsAVhOG4LEPC6TRVnRQ14W5TIJAOaFrCmw2i9fLv5jAxfelRu3b0fL/3TKQIIeC9AwOu9HS0RQAABBBBAAAEEEEAAgYARIOANmKVgIB4KEPB6CBZLdQ14UyRNZE1nTnq5e++e3Ll3X+7ei7db0DECCHgpQMDrJRzNEEAAAQQQQAABBBBAAIFAEiDgDaTVYCyeCBDweqJFXQQQQCCmAAEvTwUCCCCAAAIIIIAAAgggEAICBLwhsIhhOgUC3jBdeKaNAAKWCRDwWkZJRwgggAACCCCAAAIIIICA/wQIeP1nz519EyDg9c2P1ggggAABL88AAggggAACCCCAAAIIIBACAgS8IbCIYToFAt4wXXimjQAClgkQ8FpGSUcIIIAAAggggAACCCCAgP8ECHj9Z8+dfRMg4PXNj9YIIIAAAS/PAAIIIIAAAggggAACCCAQAgIEvCGwiGE6BQLeMF14po0AApYJEPBaRklHCCCAAAIIIIAAAggggID/BAh4/WfPnX0TIOD1zY/WCCCAAAEvzwACCCCAAAIIIIAAAgggEAICBLwhsIhhOgUC3jBdeKaNAAKWCRDwWkZJRwgggAACCCCAAAIIIICA/wQIeP1nz519EyDg9c2P1ggggAABL88AAggggAACCCCAAAIIIBACAgS8IbCIYToFAt4wXXimjQAClgkQ8FpGSUcIIIAAAggggAACCCCAgP8ECHj9Z8+dfRMg4PXNj9YIIIAAAS/PAAIIIIAAAggggAACCCAQAgIEvCGwiGE6BQLeMF14po0AApYJEPBaRklHCCCAAAIIIIAAAggggID/BAh4/WfPnX0TIOD1zY/WCCCAAAEvzwACCCCAAAIIIIAAAgggEAICBLwhsIhhOgUC3jBdeKaNAAKWCRDwWkZJRwgggAACCCCAAAIIIICA/wQIeP1nz519EyDg9c2P1ggggAABL88AAggggAACCCCAAAIIIBACAgS8IbCIYToFAt4wXXimjQAClgkQ8FpGSUcIIIAAAggggAACCCCAgP8ECHj9Z8+dfRMg4PXNj9YIIIAAAS/PAAIIIIAAAggggAACCCAQAgIEvCGwiGE6BQLeMF14po0AApYJEPBaRklHCCCAAAIIIIAAAggggID/BAh4/WfPnX0TIOD1zY/WCCCAAAEvzwACCCCAAAIIIIAAAgggEAICBLwhsIhhOgUC3jBdeKaNAAKWCRDwWkZJRwgggAACCCCAAAIIIICA/wQIeP1nz519EyDg9c2P1ggggIDHAW/BgoWkVeu2Ru7ggf3y7fRpKCKAAAIIIIAAAggggAACCPhZgIDXzwvA7b0WIOD1mo6GCCCAgBHwOODtP3CIdOzU5f8D3gPyRJ3qUCKAAAIIIIAAAggggAACCPhZgIDXzwvA7b0WIOD1mo6GCCCAgHcB78jR46TlU61M45+WLZGunTtAiQACCCCAAAIIIIAAAggg4GcBAl4/LwC391qAgNdrOhoigAAC3gW8Xbr1kPf7DjCN165ZLW1bPwUlAggggAACCCCAAAIIIICAnwUIeP28ANzeawECXq/paIgAAgh4F/BmyZJV1m3cahpf+OsvKVGsIJQIIIAAAggggAACCCCAAAJ+FiDg9fMCcHuvBQh4vaajIQIIIOBdwKuttmzfLRkyZDQdVK5QRk6fPgUnAggggAACCCCAAAIIIICAHwUIeP2Iz619EiDg9YmPxggggIDnL1lTs6JFi8mCRcsM39Ejh6VWjSpQIoAAAggggAACCCCAAAII+FGAgNeP+NzaJwECXp/4aIwAAgh4HvBWrVpdGjdtJvUbNJIUKVIYwoiIFXL+3Dm3OIcOGSR//nnerbpUQgABBBBAAAEEEEAAAQQQcE+AgNc9J2oFngABb+CtCSNCAIHgEkiQJk2a+54MeczYj6VZi5aeNIlSt3WrFrJ+3Vqv29MQAQQQQAABBBBAAAEEEEAgpgABL09FsAoQ8AbryjFuBBAIFAEC3kBZCcaBAAIIIIAAAggggAACCPggQMDrAx5N/SpAwOtXfm6OAAIhIOBxwFurdl15utUzXk+973vvyB9//O51exoigAACCCCAAAIIIIAAAgjEFCDg5akIVgEC3mBdOcaNAAKBIuBxwBsoA2ccCCCAAAIIIIAAAggggAAC/woQ8PI0BKsAAW+wrhzjRgCBQBEg4A2UlWAcCCCAAAIIIIAAAggggIAPAgS8PuDR1K8CBLx+5efmCCAQAgIEvCGwiEwBAQQQQAABBBBAAAEEECDg5RkIVgEC3mBdOcaNAAKBIuBTwFu8REl57fU+ki17dkmf/lFJmjSpnD37h1QsV8o+vy+nfSvp0qU3348bM0qWLV0cKHNnHAgggAACCCCAAAIIIIBAyAgQ8IbMUobdRAh4w27JmTACCFgs4FXAmyJFCvl88ldSsVLlGMO5fPmyFC6Q2/75pC+mSt0n6pnvD+zfL0/WrWHxFOgOAQQQQAABBBBAAAEEEECAgJdnIFgFCHiDdeUYNwIIBIqAVwHvzNnzpGy58k7nED3gTZkypezae0gSJkwo9+/fl3y5s8vNmzcDZf6MAwEEEEAAAQQQQAABBBAICQEC3pBYxrCcBAFvWC47k0YAAQsFPA54GzVuIh9N+Mw+hJUrf5Yxo0bIq6+9KVWrVZfoAa9WXLT0ZylUqLBp81z3LrJ40UILp0BXCCCAAAIIIIAAAggggAACBLw8A8EqQMAbrCvHuBFAIFAEPA54v/5mhglytYwbO0pGDv/QfD316+lSo0YtpwHvoCEfyrPtO5p6Y8eMlFEjhgXK/BkHAggggAACCCCAAAIIIBASAgS8IbGMYTkJAt6wXHYmjQACFgp4HPBu2b5bMmTIKDdu3DDHLdhKXAHvk/UayMRJk03VHxfOl57PdbNwCnSFAAIIIIAAAggggAACCCBAwMszEKwCBLzBunKMGwEEAkXA44D3yPHTkiRJEjl9+pRUrlDGrYC3dJmyMvuHBabu0iWLpHvXToEyf8aBAAIIIIAAAggggAACCISEAAFvSCxjWE6CgDcsl51JI4CAhQIeB7w7du2XtOnSyblzZ6VMyaL2oUz56hupWbO20yMaunTrIe/3HWDqjh45XMaMHmHhFOgKAQQQQAABBBBAAAEEEECAgJdnIFgFCHiDdeUYNwIIBIqAxwHvnLkLpVTpMnLv3j0pmC+nXL9+3cwlriMalv4UIfkLFDD12rd9RlatWhko82ccCCCAAAIIIIAAAggggEBICBDwhsQyhuUkCHjDctmZNAIIWCjgccDbr/8g6dQl8gzdlSt/lo7Ptokz4G3avIWMHTfBPuTCBXKbXb4UBBBAAAEEEEAAAQQQQAAB6wQIeK2zpKcHK0DA+2C9uRsCCISegMcBb8qUKWXrjr2SNGlSo7F+3Vrp2rm9fPzpJKlRo5b9iAY9p3fk6PHSuElTu9qSxT9Kj26dQ0+RGSGAAAIIIIAAAggggAACfhYg4PXzAnB7rwUIeL2moyECCCBgBDwOeLVRvfoN5dPPvohCeP/+fUmQIIH57OrVq5IiRYoo12/evClFCuYR/ZeCAAIIIIAAAggggAACCCBgrQABr7We9PbgBAh4H5w1d0IAgdAU8CrgVYoXe78iL//vNUmUKJFLmUuXLkm3Lh1k08YNLutSAQEEEEAAAQQQQAABBBBAwHMBAl7PzWgRGAIEvIGxDowCAQSCV8DrgFennCZtWpnwySQpU7acJE6cOIaC7tZdMH+uvP7qy+albBQEEEAAAQQQQAABBBBAAIH4ESDgjR9Xeo1/AQLe+DfmDgggENoCPgW8jjR6Nm+p0mUlR86ccvDAftm2dQvHMYT2s8PsEEAAAQQQQAABBBBAIIAECHgDaDEYikcCBLwecVEZAQQQiCFgWcCLLQIIIIAAAggggAACCCCAgP8ECHj9Z8+dfRMg4PXNj9YIIIAAAS/PAAIIIIAAAggggAACCCAQAgIEvCGwiGE6BQLeMF14po0AApYJWBLwZn88h6RLl86tQe3csZ3zeN2SohICCCCAAAIIIIAAAggg4L4AY5WVAAAAIABJREFUAa/7VtQMLAEC3sBaD0aDAALBJ+BVwJsoUSJ59fU35dn2neSRRx7xaNatW7WQ9evWetSGyggggAACCCCAAAIIIIAAAnELEPDyhASrAAFvsK4c40YAgUAR8DjgTZgwoazdsEUyZ87i1RwIeL1ioxECCCCAAAIIIIAAAgggEKcAAS8PSLAKEPAG68oxbgQQCBQBjwPefgMGS6fOXaOM//bt23Lz5k3Rf12VZ55qJgcPHnBVjesIIIAAAggggAACCCCAAAIeCBDweoBF1YASIOANqOVgMAggEIQCHge8G7fskEyZ/mumeunSJWn7TEvZs2d3EE6dISOAAAIIIIAAAggggAACoSNAwBs6axluMyHgDbcVZ74IIGC1gMcB76GjJyVZsmRmHE+3bCqbNm6wekz0hwACCCCAAAIIIIAAAggg4KEAAa+HYFQPGAEC3oBZCgaCAAJBKuBxwLt732FJlSqVmW6uxzPLnTt3gnTqDBsBBBBAAAEEEEAAAQQQCB0BAt7QWctwmwkBb7itOPNFAAGrBTwOeOfMXSilSpcx42jb+ilZu2a11WOiPwQQQAABBBBAAAEEEEAAAQ8FCHg9BKN6wAgQ8AbMUjAQBBAIUgGPA97X3ugjL/Z+xUz3hzmz5eXePYN06gwbAQQQQAABBBBAAAEEEAgdAQLe0FnLcJsJAW+4rTjzRQABqwU8DniTJk0qO3YfkBQpUsi9e/ekSsWycubMaavHRX8IIIAAAggggAACCCCAAAIeCBDweoBF1YASIOANqOVgMAggEIQCHge8Osc6dZ+Uzyd/aaZ78uQvMmniJ5I4SRK3pj9zxrdy+fJlt+oGU6XkyZPL9evXg2nIjPUBCKRJm1YuXrjg1Z18afvII4/IzZs35datW17d29tGet8UKf4jf/zxu7ddeN0uS5ascu36Nbnw118e95E+/aPySMqUcuL4MY/bagNf1sqrG9IIAQQQQAABBBBwIkDAy2MRrAIEvMG6cowbAQQCRcCrgDdBggSyc89BSZ06tcfzaN2qhaxft9bjdoHWoEzZcvK/V9+QHDlzioZDiRMnNkO8ceOGXLx4QebNnSMfjx8r//zzj9+GnjVrNkmbLp1cuXJFjh094rdxBNuNW7R8Wt56+z2ZM3umDBk8wAx/4qTJUqpUGencsZ3s3r0rzikNHTZSatWuI48+mkH0Z+X27dvy+++/yeQvJsmULybF2bbdsx2kx/O9JFOm/5pn6v79+3L+/DlZvSpCXn2ld5xtixYtJsNHjpVs2bPLww8/bOpeunRJDh08IN26dpS/L150ayleff1N6dS5m5w+fUrq1a0ZZ5uSpUrLc8/3knLlK0rKlCklYcKE9vrXrl2TpYsXSf/+73kUcufJm1e+/maGJHookWzevFF6Ptctxhg0SO75Qm+pV7+hsUqWLJm9jpppUDtq5DBZMH9erOOvWKmyfDh8lGgw7Dhu/XmZ9vVU+fCDweavFGIrvqyzWwtBJQQQQAABBBBAwEMBAl4PwageMAIEvAGzFAwEAQSCVMDjgFePaFi89GfJlTuPV1MO9oA3SZIkMv7jT+XJeg1czl+Dph8Xzpdez3d3WTc+KqzdsEU05L169aoUzJczPm4Rkn1+9/0cqVCxkowaMUzGjhlp5njk+GnRtVdH9XRWNCSct3CJaNAaW5k65Qvp+97bTi+/935/6dr9uVjbHti/XxrWryN37tyJUUd31X/2+ZQoQaVjJd01r2GthrZxFd2JumbdZtEAVX85UaRg3D/nv5z+w4TYcRW9d5VKZd0KeVOnSSPrNmyV//znP6bL48eOSo1qlWJ0P3L0OGn5VCuXz9/HH42VYUOHxKg3+INhomF6XOXcubNSoWzJGN6+rrPLQVMBAQQQQAABBBDwUoCA10s4mvldgIDX70vAABBAIMgFPA54X/7fa/LK/163T1tDzL/+/FMuX7ksN2/cdMnRvVsnOfnLCZf1ArGCBjvbd+2XNGnS2Id38MAB2b17pxw8eEDy5y8ghYsUlVy5cosG4VrOnv1DypaKPfCLz3kS8Hqnu/fAURNwVipf2pwvreu6dHmECSiLFy0Qa6fjP54ojZs0Ndd1F+gPc2bJzh3bpWq1GtKocRN7+Ppy717mmmPRnaiffvaF+Uh3jf64cIFErPxZihQtJs1bPGV2x2r5adkS6do5ajCp52HrmG27UDesXydLliySVClTSbMWLSVHjshw/8/z56VUicIxxq+7cJ9p3VZy584jRYsVt+9G9yTg1Z3C27dvld27dpr/HpQqXVbqN2ho72vnzh3SpOGTcS6Ijl+f2cyZs9jruQp49b8/Bw7slz27d8m+vXskdeo00rRZc8mZK7e9j9o1q8iRw4ft3+svZ3RHthY9xuLb6dPMjt2LFy5K+46d5NlnO5qd71oiIlZIh3ato4zbl3X27omkFQIIIIAAAggg4J4AAa97TtQKPAEC3sBbE0aEAALBJeBxwKs7FIsXL2FmeerUSaldo4oJScKhDBsxWlo908ZMVY9ieLHXc7Js6eIYU0+UKJGMHD1emjRtJroLkIA3eJ4ODfZ27NoverxAgbw5zMDffud9c2zCihXLpVP7trFO5vCxUybY1yMZalarZH4+bKVBw0Yy4dPPzbeHDx2UOrWqRennxyXLpXDhIuaz6AGwHkGwet0ms4NY+86TM6s5usFW3ujztvR64SXzrR5J8ELPf3eM6+7aNes3m53cWho3fFJ27dwR5d79BgyWTp27xpiXOwHvkmUrZcrkSTLju+kx2mswvuSnlWaHr/685MudPc4HYfYPC6R0mbJR6sQW8Pbs1VtKlS4t77z1ptPzfh370l3YuhvbVhYsWmbfZf3M081FA3HHouG+vkhSj8hwfA5sdXxZ5+D5SWCkCCCAAAIIIBCMAgS8wbhqjFkFCHh5DhBAAAHfBDwOePcfOi66Y1BL/Sdqyb59e30bQZC0zpEzl6xctc7+5+h1a1eTQwcPxjl6DbgaNm4iI4YNNfXqPlFPypUrb14yN2b0CKdtu/foKRkzZpS9e/fE2OWpDYqXKCkdO3aRHLlySdq0ac1uyZMnT5ozf1f8/JPpU//M/oUXXpJn2rQzf+quf9I/dXJkuGgrc3+YLXv27LZ/r+Hh8z1fFD1bOGeuXHL1yhXZt3evGcOqVSudjrVN22fNbmUNMr+cOllq1a4rLVo+ZXaBXrl8RVav0vDvc3P+rJbsj+eQTp26SOmy5SR9+vRy5vRpmT3re7ODMq7ydKvWUr1GTSlQoKAkTZZMfjlxwoRy48eNjtFMd3927hJ5ZutXX001u8U1cK9WvaaULlNGbly/Id9M+0r+/PO801t27tpd+vYbKDt2bJemjeqZOhpiFihYUPq88WqsY9Vze0eNGW/q/zBntrzcu2eM/jVozZYtMuQsUayg/WVgqVKlkl17D5ln69dfz0jFcqVitHX85cI7b70h076OfMmhlm079kr6Rx81oW+ObJmihL96vXKVqvLNtzNNXV3L9m2fidK/rpvNTC+Ur1DRmLkT8Ma5cCKye99h0fnp2B7P+lis1R3np3PTX6RowBpbwOvqvh06dpYBgz4w1eb+MEdeevF5e5Ot2/fIoxkymO/1CApn52Rv3LLDnO2rJXuWjPa2vqyzqzFzHQEEEEAAAQQQ8FWAgNdXQdr7S4CA11/y3BcBBEJFwOOA1xYmKUCuxzM7PQ80VHAc5/H55C9FzznVokFqpw7tPJ7mD/N+FP1zeP0TfA3inJUDh0+YF2SdOHFcqlepYK+i4d+sOfNj7HB07OPvv/+WYoXzib486tsZs+Mc34SPx5mXSGnRM2OnfTvTBHHOypLFP8rzPbrGeOHUlu27JUOGjOZM2sOHD0mJEiVjNNdrVSuVk249npMez/Vyel6rnlPs7EVajz2WSb6dMSvKn9s73kCPHGjTumWUoF13TY/76FNT7b13+pgjMzQgdjwnVsM+Df1Mnff7y9P/vytbv0+ePLkJFnWN9JgFLbqjU9vrXO7evWs+mz1zhvTr+659OJ9M/FzqN2hkvu/WpaPTnd36Qi89CkHLG6+9Yt/1qsc3fDThM/P5vLk/SO8XYp7D67im0XcSnzxz1rTVIL18mcjd9dHLiVO/myMcXB0zoe127j5gfknga8Cr5+lqX2p38eJFKV4kv9OxdevxvLz7Xj9zbeOG9dLqqWZy9MQZnwJex/V4683XZPo3X9vvrS9wq1qtuvl+8uefSf9+78UYl+3M5ehHrPiyzk4nz4cIIIAAAggggICFAgS8FmLS1QMVIOB9oNzcDAEEQlDA44B32vTvpUrVyD8vjy3ICkEns3vXdq5nudLFnf5ZuKt5+xLwOgZLuiNXX5alAWe27Nnl0UczmPBOP9fQvWDBQjJ9xmxJnTq1PdjUgM2xjBj2gdkFmj79o6JBre38Vq136OABc5Zp3nz57J+vW7tG2jzTMkoftoDX8cNbt27JP5cumTNMbX3q7k3HgFVDxiRJk9p3gmv7J2pXN+cY24ruKNZdrRp2a9HwUo8W0OC1VOkykjFj5G5QPQKjTMmi9naOAW/0+9oqOQa8jsG9q/VzvB495Hc8EiC2X3w0bd5Cxo6bYLoZN3aUjBz+oflajxt48613zNfvvv2mfP3VVKdDsQW5uvO6Yb06po6u37adkbvoV6+KkGfbOn/xmG3XqjtHJfga8Gog3rRZC3np5VftO2Vff/Vl+X7GtzHmVbNWHZk89WvzfOgzXaViWbPb19uAV3e4t23X3oT6WpydO+x4XIbWWf7TUun9wvP2l+fpTvY+b0eG97oWuia24ss6e/J8URcBBBBAAAEEEPBGgIDXGzXaBIIAAW8grAJjQACBYBbwOODV4GT4yDFmzq7OJA1mmOhj33fwmDnuIK7dt67m60vAa9tRqC+zKle6mFy/ft1+Oz0yo//AIVK7zhNRdkm685I13emru0O1aACnQZyt6HECCxf/ZN/Zq6Gi47EOjgGvBsO9ez0nq1dHmOYaPOqRBLaAVkM7Paf1/Xffsp/ZPHrMR9K85VOmfvQ/ox87/hPzsiwten6qnqPqWPQlWfqyLC1933/HfgSFY8Cr1/TM2kU/LpSfly+VE8ePS6HCReTn5T+ZYFiL2qVNG/lCrXTp08u8BYvNzt1qlcubz/Slgs+27yhr16w2RzTYyoULf9kDQf3M8RcAjn/S7zjm6tVrypfTIkPOWTNnyKuv9DZfDxryobmHlp7PdTUvWHNWfjn9hwlC9cVv+gI4LXqkhu7s1rJwwTzp9fy/5+869rFu41bJkiXy7N64jkrQNt4GvJ26dJOXX3nN/GLBVvTnZeiQQTLx049jTClP3rzm+As9DkKPLalYrqT9uARPA94VEWslW/bH7S9105vpCxA7tm9jPyLEcQD63zBbCKyf6zg3bdwgJ0/+Yt9lrcekNG/SIMoZ476ss9NF5UMEEEAAAQQQQMBCAQJeCzHp6oEKEPA+UG5uhgACISjgccCrBo4hR6P6dWX37l0hSPPvlDRU03BNi+0YBG8m7G3Aq7tZNeDVEtef4Ucfk6uAV48jOHjkF9Mstj+h13ODJ30RuaN065bN0qJZ5DEEWmwBr4Zzepap44u/9Pr4jydK4yZNTd3oLw7Tz1KmTCl79h8x13ds3yZNG9c3X+vO3+MnfzNh5s6dO6RJw8ijMRyLmhw6etLU1fC1bevIoNgx4D2wf78806q5/B1t93Jsa2c7KmDL5k3SsnljU00D7iJFiprg29kOVFtftqNL4voFQLHiJWT+wiWmieOYv5jylQnntbRu1ULWr1vrdIi20FND/qKF8po6jmfCfvftN/Lm6/9z2nb5itWSJ28+cy1/nsej/IIgegNvA97BHwyTds92iNKdHrmgdo4vnNMKenzDug1bzS9NNITXl86dOH7M3tbTgNd2BIWtAzX65OPx8smEyHORnRU9ykOfF2dFw90GT9aOccmXdY51IFxAAAEEEEAAAQQsEiDgtQiSbh64AAHvAyfnhgggEGICHge8VatWly7de4juRtSiwaD+ibO7RXfzxfaCK3f7eND1HANWZ3/y7e54vA14tf8du/abYw+0aAD54dDB5t+4iquAt0LFSvLd95Fn0U6d8oX0fe9tp93ZzgWOfhyCLeCNLRzWP9H/32tvmD5j25lqC/Iczxx2DELXrF5ldoo7K33eeleSJk1qdl3qOb9aHAPe6C8jc7VOtt3MQwYNsO841RA5WbJkUjBfzig7dqP3tXPPQUmTJo39mAxn9ypUqLAsWvqzueQY8H71zXdSrVoN87kGy7Gtq7OAVwNVDVa1RD9OwHEMS3+KkPwFCpiP4ivg1TOqn+3QUVKmTCXZs2W3P68a/OsZzosXLTT311B+/aZt5iVmek1f+mbb+W0bs6cBr+74zpAhg3l5X+48ee3Hgxw7ekRqVo/coe5Yhgwdbo5y0KIhdLLkyaVYseJRjhLRoL1zx3ZRwnBf1lnvlTGX8zOSXT2bXEcAAQQQeLAC9+/fk2uXnL+Q1aqRPJwqg9N3E1jVP/2Ep8D182elZd53pHy2qEerWaWxYP9wWXF2mvwnrfP3iVh1H/oJP4Hbfx2Xj5/KLU8UinwZstXlhel7ZP4xkRSpH/Wq67PHdnjVjkYIIIDAgxLwOOAdM/ZjadbC+/+HIa4dig9q0t7c5/CxUyZMtJ1z600fvgS8egRDx05dotxWd4vqS6D0yIEB/d6L8qfkWtFVwKsvPXv73fdNn3Gd/bpxyw4Txun5unlyZrWPwVXAq3+y36//IFM/toDXFqA6Brydu3aXvv0Guk3sGDD7EvDqbmLdVWw7Yzn74zlk9dqNcb4gzDZIm3VcRyBUrlJVvvl2pmmyYP48eaFn5HEKI0aNlaeefsZ8rS/v0/N9nRXbLtU//vjdjFGLBsMaEGv5YfYsefmlXk7b6nEZeuSGltiOkLA19HYHb/Qb16vfUPTsaN2Jrc9OvtzZzVEIzZq3lDHjIo9sGD1quHw3/ZsYY9YjJfToBj2OokXTyF3j+gsGbe+q6C9klixbIbly5zFVP//sUxk4oK+9mePOcj2HWn8RoEWP63jt9T7SvmNnc28t58+dk9Ili9jb+rLO2gkBr6vV4zoCCCAQGAKX/v5NLmdLIXdzxU+I9dCR3+SRM9clVer46T8wFBmFPwQIeP2hzj2tECDgtUKRPhBAIJwFCHjdXH3dcZg5cxZTu1iR/G7/2b9j974EvNqPntXa6pk2ogFW9KJ/5j5+7OgoZ9W6Cng1RNUwVctz3bvYd1hG7ztizQbJkSNnjPOHXQW8HTp2lgGDPjDdxRbw2nYHOwa8GgprOKxF/9T+ypXLca7SsaNH7S8X8yTg1dAzTZq09r715WC2e+q/iRMnNmcIa2ir5/LaSoN6deTkLyeijGnBomVStGgx81lsAWqjxk3kowmfmTqffTpBBg/qb77WXc6621nLS717ytw5s53O1/aSNT1b9ok61U0dDW11HlqWLV1sXnzorGzetsu8mC56SO+srlUBr/at5wPrOcFabLuTHY+ViHNho110dsxHbO0zZMhojhDRcvzYUalRrZL5Wn929Jc1Gjrrz0zuHJE/045Ff5mhz7zu3NbieF9f1tmTuVIXAQQQQMC/AvcSJZQbXZ+Umy0i/++H1SXpzDWSfPJPkuDOXau7pr8wF+CIhjB/AIJ4+hzREMSLx9ARQCAgBDwOeGvVritPt4rcbehN6fveO6I7EIOtOL6M7OOPxsqwoUM8noIt4I1rl6ezwNPxRhpM1axVR+rUfUJKlCglufPkse821HpP1K4uBw8eME1cBbwaFg8bMdrU/fCDwTLh43FO52Q7HuLq1avmqAJbia+A1/FFfuqs3u4WTwJe265sd/u21Yv+sjn9fMqX08y6RF8Dx77f6PO29HrhJfOR44vhHOc78ZOPZcjgATGGpLtR9UViWtatXSNtnoncRa/HHejOXi2OwW/0DmxzdTy/N7Z5WxnwOp7La1tLbwPe/738osye9b3by2Xb8ez43Dq+lE5fGKhr6axM+HSSNGgYeQ7zN9O+krf7vG6+9mWd3R44FRFAAAEE/C5AwOv3JWAAXgoQ8HoJRzO/CxDw+n0JGAACCAS5gMcBb5DP1+vht2n7rHzw4QjTXo9pKFWisMtdvBrGli1XXjZt3GDazZj5g5SvUNF8nSNbJqd/bu4q4I0+Ab2HBsclSpYyl8aOGSmjRkSeyWr7s/wbN26YP4+PXvLlzy/Llq8yH+s5t53at41RR4+l0BexaZCoL8qqUrGsvU58BbyOu1L1fNRWTzl/EZazxfQk4E2TNq0kSxq5S3PS5C/Ny9Q+/eQjmTr5C/OZBuT6p/pVK5eXWzdv2m+nL7qLXl59/U3p/VLkC860jw8Gxzxi4scly6Vw4cg/93cMiR3DW30x3JN1I8/jdSyvvdFHXuz9ivko+pEDtmMuYtud69h/XCGw7X5WBrzTpn8vVapWM13bdnGradb/Py7C2Rqa5zFirXnmfv31jLRt/bSpdvrUSfOz507R4xb2HzpuquoxJmVLRe6uLl2mrMz+YYH5OrYX+Ok1R+85s2bKKy+/YNr4ss7ujJs6CCCAAAKBIUDAGxjrwCg8FyDg9dyMFoEhQMAbGOvAKBBAIHgFCHg9WDvbUQXaRMNOPRtUzwV1VvRs1PETJsqNG9ft4dLwkWNEd2tqef3Vl+X7Gd9GaVr3iXoycdLkyF2ZJ45L9SoVzPXUadLI62+85fScXb3e8qlWMnJ05O5bDXc15NUyd8FiKVGipPm6cIHccvly1KMONBzWnZ36Z+t6tmnxIvnNkQiOZeDgodK+QyfzkWPQpd/HV8CrfTvuru3QrrVERKxw6lyxUmXJkDGj/VgDTwJexw73HjgqekRD5Qpl5PTpU5I/fwFZujxCLl64IMWLRr6cLK6ibfUMXzW98Ndf5hcAjufFZsmS1QTuurZ6vUSxglG6s1lqm+pVK0Y5AkL71CMW9NgB3f2t4/n74kV7ez3ntn6DyHNq+7zxqnw7fVqUvid9MVX02YrtuYs+L3cDXn2pmr5YLvpzbOsva9ZssnrdJvsLz1y9qM5xHK5esqbHi0z8dEKsfw3gOOfVqyLsR3iope7s1X81LNazjJ299HHu/EX2X5r06NZZliz+0QzP13V29RxxHQEEEEAgMAQIeANjHRiF5wIEvJ6b0SIwBAh4A2MdGAUCCASvAAGvB2unOyF/XrnG/sZjDYj0JU0rlv8kO3Zsk+LFS0qFSpWkcpVq9vNYHXcPOv4pvu6qffP1V2TXrl1StWq1/2PvLKCjOrf2/7R/WqzFipS2QCEQQgiB4O7u7u6QYKU4FCoUDRCsSNHirsVdSrEEC+70FmmhuN3e/td+5zvTM5PRJJOZSZ691re+4ZxXf/uka93n7PO8aNq8Jfz9cxtXoxd4c/j6YufuA8o/dfFPC7ByxTKcO3dWVZeWLFkaY0MnKn9ViWqVyyMy8pz6PWnydNSr30D9PnH8GHqGdMPjx3+hYqUquHL5EuQT9d5ffIk+Xxg+P3/y5IkSwiLCTyrRV0Tlzl27q3syd2BuX7x8+dK4RlcKvHpWImrKp/mTwyYq4VPyUKFCJdRv0Ai5/P2V+CsisER0BF6p5BVR88WLF8jlm1WNM2jIMHTtFoI9e3ahbavmDj0l6zdtRb58Qapt+MkTSmwVuwwRoaf/MBsyj4RYYYglhj70eZBD43r36I59+/YoC44xYyegQMFCqrnkVnKsD32FrgjEYiewbu1qJE2WDD169Db6LL9+/Rq+Ppmj7EVynSpVauP1nXsOIGXKlMp3uFxpQ8W5xMOHf5pU0E6cNBX1GzZSz82qFctw4MB+HDt6BB988CGaNGuO7sE91cGEGo+6tas7xFEa2RN4b9y+q8Y6fuwoNm5Yh8OHD+LmjRuK05BhI1Q1toQ8O7VrVMHp06eMc+srqeUQtWZNG+DypUvqvgjw4hvdqrXBy9jclkSuxSTPDgNgQxIgARIgAbcSoMDrVvycPAYEKPDGAB67upUABV634ufkJEAC8YBAjAVe8eRt1rwFsmT5HOkzfKyEwRfPn+P3u79DDr+aNHE8rl+7Gg9QGbZQo2YtjAsNg3wC7khcvnQRFcuXNjbVqiPt9bUk8Or7iHAlVYj62L1rB9q1aWm8JFWjYjNg3k4a6EVGzcpB6ygioQhd+tB7xmrXXSnwyhzzf1qCcuUq2EMVY4FXDnSTg930n+xv2b5bCe6DBnyJJYt/srsGaSBC/IZN29TBbFqY5+nOnduoWK6UiVAubeXvZvuufeowO2shLwXq1a5uFPD17TSx1VpfWcfQwQPUCwnz0B9qZ2ujk8MmIHTcGGMTe3NqDUUkLVIwb5QKcltzOSLwWnquzce0ZJeRIkUK/Hr8lEmeRFSXavu0adOpw/Uk5O9AxGF5EaKPmOTZoQeJjUiABEiABNxOgAKv21PABUSTAAXeaIJjN7cToMDr9hRwASRAAl5OINoCr4gcUpXom9PPJgIRlnZs3wo5IMncIsBb2UnlbOjEKaheo6YS5sxD9nzjxnXMmzMbC+bPNbktvreLl6xEuvTpTa6LwNQrpBt+mDVHicciisun+hJJkybFqDGhqFylqkVhWavsHTF8aJS1yEFq330/Jso6J4aOU+K7FuMnhCmrB3PRTHLWrk0LHDv6a5SxxTZAKoet2RhIFaTMLaH/zF0/kPikmu9Xf1+sBeQgOLECMA+poJZK2TGjRxrXV6t2HUydPks1tWRXYOmZm7dwMcqXr2jiX6x5Iefxz6EqVB0NsVHYsHkrMmb8xKSLPBNSbdq4YV2L3svSWNjLYX7i02yeB6kEr1OzGiz5/2oTiT9sSI/eUcR5EYa7du6APbt3WtyG2B2079jZ7hb1/s7SWPxsh0q1bGBek4P+tIFkz5s2bkDfPj0g1cPOhCbwXr1yGeXLlozSVZ4AVc45AAAgAElEQVSrmrXqWHwupLHYYPTpFWLV2kNsT8KmTEfZsqbV0NpEIvYHd+0EEeQtRUzy7AwHtiUBEiABEnAPAQq87uHOWWNOgAJvzBlyBPcQoMDrHu6clQRIIP4QiJbAmzt3AOQzZ0cq6DRUlnxJ4wNG+QRdPgsPCAjEs2dPlXeuHKqm918136dwkz5FihTD8xfPsW3LzzaFO31/EabyBuaDr5+fElYjz51VNgD25pNq1Fz+uZXH7qmIcIvewVK1K+sqXrwkHjy4j31796hDrjwhREjPmy9IiYkP7t/DqYgI5YPsqSGiddly5ZHTLxeO/noEhw8dtJkj/T7k+RCRt1jxEpAK8L17djv1ckReIlSoUFk9jzu2b3P42YoJy6zZfBAQEKDsM6RiVyxBTp+KcPhQtOjOLdW48lzL/6VNmxYXL5zHsaNHrXrzms8jVhQFChZWlipJkyVVa/71yBGLvryW1hiTPEd3z+xHAiRAAiTgegIUeF3PmDO4hgAFXtdw5aiuJ0CB1/WMOQMJkED8JuC0wCvVpEdPnIYIK1pcOH8e27dvgVTbPX78BBkzZlSVvXXrNTCpsNu+bQs6dTB4WzJIgARIgARIgARIgARIwBMJUOD1xKxwTY4QoMDrCCW28UQCFHg9MStcEwmQgDcRcFrg7dGzD77sP1Dt8e3bt6hTs6o68MtaBIf0Qv+Bg423SxUv7NGVl96UPK6VBEiABEiABEiABEgg9glQ4I19phwxbghQ4I0bzpwl9glQ4I19phyRBEggYRFwWuDVnyBvzVfVHOGceQtRsVIVddnSYV0JCzl3SwIkQAIkQAIkQAIk4MkEKPB6cna4NlsEKPDy+fBWAhR4vTVzXDcJkICnEHBa4NUOxZLq3exZP3NoH0WKFsOKVetU200b1yO4m/0DnRwamI1IgARIgARIgARIgARIIJYJUOCNZaAcLs4IUOCNM9ScKJYJUOCNZaAcjgRIIMERcFrgvXjlJpIkSaIO6wrM7esQMDkY7NSZC6qtnE4vtg4MEiABEiABEiABEiABEvBEAhR4PTErXJMjBCjwOkKJbTyRAAVeT8wK10QCJOBNBJwWeA8cPorMmbPgn3/+weeZPnZor3Xq1sPkqTNU2x3bt6Jj+zYO9WMjEiABEiABEiABEiABEohrAhR445o454stAhR4Y4skx4lrAhR445o45yMBEohvBJwWeH+cuwCVKhsqcJcuWYSB/fvaZPLOO+/gl6MnkTHjJ6pdrx7dsG7tmvjGkfshARIgARIgARIgARKIJwQo8MaTRCbAbVDgTYBJjydbpsAbTxLJbZAACbiNgNMCb63adTB1+izjgkXk/fbrr/D8+fMom8jp54ep02bCN6efuidVv74+mfHmzRu3bZgTkwAJkAAJkAAJkAAJkIAtAhR4+Xx4KwEKvN6aOa6bAi+fARIgARKIGQGnBV6ZbvHSlShZqrRx5v/973+4efMG7t29iydPHiNd+gz4+OOPjVW7WsMxo0Zi+rTJMVsxe5MACZAACZAACZAACZCACwlQ4HUhXA7tUgIUeF2Kl4O7kAAFXhfC5dAkQAIJgkC0BN73338fB385hgwZHPPgFZL03k0QzxM3SQIkQAIkQAIkQAJeT4ACr9enMMFugAJvgk2912+cAq/Xp5AbIAEScDOBaAm82pqDQ3qhV5++SJw4sdVtPLh/H3379MS+fXvcvFVOTwIkQAIkQAIkQAIkQAL2CVDgtc+ILTyTAAVez8wLV2WfAAVe+4zYggRIgARsEYiRwCsDSzVv4SJFERiYD7n8cyNFyhS4+/vviDx3FidPHMeZM6eZARIgARIgARIgARIgARLwGgIUeL0mVVyoGQEKvHwkvJUABV5vzRzXTQIk4CkEYizwespGuA4SIAESIAESIAESIAESiA0CFHhjgyLHcAcBCrzuoM45Y4MABd7YoMgxSIAEEjIBpwXe3n2+RIdOXRSz4kXy4+nTp3b5TZ46A+XKV1DtqlepgNu3b9ntwwYkQAIkQAIkQAIkQAIk4A4CFHjdQZ1zxgYBCryxQZFjuIMABV53UOecJEAC8YmA0wLvpLBpqNegoWIQlNcfD//80y6PwUO+QpduwardiOFDMW/ObLt9vK1B0qRJ8fLlS29bNtfrYgKp06TBo4cPozVLTPp++OGHeP36Nd68eROtuaPbSeZNnvwD3L37e3SH8Lp+CXHPXpckLpgESIAEnCRAgddJYGzuMQQo8HpMKrgQJwlQ4HUSGJuTAAmQgBmBOBF4K1Wuih/nLlBT/7RwPoYOHuD1iShUuAi+6NsfWbNlQ9q06fDee++pPb169QqPHj3E+nVrMG1KGJ48eeK2vWbKlBlpPvoIz549w9Url922Dm+buEHDxhg0eBjWrF6J70d+o5Y/c/ZcFChQCO3btsTp06dsbmn02FBUqFgJ6dKlxzvvvIO3b9/i99//g7lzZtt9udGyVRv1MiRjxk/UM/XPP//gwYP72L9vrzqs0FYEBubFuNAwZM6SBcmSJVNNHz9+jIsXzqNTx7b469Ejh1LRt98AtGvfSVXaV6tc3maf/AUKomu3YBQpWhwpUqTAu+++a2z/4sULbNvyM77+ephDIrewOnbiNJIkTYoB/fpg86aNDq1Xa7RsxRoE5AnEpo3rMbB/X6f6umvPTi2SjUmABEiABOKMAAXeOEPNiWKZAAXeWAbK4eKMAAXeOEPNiUiABOIpgTgReJs1bwkRvSQ2bliPkO6dvRanHCo3ZdoMVK1Ww+4eRJzbvGkDgru5Z78HfzkGEXmfP38O/5zZ7K6XDQwERCgsVrwEJowfi7BJhuf28rXb6kBB4Sg8LYWIm+s3bYUIrdZi/rw5GD5ssMXbw776Gh07d7Xa93xkJGpWr4T//ve/UdrIS5RZP84zEVj1jcRKRcRae/YoUjV84NBRSFWqvJzI45/D5mNx4/ZdJWLbCpm7VInCdkXeL77sj169DcKss5X+8sJl5er1ai2HDx1EsyYNHH6c3blnhxfJhiRAAiRAAnFKgAJvnOLmZLFIgAJvLMLkUHFKgAJvnOLmZCRAAvGQgMsFXhFcduzahxy+ORW+KZMnYvzY0V6JUgS8k6cikTp1auP6L5w/j9OnI3Dhwnn4+eVSFYQ+PtmROHFi1ebevbsoXMC64OdKEBR4o0f37PkrSuAsUbQg7ty5rfK6bedeJVDmC8xlddAp02aidp266r5UTa9dswoR4SdRukw51Kpdxyi+9u4ZrO7po1r1mpgxa4669L///U9Vr+7dswt5AvOifoNGqjpWYsf2rejYvo1J3+TJk0PWrFXP/nL4ELZu/RkpU6RUdipZsxrE/T8ePECBoIAo65cq3KbNWiB79hwIzJvPWI3ujMArlcInTx7H6VMR+POPP1CgYGFUr1HTOFZERDjq1KwaZW6pnJV5g/IXUFXLWjgi8EqldalSZRCQJw+y5/A1Cs2OCLzu3HP0nkr2IgESIAESiEsCFHjjkjbnik0CFHhjkybHiksCFHjjkjbnIgESiI8E7Aq8I74ZiU8//dS493xB+ZE+fQb1b/ls/NWrqL6zIuomeu89fPjBh/DPHWD8XFz6NG1cHyJAeWOMHT8RTZo2V0sXK4YewV2xfduWKFtJlCgRQidOQZ269XD//j0KvF6UbLG0CD8VCbEXyOWbVa1c85DevXsn2rVuYXU3l67eUsK+WDKUL1MCt27dNLatUbMWps/4Uf370sULqFShjMk4m7fuREBAHnXNXAAW4XP/oV9VBbGMnSNbJmXdoEX/gYMRHNJL/dO8Ql7+Fg8cPqoquSVq16yKUxHhJnPL33i79h2j7MsRgXfr9j2YN3c2li9bEqW/CONbd+xRwqv8veTMniVKmyvX7xhFYP1NRwTenbv3G18c6fs6IvC6c89e9OfApZIACZBAgiVAgTfBpt7rN06B1+tTmGA3QIE3waaeGycBEoglAnYF3vOXrpsItDGZ9/r1ayhbqlhMhnBb36zZfLBn3yFjlWDlimVw8cIFm+sRgatm7TrGiuXKVaqhSJGikE/WJ00cb7Fv5y7dkSFDBpw9eyZKlad0EIG9bdsOyOrjgzRp0qhqyZs3byrP3927dqgx5ZPzkJBeaNq8JT744AP1Sf/8uQZxUYt1a1fjzJnTxn+LeNitew/Ip+7ZfHzw/NkznDt7Vq1h3749FtfavEUrVa0sQuaC+XNRoWJlNGjYSFWBPnv6DPv3ifj3o/KflcjyeVa0a9cBBQsXQdq0aXHn9m2sXrUCS5csssmxcZNmKFuuPHLl8kfiJElw4/p19ZJAqsHN49NPP0P7Dp3U5YUL5+PmjesQwb1M2fIoWKgQXr18hcWLFuKPPx5YnLN9x84YPuJbhIefRN1a1VQbETFz+fsrX1dra5Vq0gmTpqj2a9esRu+e3aOML0Jr5swGkVN/QGHKlClx6uxF9Wz99tsdFC9SIEpf/cuFIYP6Y9FPBk9riRPhZ5E2XTol+mbNnNFE/JX7JUuVxuKlK1VbyWXrFk1Nxpe8aczkRtFixRUzRwRem4kDcPrcJcj+ZG2fZ/o4SnOpepbnWEJeJMnfmYQjAq/YORQuUtQ4puxTwhGB1517tseM90mABEiABNxPgAKv+3PAFUSPAAXe6HFjL/cToMDr/hxwBSRAAt5NIM4EXhEsO7Rthbt3f/dKYnJInPicSoiQ2q5NS6f3sXb9Zsin4fIJvghxlkIT1M3FcBH/Vq3ZgIKFClud96+//kLegJwoXqIkli5fbXN906dNxphRI1Ub8YxdtHSlEuIsxdYtm9GtS0e1bn0cO3laVXOLJ+2lSxcRFJQ/Sne5V7pEEXTq0hVdugZb9GsVn+LuXQ2irD4+/jgjli5fhWw+2S2uSywHmjdraCK0S9X05KkzVPthQwYqywwRiPU+sb16dMO6tWsMbb76Go3/rypb/p00aVJVUSp7FZsFCbFrkP6yl7///ltdW71yuRIhtfhh5o+oXqOW+menDm0tVnaPGTdBWSFI9P+yj7HqVewbpk6fpa6vX7cWPUOi+vDqc2peSXzzzj3VV4T0ooWCLLK6fut3ZeFgz2ZCOkecPq9eEsRU4E2VOrUaS9g9evQI+fL4WVybdlGq40XIlnBE4DUfTOPgiMBr3tdde7YJhDdJgARIgATcRoACr9vQc+IYEqDAG0OA7O42AhR43YaeE5MACcQTAnYF3t5ffIlPPvnXoqFEyVL47LNMavsb1q/Dy5cvrKKQKlDxpj1+/BiuXrns1cikelcTGosUzBctoTomAq9eQJSKXDksSwTOzFmyIF269Eq8k+s+n38Kf//cWLJ8NVKlSmUUNkVg08f4saNUFWjatOkgQq3m3yrtLl44j1SpUsM3Z07j9UMHD6B504YmY2gCr/7imzdv8OTxY4jVgTamVG/qBVYRGd9PnBjiHatFlYpl1bOihVQUS1VrsmTJ1CURL8VaQITXAgULIUMGQzWoWGAUyh9o7KcXeM3n1RrpBV69cO/MA2ou8q9eu9EovksOLB2EVrd+A4RNnq6mmRw2AaHjxqjf3YN7YsCgIer30MED8NPC+RaXogmYUnlds1ol1UbydyLirPotlimtWjSx2Pf4yTNIlz69VasEfaeYip0iiNet10AdmCZzSvTr2xsrli+1idibBd7o7tmZZ45tSYAESIAE4o4ABd64Y82ZYpcABd7Y5cnR4o4ABd64Y82ZSIAE4icBuwKv+bYnhU1TBzdJ6D8zj594/t3VuQtXld2BrepbewxiIvBevnZbebDKYVZFCubFy5f/eh+LUPr1t9+jYqUqJlWSjhyyJpW+Uh0qIQKcCHFaiJ3Api07jJW9IirqbR30Aq8Iwz2Du2L//r2quwiPYkmgCbQitopP61dDB+H169eqzcRJU1G/YSP1WypqRXjVImzKD6hbr77654TxYxE2KdQE78zZc1G1Wg11bfhXQ4wWFHqBV+6JZ+3Pmzdh185tuH7tGnIH5MGunTuUMCwh7NKk+Uj9/ihtWqzfuEVV7pYpafj0X15wtGrdFgcP7FcWDVo8fPinqujVQv8CIMtnBo9q8yhbtjwWLDKInKtWLkffPj3V7+++H6PmkOjetaM6YM1S3Lh9VwnlcvCbHAAnIZYaUtktsWnjegR362yx76Ejx9WLGWtWCfpO0RV423XohN59vlQvFrSQv5fR33+HmTOmWVyX/qI3Crwx3bNdKGxAAiRAAiTgFgIUeN2CnZPGAgEKvLEAkUO4hQAFXrdg56QkQALxiIDTAq9UZubI4auEzmNHf41HKKxvRUQ1EdckNBuE6Gw8ugKvCLsi8ErY+gzffE32BF6xI7hw+YbqZu0TevENnj3HUFF6/NhRNKhnsCGQ0ARe8RTO458jiver+KvWrlNXtTU/OEyupUiRAmciDZXd4SdPoG7t6uq3VP5eu/kfJWZGRISjTk2DNYY+hMnFKzdVWxFfWzQzCMV6gfd8ZCSaNqmPv8yql63lrlOXbhg6bIR6rhvWr62aicCdJ0+g3QpUzQfX1guAvPmCsGHTVjWufs1z5i1U4rxEsyYNlIespdAOJBORPzC3r2qi9/5dtnQxBvT7wmJf/YFkfjk+N3lBYN4hugLvyFFj0bJVG5PhjvxyWLHTHzhnjb83Crwx3bM1FrxOAiRAAiTgXgIUeN3Ln7NHnwAF3uizY0/3EqDA617+nJ0ESMD7CTgt8Dq6ZbEJ8MmeHZGRkV5vz6AXWMUWoUBQgKMYTNpFV+CVQcJPRSrbAwkRIMeMHmlXYLcn8BYrXgLLVhi8aOfPm4PhwwZb3JfmC2xuh6AJvNbEYflE/4sv+6sxrVWmaqKl3nNYL4Qe2L8P4jlrKQYOGorEiRPj5s0byudXQi/wmh9GZi9pWjXz9999Y6w4FRE5SZIk8M+ZzaRi13ysiDMXkDp1aqNNhqW5cucOwM/bdqlbeoF34eJlKFOmnLouwrK1FyeWBF4RVEVklBBrB7F4sBTbduyFX65c6parBF7xqG7Vpi1SpEiJLJmzGJ9XqRoWD+ctP2+ymQJvFHid3XMGH8seyfaeTd4nARIgARKIWwKPH/2Gh40L4nWDEi6ZOPHKA0izOgIpU1k+k8Elk3LQBEHg5YN7aOg7BEUzm1qrxdbmN0aOw+57i/BBGj67scWU4xgIvH1wGUWzJEPm1EldguTItUe4+ioFkqVMF63x710Nj1Y/diIBEiCBuCIQLYFXBKnPP8+q1jhj+lQsWfyTcb1S7fjT4uXqkCYtXr16hS4d22Hv3t1xta9Yn+fS1VtKTNR8bqMzQUwEXrFgaNuug8m0Ui16795dZTnwzYhhRusDrZE9gVcOPRs89CvV3Jb365Fj4ciY8ROIv26ObAb/ZQl7Aq98vj7i6+9UW2sCryag6gXe9h07Y/iIbx1GrBeYYyLwSjWxVBVrHstZPs+K/QePOHRAmMbalgVCyVKlsXjpSrWvjRvWI6S7wU5h/IQwNGrcVP2Ww/vE39dSaAelyUGFskYJEYbl71Fi7epV6N0r2GJfscsQyw0JaxYSWsfoVvCaT1ytek2Id7RUYsuzkzN7ligH9en7eKPA6+yeKfA6/GfNhiRAAiTgVgIUeN2Kn5PHgAAF3hjAY1e3Enh57xJ8P0qE9CmSuGQdkf95ij+QBslTUeB1CWAOSgIk4HYCTgu8mTJlhohZWpQvW9JYoSsC6ImIc5ADh8xDhK8O7Vpj187tbt90dBZw+NcT+PTTz1TXvHn8HP7sXz9XTAReGUe8WkUEk4pi8xCv2SlhE028au0JvCKiipgq0bVzB6sVlnsP/IKsWbNF8R+2J/C2adse33w3So1vTeDVqoP1Aq+IwiIOS4gdwbNnT22m7OqVK8bDxZwReEX0TJ363xcR2nMrc0q89957ykNYnl3x5dWiRrVKuHnjusmaNv68HYGBedU1awJqrdp1MHX6LNVm1ozpGPnd1+q3VDlLtbNEr57dsW7Naov71Q5Zu3D+PKpUKqvaiGgr+5DYvm0LOnUwePmax9ETp9TBdOYivaW2sSXwytjiDyw+wRK2qpPlfnwQeJ3ds80HmzdJgARIgATcRoAWDW5Dz4ljSIAWDTEEyO5uI0CLBreh58QkQALxhIDTAq/+QCi9V6nwCOnRG/0GDDKikQrTv//+WwllEs74x3oaX/1hZNOmhmHs6O+dXqIm8Nqq8rQkeOonkmrI8hUqoVLlKggKKoDsOXIgUaJExiZVKpbFhQvn1b/tCbx6QW3MqJGYPm2yxT1p9hByqJhYFWjhKoG3cZNmGBc6SU0jnIW3o+GMwKtVZTs6ttbO/LA5uT5vwSKVFwl9DvRj9x84GMEhvdQl/cFw+v3O/GEavh/5TZQl+WTPgd17Dd68hw4eQPOmhs/uxINYKnsl9MKv+QDaXvX+vdb2HZsCr96j1l4u44vA68yenX322J4ESIAESCBuCFDgjRvOnCX2CVDgjX2mHDFuCFDgjRvOnIUESCD+EnBa4F234WcE5S+giJhX5O3ZdwjZfLKre6dPn0K92tVV1acIjVr1q70qPk9F3bxFK4waM14tT2waxIfX3uFdIsYWLlIUvx75RfVbvnItihYrrn5nzZzR4ufq9gRecz4yhwjHWk7CJoViwniDJ6v2Wb5YZMjn8eaR088P23fuU5fF57Zd6xZR2khVthzEJkKiHJRVqnhhYxtXCbz6qlQ5pKtJo3oOPxbOCLxiI5IkseEToNlzF6jD1Gb8MBXz585R1+S5FfG8dMmiePP6tXEN8qLCPPr2G4CevQwHnMkYo0ZGtZjYvHUnAgLyqDZ6kVgv3srBcFUrG/x49fFl/4Ho0bOPuvTjrBn49pvhxtuazYW16lz9+LZEYG3A2BR4Fy1ZgVKly6ihrVVxa/PGF4HXmT07/GCzIQmQAAmQQJwSoMAbp7g5WSwSoMAbizA5VJwSoMAbp7g5GQmQQDwk4LTAq1kVSBWqiJTy/7W4fO220T6gTq1qiAg/qW7pxS8RH0WE9MbQrApk7SJ2NqhbC3LwmKUQb9Qp02fi1auXKFzA8Om+VKVKtaZEv769sWL5UpOulatUw8zZcw1VmdevoWypYup+qtSp0a//IIs+u3K/YaMmCJ1oqL7V8123cQuCgvKr6wG5suPpU1OrAxGHpbJTLB9EiM+Xx09ZIujj25Gj0bpNO3VpzaqV6NM7xHjbVQKvTKCvrm3TsplV/+biJUoifYYMRlsDZwRe/T7Pnr+irEVKFiuE27dvwc8vF7bt3ItHDx8iX6DhcDJbIX3Fw1eYPvzzT/UCQJhq8dlnmZTgLrmV+0F5/U2G01hKn7Kli5tYQMiYYrGQPn0G9fcm69G/XBCf2+o1aqnxBvbvi6VLFpmMPXvOfMizZe25M9+XowKvHDAmB8uZP8faeGLnsv/Qr2rPEvYOqvMGgTe292zvueJ9EiABEiAB9xCgwOse7pw15gQo8MacIUdwDwEKvO7hzllJgATiDwGnBV5NCBOxUERDLaRCV8RfCfGDzZ7V4FcrkTdfEDZs2qp+r1+3Fj1DunolQamE3LXngBLxJKSSd9FPC7B75w6Eh59Avnz5UaxECZQsVcboxyqHoGkCr/5TfKmqHdCvD06dOoXSpcugafOW8PfPbeSiF3hz+Ppi5+4Dyj918U8LsHLFMpw7d1ZVl5YsWRpjQycqf1WJapXLIzLynPo9afJ01KvfQP0+cfwYeoZ0w+PHf6FipSq4cvkSzpw5jd5ffIk+X/RTbZ48eaK8bEWYF9FXROXOXburezJ3YG5fvHz50rhGVwq8elYiaq5etQKTwyYq4VPyUKFCJdRv0Ai5/P2V+CsisER0BF6p5BVR88WLF8jlazg8cNCQYejaLQR79uxC21bNHXpe12/ainz5glTb8JMnlNgqdhkiQk//Ybbx4EGxwhBLDH3o8yCHxvXu0R379u1RFhxjxk5AgYKFVHPJreRYH/oKXRGIBw/sh3VrVyNpsmTo0aO30Wf59evX8PXJHGUvkutUqVIbr+/ccwApU6ZUvsPlShsqziUePvxTPfNaTJw0FfUbNlLPzaoVy3DgwH4cO3oEH3zwIZo0a47uwT3VwYQaj7q1q0eZW15evP+ewVO6Xv2GxkP/Jk4YhyWLDIc3vnn7xmK1vIjqSZMmM3ke5R8nTxxHl07tjdctvYRx554depjYiARIgARIwK0EKPC6FT8njwEBCrwxgMeubiVAgdet+Dk5CZBAPCDgtMB75Fg4Mmb8RAk9Pp9/akTQpWuwUZwx/5RfL/7u37fXeCCWN/KrUbMWxoWGIXny5A4t//Kli6hYvrSxrVYdaa+zJYFX30dET01o1q7v3rUD7dq0NDaTqlGxGTBvJw30IqNm5aB1FJFQq7rUruk9Y7VrrhR4ZY75Py1BuXIV7KGKscArB7rJwW4REeGoU7Oqmm/L9t1KcB804EssWWwQGu2FCPEbNm1TB7NpYZ6nO3duo2K5UiZCubQVwXH7rn3qMDtrIS8FxPZEE/D17TSx1VpfWcfQwQPUCwnz0B9qZ2uPk8MmIHTcGGMTe3NqDcW7uUjBvFEqyOX+let3jB7dtvZtyWJk5+79yOGb015alMWG+aF47tyz3QWzAQmQAAmQgNsJUOB1ewq4gGgSoMAbTXDs5nYCFHjdngIugARIwMsJOC3wrl67EQULGXxYq1epoCpJJTTrBvltXqWr969dvGihqjD05pDK2dCJU1C9Rk2jJYV+PyKm3bhxHfPmzMaC+XNNtiq+t4uXrES69OlNrkvVZq+Qbvhh1hwlHl+/dlV9qi+RNGlSjBoTispVqloUlrXK3hHDh0bBKp+9y8F4IiDqY2LoOEyaaPAUlhg/IUxZPZiLwVKp3a5NC8iBeuYhtgFSOWzNxqBV67ZqbgmpqNy6ZXOUMSIvXouyX30jsRYYO36isgIwD3nJIJWyY0aPNK6vVu06mDp9lmpqya7A0nM3b+FilC9fUVNhKBMAACAASURBVFmHaP7FmhdyHv8cqkLV0RAbhQ2bt6qXIObPxPFjR9G4YV2L3svSVtjLYX7i02yeB6kEr1Ozmjqo0FqIFYocdGguzosw3LVzB+zZvdNi1+EjvjVW+drap56PtJP/DgwdNgJ5AvOaHPSnjSF/B5s2bkDfPj0g1cOWIiYC745d++Cb089uasQ3Wl466cOde7a7YDYgARIgARJwOwEKvG5PARcQTQIUeKMJjt3cToACr9tTwAWQAAl4OQGnBd7+AwcjOKSX2rZUI4qXbKNGTdWn2lq0bd3CREyaMm0matepq25bqgT1ZobyCbp8Ph8QEIhnz54q71w5VE3vv2q+PxHvpE+RIsXw/MVzbNvys03hTt9fPmnPG5gPvn5+SliNPHdW2QDYm0+qUXP551Yeu6ciwi16B4swKOsqXrwkHjy4j3179+C33+54RHpEoBarDxETH9y/h1MREVFEO49Y6P8tQkT6suXKI6dfLhz99QgOHzpoM0f6tcvzISJvseIlIBXge/fstlj9am2/8hKhQoXK6nncsX2bw89WTPhlzeaDgIAAZZ8hFbtiCXL6VISJpUNMxvfEvglxz56YB66JBEiABFxBgAKvK6hyzLggQIE3LihzDlcQoMDrCqockwRIICERcFrglepVqbrUvDXNYYlvZ24/H+NlEebEt1drX6t6ZZw+fSohMeZeSYAESIAESIAESIAEvIgABV4vShaXakKAAi8fCG8lQIHXWzPHdZMACXgKAacFXlm4HIAln81b8nYN6d4ZGzesN+5v9NhQNGtu8IU1F389BQLXQQIkQAIkQAIkQAIkQAIaAQq8fBa8lQAFXm/NHNdNgZfPAAmQAAnEjEC0BF6ZUvw3R48Zj0yZsyjPT/mkf+S3I7B500aTFek9NtesWok+vUNitmL2JgESIAESIAESIAESIAEXEqDA60K4HNqlBCjwuhQvB3chAQq8LoTLoUmABBIEgWgLvAmCDjdJAiRAAiRAAiRAAiSQ4AhQ4E1wKY83G6bAG29SmeA2QoE3waWcGyYBEohlAhR4YxkohyMBEiABEiABEiABEvBuAhR4vTt/CXn1FHgTcva9e+8UeL07f1w9CZCA+wlQ4HV/DrgCEiABEiABEiABEiABDyJAgdeDksGlOEWAAq9TuNjYgwhQ4PWgZHApJEACXknAaYE3h68vihYtHu3Nrlm9Es+fP492f3YkARIgARIgARIgARIgAVcSoMDrSroc25UEKPC6ki7HdiUBCryupMuxSYAEEgIBpwXeSWHTUK9Bw2izadakAQ4fOhjt/uxIAiRAAiRAAiRAAiRAAq4kQIHXlXQ5tisJUOB1JV2O7UoCFHhdSZdjkwAJJAQCFHgTQpa5RxIgARIgARIgARIgAYcJUOB1GBUbehgBCrwelhAux2ECFHgdRsWGJEACJGCRgNMCb8tWbdC2XQeHcebwzWlse/nSRXRo3wY3b1x3uD8bkgAJkAAJkAAJkAAJkEBcEqDAG5e0OVdsEqDAG5s0OVZcEqDAG5e0ORcJkEB8JOC0wOsshIWLl6FMmXKqW6+e3bFuzWpnh2B7EiABEiABEiABEiABEogzAhR44ww1J4plAhR4Yxkoh4szAhR44ww1JyIBEoinBFwu8KZIkQInT0Xivffew6tXr5Dbzwf//e9/4ylObosESIAESIAESIAESMDbCVDg9fYMJtz1U+BNuLn39p1T4PX2DHL9JEAC7ibgcoFXNrhqzQYUKlxE7bVdm5bYvWuHu/fN+UmABEiABEiABEiABEjAIgEKvHwwvJUABV5vzRzXTYGXzwAJkAAJxIxAnAi8PXr2wZf9B6qV/rRwPoYOHhCzVbM3CZAACZAACZAACZAACbiIAAVeF4HlsC4nQIHX5Yg5gYsIUOB1EVgOSwIkkGAIxInAG9KjN/oNGKSghp88gbq1q8c7wEmTJsXLly/j3b64oZgRSJ0mDR49fBitQWLS98MPP8Tr16/x5s2baM0dk07RXXeiRInw8ccZ8dtvd/DPP/84vYQsn2fFyxcvcP/+Paf7pk2bDokTJ1ZzM0iABEiABEiAAi+fAW8lQIHXWzPHdVPg5TNAAiRAAjEjECcC79bte5DL31+tdPfunWjXukXMVu0BvcVy4ou+/ZE1WzaIOCQewxLiM/zo0UOsX7cG06aE4cmTJ25bbaZMmZHmo4/w7NkzXL1y2W3r8LaJGzRsjEGDh2HN6pX4fuQ3avkzZ89FgQKF0L5tS5w+fcrmlkaPDUWFipWQLl16vPPOO3j79i1+//0/mDtnNubNmW2zb8tWbdClWzAyZvxEPVMidD54cB/79+1F3z49bfYNDMyLcaFhyJwlC5IlS6baPn78GBcvnEenjm3x16NHDqWib78BaNe+E27fvoVqlcs71Cc6e/7008/QtXsIqlSthjRpPjL+DcmEwuzE8WP4ZsQwnDt31uoa2nfsjJ69vkCqVKkUawmN2cjvvrZ4qKO0E86NmzZHtmw+SJ48ubGv9H/4559YMH8uJodNwP/+9z+H9i+Nmrdopf6bIDFt2mS7uXZ4YDYkARIgARKIcwIUeOMcOSeMJQIUeGMJJIeJcwIUeOMcOSckARKIZwScFnilyi116jQ2MYgw9VHatMiTJxBt2rZHDt+cxvbDvxqC+XN/9FqM77//PqZMm4Gq1WrY3YMITZs3bUBwt85227qiwcFfjkFE3ufPn8M/ZzZXTBEvx1y2Yg2KFS+BCePHImxSqNrj5Wu3IbkXjsLTUrz77rtYv2krRGi1FvPnzcHwYYMt3h721dfo2Lmr1b7nIyNRs3oli4cUVqpcFbN+nAdZg6V4+vSpEmtFtLUVUn174NBRSAWwvJzI45/DZvuY7PnQkeP47LNMNseXv6GWzRvj4IH9Ju1EpN2xa5/Jf1ssDbRzxzZ0aNfa5FbZsuWxYNFSu8/umTOnUbNaJbvtpIE8L0uXrzYKxbSicQgbG5EACZCAxxKgwOuxqeHC7BCgwMtHxFsJUOD11sxx3SRAAp5CwGmBN3TiZDRs1CRa65dK0oJBAV5rZSBi1slTkUidOrVx/xfOn8fp0xG4cOE8/PxyISBPIHx8sqvPvSXu3buLwgWsC37RAulgJwq8DoIya3b2/BUlcJYoWhB37txWed22c6+yWsgXmMvqoFOmzUTtOnXVfXnW165ZhYjwkyhdphxq1a5jFF979wxW9/RRrXpNzJg1R12SqtHNmzZi755dyBOYF/UbNEKKFCnUvR3bt6Jj+zYmfaUCVdasibu/HD6ErVt/RsoUKVGvQUNkzWoQ9/948AAFggKirD9/gYJo2qwFsmfPgcC8+YyVtI4IvDHZsybwSrWuWLecO3sGV69eUX8/9Rs2RsqUKdVapSo+Z/YsJuueNHk66tVvoK49uH8fIpwvXrwQGdJnQNv2HSFV2CLISwwZ1B+Lflpg7K8XeCW/kqNTERH4B/+gQoVKSqzVYuKEcZg0YbzNBylz5izYtfegcT5pTIE3en977EUCJEACnkKAAq+nZILrcJYABV5nibG9pxCgwOspmeA6SIAEvJWA0wLvpLBpSjRyNl68eIHWLZvi2NFfne3qMe3Hjp+IJk2bq/WI6NQjuCu2b9sSZX3iJRo6cQrq1K2n/EAp8HpMCu0uRCwtwk9FQp7XXL5ZVfvBQ75Stgn27EUuXb2lhH0RLMuXKYFbt24a56tRsxamzzBUrl+6eAGVKpQxWcvmrTsREJBHXTMXgMWuYf+hX5WAKGPnyJbJxKO2/8DBCA7ppfpu3LAeId3/rRiXStcDh4+qSm6J2jWr4lREuMncI74ZiXbtO0Zh44jAG5M9i+3FrZs3MW7sqChewcLxePhZo7BdumRR3Lxx3bjGi1duIkmSJIpH3oCcUaqqixQthhWr1qn25r7f8mXB6HETVCX18WNHo+y7e3BPDBg0RF0XO45a1StbfW7kRcChIyeMYrTWkAKv3T81NiABEiABjyZAgdej08PF2SBAgZePh7cSoMDrrZnjukmABDyFgNMCr4hJHTp2sbt+qUJ88fw57j+4j8MHD0D8MJ3xs7Q7QRw3yJrNB3v2HTJ+gl25YhlcvHDB5iqk8rNm7ToYP3a0ale5SjUUKVIU8rn8pImWqwI7d+mODBky4OzZM1GqPGWMfEH50bZtB2T18UGaNGnw5x9/4ObNm8rzd/euHWoe+cw+JKQXmjZviQ8++EB90m9ui7Fu7WrIJ+haiHjYrXsPiLdwNh8fPH/2DOfOnlVr2Ldvj8V9iueoVFuKkCmepRUqVkaDho1UFeizp8+wf98ezJv7o/KflZBDsNq164CChYsgbdq0uHP7NlavWoGlSxbZ5Ni4STOULVceuXL5I3GSJLhx/TqkSnXK5IlR+omva/sOndT1hQvnK1FQBPcyZcujYKFCePXyFRYvWog//nhgcU7xdB0+4luEh59E3VrVVBvNQ3pg/75W1yoVoxMmTVHt165Zjd49u0cZX4RWqfaUCMrrr7xeJaRS9dTZi+rZkkO+ihcpEKWv/uWCeUXqifCzSJsunRJ9s2bOGOWAspKlSmPx0pVqTMll6xZNTcaXvGnM5EbRYsUVM3sCb0z27Mifr6xZ1i4hVctSvazFzTuGg9TEYzgwt6/F4W7cvquYOltFLwcmXrh8Q41pLR9yT8bed/AIsmT5XLWdGDoOffr2U78p8DqSYbYhARIgAc8lQIHXc3PDldkmQIGXT4i3EqDA662Z47pJgAQ8hYDTAq+nLDyu1/Hj3AUQn1MJEVLbtWnp9BLWrt8M+RxehG4R4izF+UvX1QFZ169fQ9lSxYxNRExatWYDChYqbHXev/76S1UzFi9RUvmB2orp0yZjzKiRqol4xi5aujJKFaLWf+uWzejWpWMUgf7YydNInz6Dqp68dOkigoLyR5lS7pUuUQSdunRFl67BJodZaY3Fp7h7V4Moq4+PP86IpctXIZtPdotbEcuB5s0amgjtUjU9eeoM1X7YkIHKMkMEYu0ALrneq0c3rFu7xtDmq6/VYVtaiLgnHtKSI7FZkJAqTekve/n777/VtdUrl2PE8KHGfj/M/BHVa9RS/+7Uoa3Fyu4x4yYoKwSJ/l/2wfJlS9RvsW+YOn2W+r1+3Vr0DInqw6vPqXklsSZ2ipBetFCQRVbXb/2uLBzs2UxI54jT59VLAnsCb0z2bHGRZhe150suB+TKrl6MaCGCuBysJlGvTg2cPHHcpHdOPz9s37lPXdu0cb1TPtj6fOzduxttWjazuNwly1ahRMlS6t7o77/D4cMHsWGTQYSmwOtIhtmGBEiABDyXAAVez80NV2abAAVePiHeSoACr7dmjusmARLwFAIUeB3MhFTvakJjkYL5cPfu7w72/LdZTARevZgmFblyWJYInJmzZEG6dOmVeCfXfT7/FP7+ubFk+WolgGnC5qNHj0zWO37sKOVLmjZtOoiQpvm3SruLF84jVarU8M2Z03j90MEDaN7U1JpDL8Bpg7958wZPHj+GWB1oY0plqV5gFZHx/cSJId6xWlSpWFb5GGshFcUi4onYLSHipVgLiPBaoGAhZMjwsbouFhiF8gca++kFXvN5tUZ6gVcv3DuTUHORf/XajUbxXXIguTCPuvUbIGzydHV5ctgEhI4bo37rLQGGDh6gxEFLoQm5+sO/JH8nIs6q5vv37UWrFpb9sY+fPIN06dNb9LM1n8tRgTcme7bGWp6ZipWqoHtwDwTlN1QyWzoobdoPs1CzVh11X/IsLPUV3fIyRKrRJRrUq2XRisF8DXLgW8PGTRDSo7dR5C9VvLDyYTaPr7/9Hm3bdVCX16xaiT69Q5A3XxAFXmf+iNiWBEiABDyYAAVeD04Ol2aTAAVePiDeSoACr7dmjusmARLwFAIOCbxSwaiFVDE6arUgPpraQUci/L1+/dpT9u30Os5duKrsDmxV39obNCYC7+VrtxVL+SS9SMG8JgfViVAqgpMIY/ny+BmX4cgha1LpK9WhEiuWL0W/vr2N/cVOYNOWHcbK3prVKpnYOugFXhGGewZ3xf79e1V/ER7FkkATaEWEk4rVr4YOMj4HEydNRf2GjVR7qagV4VWLsCk/oG69+uqfE8aPRdikUBO84t9atVoNdW34V0OMFhR6gVfuiUfrz5s3YdfObbh+7RpyB+TBrp07lDAsIezSpPlI/f4obVqs37hFVe6WKVlUXev9xZdo1botDh7YD7Fo0OLhwz9NfF/1LwCyfJbB4qOgP9xr1crl6Nunp2r33fdj1BwS3bt2VAesWQrNckAERzkATkJETBEzJWxVqmoHmkkePs9kEMethaMCb0z2bD53Dl9fLFu+RuVA/zJAxF2xZ5B160P+m7RqzUb45fr30Dvxxd62dQs+/fRTo9juSCWtiMXlylc0eeEgB7dJfizZk0iuJGcSeisPCrw2HyveJAESIAGvIkCB16vSxcXqCFDg5ePgrQQo8Hpr5rhuEiABTyFgV+AVX9aBg//9FF3/ab+9TegFQBFG/XNmMxEm7fX3lPsiOIm4JqHZIERnbdEVeEXYFYFXwtZn+OZrsifw6r1GRaDVi8PaWOIbPHuOoaJUDqSSakgttPzKp/N5/HNEEeGmTJuJ2nXqqubmB4fJtRQpUuBM5GV1X38QllRxXrv5HyX0RUSEo05NgzWGPoSJHLQlbUV8bdHMIBTrBd7zkZFo2qQ+/jKrXraWu05dumHosBHqIMCG9WurZiJwy6FcInyLAG4tNB9cWy8A9AKgfs1z5i1U4rxEsyYNcPjQQYvTXLl+R1WW6n1n9T64y5YuxoB+X1jsu3P3fuTwzanu+eX43ObfoaMCb0z2bL5IvVCt3bt58waGDxuCPbt3WuV+5Fg45BA6SyGeuNa8rvXt9+4/DPHY1kKqr9esXgmppjZ/KSUvQ8SaQZ5NqeIXoV2r1nZE4H0/6QdW98IbJEACJEACnkPg7T9v8bxtBbxuUMIli0q88gCSL9yL995J5JLxOWjCJfDu3++ieeAoFM3s/KHYjlDbGDkOm6+EIdF7iR1pzjYk4DCBpHiDGS3zoEru9A73caZh8JLTWH7yARK9974z3Yxt37w02PcxSIAESMBTCdgVeA//egJycJWEVO/KgUaWPj+3tEE5vGnu/J+Mt2b+MA3fj/zGU1lYXZdeYBVbhAJBAdHaQ3QFXpks/FSksj2QEAFyzOiR6v/bCnsCb7HiJbBshcGLdv68ORg+bLDF4TRfYHM7BE3gtSYO9+rdF1982V+Naa0yVRMt9Z7DeqHswP59EM9ZSzFw0FBIlbgIgeLzK6EXeM0PI7OXNK2a+fvvvsHMGdNUcxGRkyRJol5OyPNvLSLOXEDq1KmNNhmW2uXOHYCft+1St/QC78LFy1CmTDl1XYRla3m1JPC2bNUGI0eNVX1tVatu27HXWO0aWwJvTPZszkdE2tHjQpE8WXJ8nDEjMmXKbGwih+INHmg4vEwLqbxetXajsiOR6t4N69chKH9+4yF20k6u/zB9itFr2lruevTsgyJFiynf4WzZfIxV5y9evFCV3Fq1txwSuGvPASWyy7NQolhB5WmshSMCbwYfyx7J9p5N3icBEiABEohbAo8f/YaHjQu6VOBNszoCKVNZPpMhbnfL2eITgZcP7qGh7xCXCry77y3CB2n47Man58YT9vL2z2uY1ii7ywTekCVnsOEqkDxVumht997V8Gj1YycSIAESiCsCNgVeqWqT6jYtQrp3xsYN651a28rV61G4iOFz94d//omgvP5O9feUxpeu3lJiouZzG511xUTg1Xt+anNLtei9e3eV5cA3I4ZFqTa0J/DKoWeDh36lhrPl/apVSYrNRo5smYxbtyfwtuvQCSO+/k61tybwagKqXuBt37Ezho/41mHEeoE5JgKvVBNLVbHmsSyC3v6DR2BNwNYvUGNtywKhZKnSWLx0peomf0fy9yQxfkIYGjVuqn7L4X3i72sptIPSpHJU1ighwrAIxBJrV69C717BFvuKXYZYbkhYs5DQOjpawRuTPdtLrvjh7tp7UInrEubCt/ZMCu/gbp2MthbS77tRY1CuXAXjFNu2/ozOHdvZm9J4f/TYUDRrbjhE8cL586hSqaz6rfk1y5ytWzRVBwvqI09gXtVGQixHRo38Rv334o8/Hhibpf7E8oGBDi+ODUmABEiABOKEwLPnf+Jxs2IuFXhTLT+K5MnTxMl+OEnCIfD28RM0zjXcpQLvjjtzkDSFofCEQQKxRuDZXUxvktNlAm/wkjNYd+EVknxgOKjZ2Xj0nyvOdmF7EiABEohTAjYFXr1H6rlzZ1G9yr+iiaOrTJkyJU6eikSiRIZP0ArkCzARPBwdx93t9JXMefP4OfzZv37dMRF4ZRzx/WzStLnR11g/tnjNTgmbaOJVa0/gFRFVxFSJrp07YMvPmyxi3nvgF2TNmi2K/7A9gbdN2/b45rtRakxrAq9WHawXeEUUFnFYQuwInj17ajP9V69cMR4u5ozAK6Jn6tT//g8rzWta5pSQSk3xEBZBT3x5tahRrRJu3rhusqaNP29HYGBedc2agFqrdh1MnT5LtZk1YzpGfve1+i1VzlLtLNGrZ3esW7Pa4n61Q9b0oqOItrIPie3btqBTB4OXr3kcPXFKHUxnLtJbauuowBuTPdtM6P/d1NvD6KuT9bYhehb6MctXqIR5CxYZL9mrWjZfj+a5rX+ho7fScGT9Wht7grozY7EtCZAACZBA3BCgB2/ccOYssU+AHryxz5Qjxg0BevDGDWfOQgIkEH8J2BR4t2zfrT6Blhg2ZCAWLpgXLRJ6j8uvRwzD3B8NIpc3hf4wsmlTwzB29PdOL18TeG1VeVoSPPUTifeniFeVKldBUFABZM+RwyieS7sqFcviwoXzqos9gVfE4rHjJ6q2Y0aNhPgrWwrNHkI+SxerAi1cJfA2btIM40InqWmEs/B2NJwReLWqbEfH1tqZHzYn10VMlLyY50A/dv+BgxEc0ktd0h8Mp9+vNRsTn+w5sHuvwZv30MEDaN7U4KsmHsRS2SthTeyUe9pe9f691vbtqMAbkz07wlzvy3vi+DHUr1tTddMfSjc5bAJCxxkOPDMPTdSW640b1sWvR35xZFrVRv/frEL5A5VNAwVeh/GxIQmQAAl4PQEKvF6fwgS7AQq8CTb1Xr9xCrxen0JugARIwM0EbAq8x0+eQbr0BpPz0iWLRqladHTtM2fPRdVqNVRzWwdBOTqeO9o1b9EKo8aMV1NLVZ/48No7vEvEWLGn0ISl5SvXomix4mqMrJkzqopY87An8Jq3lzlEOA7KX0DdCpsUignjDZ6s2mf5r169Qs7shs/z9ZHTzw/bd+5Tl8Tntl3rFlHaiC3Fhcs3lJB469ZNlCpe2NjGVQKvvir1yC+H0aRRPYdT7ozAK56rSRIbLABmz12gDlOb8cNUzJ87R10TgVwqz+XZf/P6tXENctCdefTtNwA9exkOOJMxRo2MajGxeetOBATkUW30IrFevJWD4apWNvjx6uPL/gMhXrESP86agW+/GW68rdlcWKvO1Y9vSwTWBnRU4I3Jnh1JaOs27fDtyNGq6aaN6xHczVBtrhd4J04Yh0kTDH+X5qHn3bZ1C5uHtZn3PXX2IlKlSqWqt7Nl+UT9rYp9x0dprXt2BQQEGCu0Zb3jx43Bf9++xe3btxzZLtuQAAmQAAl4EAEKvB6UDC7FKQIUeJ3CxcYeRIACrwclg0shARLwSgI2BV6t6k/EDREkoxsdOnXBV8MNh6tZExKjO3Zc9tOsCmROETsb1K1lPIDJfB3ijTpl+ky8evUShQsYPt2XqlSp1pTo17c3VixfatJNPj0XMVxVZV6/hrKliqn7qVKnRr/+gyz67Mr9ho2aIHSiofpWxF0ReSXWbdyCoKD86ndArux4+tTU6kDEYcmxHCInOc6Xx09ZIuhDBDYR2iTWrFqJPr1DjLddJfDKBPrq2jYtm2Hv3t0WU128REmkz5DBaGvgjMCrH/Ds+SsQi4aSxQopQc7PLxe27dyrDtHKF5jL7mMmfcXDV5iK17S8ANAL+OINK4K75NaSF7XGUvqULV3c5GWKjCnVqOnTZ1CCo6xH/3Lhh5k/onqNWmqNA/v3xdIl/1oTyLXZc+ZDni1rz5355hwVeGOyZ+HRtHkLTJ40QdlGmIfs+diJ08YXTHqP6EqVqxq9bn/77Q6KFzG83NCHCPOnz12CHMYmzOQFx+v/E+k7d+mO48eP4uSJ4xbzqv97+uuvv5A3IKfd/EsDRw5Zc2ggNiIBEiABEnA7AQq8bk8BFxBNAhR4owmO3dxOgAKv21PABZAACXg5AZsCr1YZKMKIr8+/p9o7u+e69RsgbPJ01W3H9q3o2L6Ns0N4RHuphNy154AS8SSkknfRTwuwe+cOhIefQL58+VGsRAmULFXG6Mcqh6BpAq/+U3ypqh3Qrw9OnTqF0qXLoGnzlkY7DBlbL/Dm8PXFzt0HlBC2+KcFWLliGcQTWUSskiVLY2zoROWvKlGtcnlERp5TvydNno569Ruo3/KJe8+Qbnj8+C9UrFQFVy5fwpkzp9H7iy/R54t+qs2TJ0+Ul21E+Ekl+oqo3Llrd3VP5g7M7YuXL18ac+FKgVfPSgS61atWYHLYRCV8Sh4qVKiE+g0aIZe/vxJ/RQSWiI7AK5W8Imq+ePECuXyzqnEGDRmGrt1CsGfPLrRt1dyh52/9pq3Ily9ItQ0/eUKJrWKXISL09B9mQ+aRECsMscTQhz4Pcqhb7x7dsW/fHmXBMWbsBBQoWEg1l9xKjvWhr9AVgXjwwH5Yt3Y1kiZLhh49eht9lq39HUuuU6VKbRxy554DEO9s8R0uV9pQcS7x8OGf6pnXR3T3XK58RcxfuBjiHb3l583YtWs7jhw+jBcvnqNCxcoYMnS4UdyVdeTP628UaGW9UmEr/sgSx47+inZtWhhfYAjnRUtWI01w9gAAIABJREFUGKul9fYO0v7QkeMQgfnmzRtYsWwpfv31F5Uvn+zZEdKjD8QrWfsb178wsfcQUOC1R4j3SYAESMB7CFDg9Z5ccaWmBCjw8onwVgIUeL01c1w3CZCApxCwKfBqn/jLYp09pEi/Qf0n1XoLAU+B4Mw6atSshXGhYaoy0JG4fOkiKpYvbWyqVUfa62tJ4NX3EdFTE6G067t37UC7Ni2NzUTEEpsB83bSQC8y6vMs90QklEpTfeg9Y7XrrhR4ZY75Py1BuXL2D/aLqcArB7rJwW4REeGoU7Oq2p7mPz1owJdYsvgne+lS90WI37Bpm1F4lGvmebpz5zYqlitlIpRLOxEtt+/apw6zsxbyUqBe7epGAV/fTn8goqX+sg6pgpUXEuahP9TO1kYt+d1Gd8+awGsPrKy7WZMG+OXwIZOmRYoWg1ieaM+2PLN//PEA777zLj5Km9Z4XcTyYoWDTHhrAq+9uc+ePYMaVSvaa2a8T4HXYVRsSAIkQAIeT4ACr8eniAu0QoACLx8NbyVAgddbM8d1kwAJeAoBmwKv/hAlqbqV6tvohN4L09bn9tEZ2x19pHI2dOIUVK9RUwlz5iGi1I0b1zFvzmwsmD/X5Lb43i5estJYnajdFCGqV0g3/DBrjhKPr1+7qj7Vl0iaNClGjQlF5SpVLQrLWmXviOFDo6xFDlITgd18nRNDx2HSxH+9S8dPCFNWD+ZisNg6SHWkVEmah3aIlTUbg1at26q5Jbp0ao+tWzZHGSPy4rUo+9U3EmsBOQgudep/K0y1+1JNKpWXY0aPNK5Pqi+nTjcc4mfJrsDS8zJv4WKUL1/RxL9Y80LO459DVTY7GmKjsGHzVmTM+IlJF3kmjh87qg77suS9LI2FvRzmJz7N5nmQSvA6NavBkv+vNpF44ob06B1FnBdhuGvnDlY9aIeP+NZY5Wtrn9ZezkRnz2k++gjjxk9EseIlrb4skWrlzh3aWvWwFc/kyVN/QDaf7Bb/BtetXaOq5DVrBq1Ry1Zt0KVbMMTr2VLI35P4+jpzuJ+MI+vZtGWHGlIOpJSDKRkkQAIkQALeSYACr3fmjasGKPDyKfBWAhR4vTVzXDcJkICnELAp8Pbu8yX69DV8vq+3GnBm8SVLlcbipSuNXSx5wToznqe1lUPI5PP5gIBAPHv2VFkryKFq1kQ8TciTPkWKFMPzF8+xbcvPNoU7/Z7FjzdvYD74+vkpf9jIc2eVDYC9+fz9cyOXf27lsXsqItyid7BU7cq6ihcviQcP7mPf3j0Qj1NPCBGopUIyT2BePLh/D6ciIpQPsqeGiPRly5VHTr9cOPrrERw+dNBmjvT7EHFXRN5ixUtAKsD37tkdxT/Z1r7lJUKFCpXV87hj+zaHn62YsozunkUgDsgTiJw5/dSLCHk+T5w45vCeP/30MxQsVAj+uQPw8sVL5a0r/Z8/f25zSzKXzCl/F59nzYrbt24pb97Lly7FFAX7kwAJkAAJeDkBCrxensAEvHwKvAk4+V6+dQq8Xp5ALp8ESMDtBGwKvFk+z4p9B34xVhMuX7YE/b/s4/CiRUA5eSpSHV4l8ceDB+rwKQYJkAAJkAAJkAAJkAAJeCoBCryemhmuyx4BCrz2CPG+pxKgwOupmeG6SIAEvIWATYFXNvH96HFo0bK1cT9yYFFwt852qwLlsKvvR4/HBx98YOwrn6dLdSuDBEiABEiABEiABEiABDyVAAVeT80M12WPAAVee4R431MJUOD11MxwXSRAAt5CwK7AK5+Lh5+KhJxMr4X4ie7bt0f5n8qn8idPHEOaj9KicOEiCMpfAEWLFkPWbD4mDKR96xZNvYUL10kCJEACJEACJEACJJBACVDgTaCJjwfbpsAbD5KYQLdAgTeBJp7bJgESiDUCdgVemSlfUH4sWbbK6mFI9lZz+/YtVKtc3mFPTXvj8T4JkAAJkAAJkAAJkAAJuIoABV5XkeW4riZAgdfVhDm+qwhQ4HUVWY5LAiSQUAg4JPAKjESJEmH8hMmoW6++0ZPXHqS3b99i7OjvMWvmdHtNeZ8ESIAESIAESIAESIAEPIIABV6PSAMXEQ0CFHijAY1dPIIABV6PSAMXQQIk4MUEHBZ4tT3m8PXFsOHfIFs2H6RLlx5JkiQxbl+sG54+fYq7v/8H586dw/Bhg/D48WMvxsOlkwAJkAAJkAAJkAAJJDQCFHgTWsbjz34p8MafXCa0nVDgTWgZ535JgARim4DTAq/5At5//30E5s2Hx4//wuVLl2J7fRyPBEiABEiABEiABEiABOKUAAXeOMXNyWKRAAXeWITJoeKUAAXeOMXNyUiABOIhgRgLvPGQCbdEAiRAAiRAAiRAAiSQgAlQ4E3AyffyrVPg9fIEJuDlU+BNwMnn1kmABGKFAAXeWMHIQUiABEiABEiABEiABOILAQq88SWTCW8fFHgTXs7jy44p8MaXTHIfJEAC7iJAgddd5DkvCZAACZAACZAACZCARxKgwOuRaeGiHCBAgdcBSGzikQQo8HpkWrgoEiABLyJAgdeLksWlkgAJkAAJkAAJkAAJuJ4ABV7XM+YMriFAgdc1XDmq6wlQ4HU9Y85AAiQQvwlQ4I3f+eXuSIAESIAESIAESIAEnCRAgddJYGzuMQQo8HpMKrgQJwlQ4HUSGJuTAAmQgBkBCrx8JEiABEiABEiABEiABEhAR4ACLx8HbyVAgddbM8d1U+DlM0ACJEACMSNAgTdm/NibBEiABEiABEiABEggnhGgwBvPEpqAtkOBNwElO55tlQJvPEsot0MCJBDnBCjwxhLypEmT4uXLl7E0GoeJLwRSp0mDRw8fRms7Men74Ycf4vXr13jz5k205nZHp0SJEuHjjzPit9/u4J9//onTJcjcyZIlw5MnT6I1b0xyFa0J2YkESIAESMClBCjwuhQvB3chAQq8LoTLoV1KgAKvS/FycBIggQRAgAJvNJNcqHARfNG3P7Jmy4a0adPhvffeUyO9evUKjx49xPp1azBtSli0BaNoLsukW6ZMmZHmo4/w7NkzXL1yOTaGTBBjNGjYGIMGD8Oa1Svx/chv1J5nzp6LAgUKoX3bljh9+pRNDqPHhqJCxUpIly493nnnHbx9+xa///4fzJ0zG/PmzLbZt2WrNujSLRgZM36inikROh88uI/9+/aib5+eNvsGBubFuNAwZM6SRYmVEo8fP8bFC+fRqWNb/PXokUP569tvANq174Tbt2+hWuXyDvUxb9S8RSv19yExbdpki/v+9NPP0LV7CKpUrYY0aT4y/g1JH2F24vgxfDNiGM6dO2txDYeOHEfi9xPbXd+9+/dQo2rFKO1SpEiBmbPnIXdAHqRMmVLdf/HiBW7dvImhQwbg2NFfXZZnu4tmAxIgARIgAbcSoMDrVvycPAYEKPDGAB67upUABV634ufkJEAC8YAABV4nk/j+++9jyrQZqFqtht2eIs5t3rQBwd06223rigYHfzkGEXmfP38O/5zZXDFFvBxz2Yo1KFa8BCaMH4uwSaFqj5ev3YbkXjgKT0vx7rvvYv2mrRCh1VrMnzcHw4cNtnh72Fdfo2Pnrlb7no+MRM3qlfDf//43SptKlati1o/zIGuwFE+fPlVirYi2tkIqUQ8cOgqpAJZq1jz+OZzOsbBbuny1Erclflo4H0MHD4gyjgi0n32Wyeb48jfUsnljHDywP0q7G7fvGuewNYi8dMmZPYtJE5n35227jMKuef///e9/6N61E7b8vCnK0DHNs9NA2YEESIAESCDOCVDgjXPknDCWCFDgjSWQHCbOCVDgjXPknJAESCCeEaDA60RCRdg5eSoSqVOnNva6cP48Tp+OwIUL5+HnlwsBeQLh45MdiRMbKgvv3buLwgWsC35OTO90Uwq8TiNTHc6ev6IEzhJFC+LOndsqr9t27lVWC/kCc1kddMq0mahdp666L1XTa9esQkT4SZQuUw61atcxiq+9eware/qoVr0mZsyaoy6JuLh500bs3bMLeQLzon6DRpBqU4kd27eiY/s2Jn2TJ0+u1qyJu78cPoStW39GyhQpUa9BQ2TNahD3/3jwAAWCAqKsP3+BgmjarAWyZ8+BwLz5jJW00RF4M2fOgl17DyoxXAt7Aq9U64afPIFzZ8/g6tUr6u+nfsPGRvHVkkArY2sCr1hRXLFRoX739/+gfdtWJvs+cixcVUlL3Lp1E6tXrcDDP/9UL25KlCylrou4LPk2r3yOSZ6j90SyFwmQAAmQQFwToMAb18Q5X2wRoMAbWyQ5TlwToMAb18Q5HwmQQHwjQIHXiYyOHT8RTZo2Vz1EdOoR3BXbt22JMoL4eYZOnII6devh/v17FHidYOzupmJpEX4qUn2qn8s3q1rO4CFfKduE3bt3ol3rFlaXeOnqLSXsi2BZvkwJJRxqUaNmLUyf8aP656WLF1CpQhmTcTZv3YmAgDzqmrkALELk/kO/KtFUxs6RLZOJR23/gYMRHNJL9d24YT1Cuv9bMS5VtAcOH1WV3BK1a1bFqYhwk7lHfDMS7dp3jLIvZwVeEcUPHTkRpSrWmsArthdihzBu7KgoXsHC8Xj4WaOwXbpkUdy8cd1kjZrAe/bsGYsWDNYSldPPD9t37lO3xTqjeJECSlTXInTiZDRs1ET9c+6Ps/D1iGEmQ8Ukz+5+vjk/CZAACZCAYwQo8DrGia08jwAFXs/LCVfkGAEKvI5xYisSIAESsEaAAq+Dz0bWbD7Ys++Q8ZPwyhXL4OKFCzZ7S+Vnzdp1MH7saNWucpVqKFKkKORz+UkTx1vs27lLd2TIkAEiWplXeUqHfEH50bZtB2T18UGaNGnw5x9/4ObNm8rzd/euHWpM+cw+JKQXmjZviQ8++EB90j9/rkFc1GLd2tU4c+a08d8iHnbr3gPiLZzNxwfPnz3DubNn1Rr27dtjca3isyrVliJkLpg/FxUqVkaDho1UFeizp8+wf98ezJv7oxLRJLJ8nhXt2nVAwcJFkDZtWty5fVtVTi5dssgmx8ZNmqFsufLIlcsfiZMkwY3r1yFVqlMmT4zST3xd23fopK4vXDhfiYIiuJcpWx4FCxXCq5evsHjRQvzxxwOLc7bv2BnDR3yL8PCTqFurmmqzdfse5PL3x8D+fa2uVXx7J0yaotqvXbMavXt2jzK+CK1S4SoRlNdfVYxKiP/rqbMX1bMlB4yJ4Gge+pcLQwb1x6KfFhibnAg/i7Tp0inRN2vmjFEOKCtZqjQWL12p2ksuW7doajK85E1jJjeKFiuumDkj8Mra9x08gixZPldjTwwdhz59+6nf1gRem0kH1Jpl7RJStSzVy/qIrsA7Z95CVKxURQ0llb27dm43GVf2cu3mf1RF9KNHj5Avj5/xfkzybG+/vE8CJEACJOA5BCjwek4uuBLnCFDgdY4XW3sOAQq8npMLroQESMA7CVDgdTBvP85dAPE5lRAhtV2blg72/LfZ2vWbIZ/DS7WgCHGW4vyl6+qArOvXr6FsqWLGJiI6rVqzAQULFbY6719//YW8ATlRvERJ5YFqK6ZPm4wxo0aqJuIZu2jpSqt+pFu3bEa3Lh1Nqhyl37GTp5E+fQblSXvp0kUEBeWPMqXcK12iCDp16YouXYMteqaKT7H4nZrHxx9nxNLlq5DNJ7vFrYjlQPNmDU2Edqmanjx1hmo/bMhAZZkhArHmByvXe/XohnVr1xjafPU1Gv9fVbb8O2nSpMqiQHIkNgsSUpkq/WUvf//9t7q2euVyjBg+1LiuH2b+iOo1aql/d+rQ1mJl95hxE5QVgkT/L/tg+bIl6rfYN0ydPkv9Xr9uLXqGRPXh1efUvJL45p17qq8I6UULBVlkdf3W7wbB0o7NhHSOOH1evSRwRuBdsmyV0dpg9Pff4fDhg9iwySDIRlfg1Z4vGSMgV3b1YkQf0RV4tXFFEM+W5ZMoz7XMIRXTmlgtf6tahW9M8mwxMbxIAiRAAiTgkQQo8HpkWrgoBwhQ4HUAEpt4JAEKvB6ZFi6KBEjAiwhQ4HUwWVK9qwmNRQrmw927vzvY899mMRF49cKSVOTKYVkicGbOkgXp0qVX4p1c9/n8U/j758aS5auRKlUqo7AplYj6GD92lKoCTZs2nRJqNf9WaXfxwnmkSpUavjlzGq8fOngAzZs2NBlDL8BpN968eYMnjx9DrA60MUVI0wusIjK+nzgxxDtWiyoVyyofYy2koliqWkXslhDxUqwFRGgrULAQMmT4WF0XC4xC+QON/fQCr/m8WiO9wKsX7p1JqLnIv3rtRqP4LjmwdBBa3foNEDZ5uppmctgEhI4bo353D+6JAYOGqN9yGJkIopZCE3Kl8rpmtUqqieTvRMRZ9Xv/vr1o1cJgLWAex0+eQbr06ZW1iPmBY+ZtnRV4v/72e7Rt10ENs2bVSvTpHYK8+YKiJfDKMyPVtd2DeyAov6GSeeeObejQrnWUPWkC7+VLFxHcvTMSv58Y8pJDb41hiUXkxWvq2dNeiFhqM3vOfFVxL6G3h4hJnp15vtiWBEiABEjAvQQo8LqXP2ePPgEKvNFnx57uJUCB1738OTsJkID3E6DA62AOz124quwObFXf2hsqJgLv5Wu3lQfr48ePUaRgXrx8+dI4nYhVIrKJMKb/nNyRQ9ak0leqQyVWLF+Kfn17G8cVO4FNW3YYK3tFVNTbOugFXhGGewZ3xf79e1V/ER7FkkATaEVslYrVr4YOghyKJTFx0lTUb9hI/ZaKWhFetQib8gPq1quv/jlh/FiETQo1wSv+rXIglsTwr4YYLSj0Aq/cE8/anzdvwq6d23D92jXkDsiDXTt3KGFYQtilSfOR+v1R2rRYv3GLqtwtU7Koutb7iy/RqnVbHDywX1k0aPHw4Z+qolcL/QuALJ9lsPgolC1bHgsWLVX3Vq1cjr59eqrf330/Rs0h0b1rR3XAmqXQBE05+E0OgJMQSw2p7JbYtHE9grv967+rH+PQkeP47DODd+/nmQziuLVwRuCVdcv6JfS2Fs4KvDl8fbFs+RqVA/3LABF3xZ5B1m0eGg9L+xBGkydNMFZJ69tcvfGbsqCwdQCi3oe3Tctm2Lt3txoiJnm2CZ03SYAESIAEPIoABV6PSgcX4wQBCrxOwGJTjyJAgdej0sHFkAAJeCEBCrwOJE0EJxGTJGxV/dkbKroCrwi7IvBK2PoM33x+ewKv2BFcuHxDdTP3GtXGkipGqWaUOH7sKBrUM9gQSGgCr3w6n8c/RxQRbsq0mahdp65qa35wmFxLkSIFzkReVvfDT55A3drV1W+p4hQPVOEeERGOOjUN1hj6ECYXr9xUbUV8bdHMIBTrBd7zkZFo2qQ+/jKrXraWp05dumHosBE4dvRXNKxfWzUTgTtPnkAlfIsAbi00H1xbLwD0oqd+zXpP2GZNGuDwoYMWp7ly/Y6yjxCRPzC3r2qj94RdtnQxBvT7wmLfnbv3I4dvTnXPL8fnJi8IzDs4KvDKiwGxZpA8SUW7iM5a5bKzAq9eqNbWc/PmDQwfNgR7du+0uCdbAq/WYcP6degR3MXYX/+3LOOLfYil0B88Jy8lxGNaIiZ5lv7vJ/3A6jPEGyRAAiRAAp5D4O0/b/G8bQW8blDCJYtKvPIAki/ci/feSeSS8TlowiXw7t/vonngKBTNbPrlXWwR2Rg5DpuvhCHRe4lja0iOQwKKQFK8wYyWeVAld3qXEAlechrLTz5Aovfej9b4b14a7PsYJEACJOCpBCjwOpAZvcAqtggFggIc6BW1SXQFXhkp/FSksj2QEAFyzOiR6v/bCnsCb7HiJbBshcGLdv68ORg+bLDF4TRfYHM7BE3gtSYO9+rdF1982V+Naa0yVRMt9Z7DenHwwP59EM9ZSzFw0FAkTpwYeqFOL/CaH0ZmL2laNfP3332DmTOmqeYiIidJkgT+ObOZVOyajxVx5gJSp05ttMmwNFfu3AH4edsudUsv8C5cvAxlypRT10VYtpZXSwJvy1ZtMHLUWNXXltftth174Zcrl2oXGwKvHJi3a88BJThLJXOJYgWVv68Wzgq8GTN+gtHjQpE8WXJ8nDEjMmXKbBxLDsUbPNBwYJs+xLf4+vWruHL5Eu7evYsUKVIiRw5fNGvR0niYnbT/esQwzP3R4HGs/1u+dvUKypWx/D/cxZu5Y2eDF7Je4I1JnmWsDD6WPZLtPZu8TwIkQAIkELcEHj/6DQ8bF3SpwJtmdQRSprJ8JkPc7pazxScCr+7fxztv/8Z7/y+pS7b16r/P8HeyRPgwje0vwlwyOQeN1wTe/nkN0xpld5nAG7LkDDZcBZKnShctjveuhkerHzuRAAmQQFwRoMDrIOlLV28pMVHzuXWwm0mzmAi8ep9TbVCpFpXPzMVy4JsRw4zWB9p9ewKvHHo2eOhXqrkt79cjx8IhApz46+bIlsm4J3sCb7sOnTDi6+9Ue2sCryag6gXe9h07Y/iIbx1GrBeYYyLwSjWxVBVrHssiYu4/eMRqdbN+gRprWxYIJUuVxuKlK1W3jRvWI6S7wU5h/IQwNGrcVP2Ww/vE39dSaAelSbWsrFFChGERiCXWrl6F3r2CLfYVuwyx3JCwZiGhdXSkglfzLpb9tm7RVB2yp488gXkhbSTEfmPUyG/U384ffzxwKK9iJ7Fr70ElrkvYEr4tDfjtyNFo3aaduiWV3FUrGwR0Ca3y97ff7qB4EYPPr3mMHT8RTf7v8L2unTtgy8+bVJOY5Fn6p/7E8oGBDkFhIxIgARIggTgj8Oz5n3jcrJhLBd5Uy48iefI0cbYnTpQwCLx+9BcKZ6yNHB9Z/kopphRO/LYRkU8OIWkKQ+EJgwRijcCzu5jeJKfLBN7gJWew7sIrJPkgVbSW/Og/V6LVj51IgARIIK4IUOB1kPThX0/g008/U63z5vFz+LN//fAxEXhlHPE6FdFJqhDNQ7xmp4RNNPGqtSfwiogqYqqEXsQyH3vvgV+QNWu2KP7D9gTeNm3b45vvRqnhrAm8WnWwXuAVUVjEYQmxI3j27KnNLF29csV4uJgzAq+InqlT//s/rD788EPjnPJDqlPFQ1hETPHl1aJGtUq4eeO6yZo2/rwdgYF51TVrAmqt2nUgVacSs2ZMx8jvvla/pcpZqp0levXsjnVrVlvcr3bI2oXz51GlUlnVRkRb2YfE9m1b0KmDwcvXPI6eOKUOpjMX6S21dUTg1dtK2EyO2U174rK+ebfuPTBw8FB1yVZ1srX5NUFcKoylAlsL7aXCg/v3UTB/Hovdp8+YjRo1/z97Zx0fxdm9/dO+bYHSAqFIaYsGYiSB4BqCuya4BXd3KxSKE0JwD+7BnQDBnSS4ewUoLgEqz/u57v3NMrs7K8lmSXbmnH+eZObW60z6efjOmevW2XRUrVSOLl26KH62J8/x0YnbsgKsACvACiStAuzBm7T68+wJV4A9eBOuHfdMWgXYgzdp9efZWQFWwPkVYMBrYw7lh5HNmB5GE8aNsbHnx2YS4LVU5akEPOUTwUO0XPmKVLFSZfLzK0i58+QRB0ZJUblCAF25cln8ag3wAhajUhExfuxomjljquKeJHsIY1DmKMDboGFjmhgyRawFOkNvWyM+gFeqyrZ1bKmd8WFzuB6+eJnIC0KeA/nY/QcOpi5de4hL8oPh5PudM2sGjRk90mRJrrnz0L4onTfvkcOHqEkjna8aPIgBMhFy8Gs8gLRXuX+vuX0nF8Ar9+U9c/oU1atTI16punD5BgHaG1fdS8+zJdi9bWckeXvr4K/c0sKePMdr8dyYFWAFWAFWIEkVYMCbpPLz5HYowIDXDvG4a5IqwIA3SeXnyVkBVkAFCjDgtTGJTZo2p7HjJ4nWAEbw4bV2eBdgbJGixejE8WOi3+q1G6hY8RLi55zZsoiKWOOwBniN22MOgGO/ArpPzcOmhNDkSTpPVumz/Hfv3pF7bt3n+fJw9/Cg3ZEHxCX43LZq0dSkDWwpcBAbQOK9e3epdIki+jaOArzyqtTjx45Sw/p1bcyS4SFr1jx4XdKnp5QpdBYA8xYuFoepzZ41nRYtXCCuAZADnvuXKkYf3r/XrwEH3RlHn34DqHsP3QFnGGPsaFOLCTk0lENiObw1thOQ5unbfyB1695L/Dp/7mwaNXK4fglSRao5YCkf3xIElga0BfDCyuK7DOb9q7y9vfXVylu3bKJJE8fTP3//Tffv37M5l7BYgNUCAmN06aSrNrcl5Af1wRs4v6/Of1iM9X8H5+FnczBeAuKojM+dU1e5j7Anz7asm9uwAqwAK8AKJA8FGPAmjzzwKuKvAAPe+GvGPZKHAgx4k0ceeBWsACvgvAow4I1H7iSrAnQB7AysU5Nw8JhSwBt12sw59O5dHBUpqPt0H1WpqNZE9OvTk9asXmnQtVLlqjRn3kJdVebtWxRQuri4n87Fhfr1H6Tos4v7QfUbUkiorvoWcBeQF7Fxyw7y8ysgfvb2zE2vXhlaHQAOA2TB8gGwOb+Ph7BEkIfcy3T9urXUq2dX/W1HAV5MIK+ubdmsMUVF7VPUuUTJUpQpc2a9rUF8KnjlA0rVnqWKFxYQ0sPDk3ZFRomDw+Rw0NzjgkpRePhC06dPnogXAHKAD09ZAHfkFvf98nkZDCVpiT4B/iUMLCAwJiwWMmXKLOwisB75y4VZc+ZTteo1xXgD+/ehlSuWGYw9b8EiwrNl7rkz3pMtgNfan421Q9agR6MmTWnqlMnCNsI4sOdTZ85Rxky6U3SNPaJxuNyRI4fp9q2bikvB3wP+LhA4tA4evlLIrTKUXmzUqRdIYVNniubwQ4YvshT25tmabnyfFWAFWAFWIHkowIA3eeSBVxF/BRjwxl8z7pE8FGDAmzzywKtgBVgB51WAAW88codKyL37DwmIh0Al77Kli2lf5B6Kjj5D+fMXoOIlS1Kp0mX0fqw4BE0CvPJP8VFVO6BfL4qNjSV//zLUqEnsapiVAAAgAElEQVQz8vLKq1+NHPDmcXOjyH2HBAhbvnQxrV2zii5evCCqS0uV8qcJIaHCXxUh9wudMnUm1a0XKK7jE/fuXTvRixfPqULFynTj+jU6f/4c9ezdl3r17ifavHz5UnjZxkSfFdAXULl9x87iHub2zetGcXFx+jU6EvDKtQLUjFi3hqaGhQrwiTyUL1+R6gXWJ08vLwF/AYERCQG8qOQF1Hz79i15uuUU4wwaMow6dupK+/fvpeDmTWx6SjZt3Un58/uJttFnzwjYCrsMQOiZs+YR5kHACgOWGPKQ5wGHxvXs1pkOHNgvLDjGT5hMBQsVFs3hBYscy0NeoQtAPHhgP9q4IYJSff01devWU++z/P79e3JzzWayF+Q6XToX/fXI/Ycobdq0wne4rL+u4hzx9OkT8czbEtYAb9lyFWjRkuWECtkd27fR3r276fjRo/T27RsqX6ESDRk6XA93sY4C+bwMDhGUDv7D38G6tavp+NEj4qC3vN4+9PPwkVSosK7SHM9OxfL+dP3aNYNlS1XPuLgofAHNmBYm/jZq1KwtDr0DiEfI/56kAezJsy3acRtWgBVgBViBpFeAAW/S54BXkDAFGPAmTDfulfQKMOBN+hzwClgBVsC5FWDAG8/8Va9RkyaGhFHq1Klt6nn92lWqUM5f31aqjrTWWQnwyvsAXEmgWbpuXG2IKknYDBi3Q3s5ZJSsHKRxAAklwCVdk3vGStccCXgFeFu6gsqWLW9NKrsBLw50w8FuMTHRVLtGFTHfjt37BHAfNKAvrVi+1Ooa0AAgfvPWXeJgNimM8/TgwX2qULa0AShHW0DW3XsPiMPszAVeCtStVU1/4Je8XeiU6VQvqL7ZvlgHqmDxQsI45IfaWdro1LDJFDJxvE1a2Ap4rQ2GdTduGEjHjh4xaCoBXmv9zdllBAY1EFXvSn8b0pjmbCHsybO19fJ9VoAVYAVYgeShAAPe5JEHXkX8FWDAG3/NuEfyUIABb/LIA6+CFWAFnFcBBrwJyB0qZ0NCp1G16jUEmDMOQKk7d25T+IJ5tHjRQoPb8L1dvmKtvjpRuomqzR5dO9GsuQsEPMan5/hUH5EqVSoaOz6EKlWuogiWpcreEcOHmqwFB6n9Oma8yTpDQybSlFCdpzACVYv4pN0YeMHWoVXLpuIzd+OAbQAqh83ZGDRvESzmRnRo15p27thmMsalq7dM9itvBGsBHATn4vKxwlS6j2pSVMqOHzdavz755/dKdgVK6Q5fspzKlatg4F8seSH7eOURlc22BmwUNm/bSVmy/GDQBc/E6VMnqUFQHUXvZTSG9jjMDz7NxnlAJXjtGlVJyf9Xmgj+sF279TSB8wDDHdu3of37IhW3MXzEKH2Vr6V9yv2drekBP2N43SKWLA6nYUMGGnRJ/913NHFSKBUvUcrsyxJUK7dvE6zo2ws/4pbBrU3+jqRJnj9/Tt27dBRV0ObC3z+A5swPNwDyaIsXHADDxlXW8nHsybM17fg+K8AKsAKsQNIrwIA36XPAK0iYAgx4E6Yb90p6BRjwJn0OeAWsACvg3Aow4LUzfziEDJ/Pe3v70uvXr4R3Lg5VUzpATZoK8A59ihYtTm/evqFdO7ZbBHfyJcKPN59vfnLz8BBg9dLFC8IGwNp8qEb19MorPHZjY6IVvYNRtYt1lShRih4/fkQHovbTb789sFOhxOkOkI6qUB/ffPT40UOKjYkRPsjJNQDpA8qWI3cPTzp54jgdPXLYYo7k+8DzAchbvERJQgV41P59Jv7JlvaNlwjly1cSz+Oe3btsfraSSkvAUm8fX3J39xAvIvB8njlzyqY9w/bCx9uXcuXOTRkyZKCrVy4Lb174HNsamB8vT9KmTScgOMCyrWFPnm2dg9uxAqwAK8AKfHoFGPB+es15xsRRgAFv4ujIo3x6BRjwfnrNeUZWgBVQlwIMeNWVT94NK8AKsAKsACvACrACrICdCjDgtVNA7p5kCjDgTTLpeWI7FWDAa6eA3J0VYAU0rwADXs0/AiwAK8AKsAKsACvACrACrIBcAQa8/Dw4qwIMeJ01c7xuBrz8DLACrAArYJ8CDHjt0497swKsACvACrACrAArwAqoTAEGvCpLqIa2w4BXQ8lW2VYZ8KosobwdVoAV+OQKMOD95JLzhKwAK8AKsAKsACvACrACyVkBBrzJOTu8NksKMODl58NZFWDA66yZ43WzAqxAclGAAW9yyQSvgxVgBVgBVoAVYAVYAVYgWSjAgDdZpIEXkQAFGPAmQDTukiwUYMCbLNLAi2AFWAEnVoABrxMnj5fOCrACrAArwAqwAqwAK5D4CjDgTXxNecRPowAD3k+jM8+S+Aow4E18TXlEVoAV0JYCDHi1lW/eLSvACrACrAArwAqwAqyAFQUY8PIj4qwKMOB11szxuhnw8jPACrACrIB9CjDgtU8/7s0KsAKsACvACrACrAAroDIFGPCqLKEa2g4DXg0lW2VbZcCrsoTydlgBVuCTK8CA95NLzhOyAqwAK8AKsAKsACvACiRnBRjwJufs8NosKcCAl58PZ1WAAa+zZo7XzQqwAslFAQa8ySUTvA5WgBVgBVgBVoAVYAVYgWShAAPeZJEGXkQCFGDAmwDRuEuyUIABb7JIAy+CFWAFnFgBBrxOnDxeOivACrACrAArwAqwAqxA4ivAgDfxNeURP40CDHg/jc48S+IrwIA38TXlEVkBVkBbCjDg1Va+ebesACvACrACrAArwAqwAlYUYMDLj4izKsCA11kzx+tmwMvPACvACrAC9inAgNc+/bg3K8AKsAKsACvACrACrIDKFGDAq7KEamg7DHg1lGyVbZUBr8oSytthBViBT64AA95PLjlPyAqwAqwAK8AKsAKsACuQnBVgwJucs8Nrs6QAA15+PpxVAQa8zpo5XjcrwAokFwUY8CZSJlKlSkVxcXGJNBoPoxYFXNKnp2dPnyZoO/b0/fbbb+n9+/f04cOHeM/9xRdf0Ndff00vX76Md197OmDe77/PQr/99oD+97//xXuo7DlyUtzbt/To0cN497Vnz1999RXh7//Fixfxnpc7sAKsACvACiRPBRjwJs+88KqsK8CA17pG3CJ5KsCAN3nmhVfFCrACzqMAA94E5qpwkaLUu09/ypkrF2XIkJG+/PJLMdK7d+/o2bOntGnjepoxLeyTQzL5drJmzUbpv/uOXr9+TTdvXE/gTrXXLTCoAQ0aPIzWR6ylMaNHCgHmzFtIBQsWptbBzejcuViLooybEELlK1SkjBkz0WeffUZ///03/fHH77RwwTwKXzDPYt9mzVtSh05dKEuWH8QzBdD5+PEjOnggivr06m6xr69vPpoYEkbZsmcXgBYB6Hj1ymVq1zaYnj97ZrZ/mjRpaM68cMrr7UNp06YV7d6+fUv37t6loUMG0KmTJxT7duvei1oGt7bpIRn96y+0Yf06fdsff/yJOnbuSpWrVKX06b/T/w2hATQ7c/oUjRwxjC5evGB2/NZt21P3Hr0pXbp0QmuEpBnm27g+ItH3jAEB32fNnk+++fJT6tSpxRxSnvv27kEnjh+zSRNuxAqwAqwAK5A8FWDAmzzzwquyrgADXusacYvkqQAD3uSZF14VK8AKOI8CDHjjmStU602bMZuqVK1utSdA07atm6lLp/ZW2zqiweFjpwiQ982bN+TlnssRU6hyzFVr1lPxEiVp8qQJFDYlROzx+q37hNxDR+ipFJ9//jlt2rqTAFrNxaLwBTR82GDF28N+/oXatu9otu/lS5eoRrWK9M8//5i0qVipCs2dH05Yg1K8evWKqlYqR/fv3zO5/dNPWWn7rr16sGvc4L///qPOHdvRju1bTfpOnT6batepa9NzEDp5Ik2ZPEnf9sjx04S5LQX+hpo1aUCHDx00aAaYu2fvAcrj5m6xf+SeXdSmVYtE3XP1GjUpbNosAyBtPMHyZUto8MB+NunCjVgBVoAVYAWSnwIMeJNfTnhFtinAgNc2nbhV8lOAAW/yywmviBVgBZxLAQa88cgX4NnZ2Evk4uKi73Xl8mU6dy6Grly5TB4enuTt40uurrkpRYoUos3Dh39SkYLmgV88po93Uwa88ZZMdLhw+QbB4qBksUL04MF9kdddkVHCaiG/r6fZQafNmEO1atcR91E1jWrVmOiz5F+mLNWsVVsPX3t272JQyYr2VavVoNlzF4i+AKrbtm6hqP17ycc3H9ULrE+osEXs2b2T2rZuabAGVJBizRLcPXb0CO3cuZ3SpklLdQODKGdOHdz/6/FjKujnbbL+46eiRcUw4t69uxSxbg09ffJEvMQoWaq0uA7Qir0bVwHLAe+tmzco7t07s/qETBxPeyN36+9LgBeVr9Fnz9DFC+fp5s0b4u+nXlADPXBGVbx77uwG406ZOpPq1gsU1x4/ekQA58uXL6HMmTJTcOu2hCpsAHnEkEH9adnSxQb9E7pnVMSfPB2rh7uobF61crmA/nXq1jN48RNYtyadPnUyYQ8h92IFWAFWgBVIUgUY8Cap/Dy5HQow4LVDPO6apAow4E1S+XlyVoAVUIECDHjjkcQJk0KpYaMmogegU7cuHWn3rh0mI8DPMyR0mqhshB8oA954iJzETQHwomMvCXsCT7ecYjWDh/wsbBP27YukVi2aml3htZv3BNgHsCxXpqSApVKg6nPm7Pni12tXr1DF8mUMxtm2M5K8vX3ENWMADPh68MgJASwxdp5cWQ08avsPHExduvYQfbds3kRdO3+sGEel66GjJ0UlN6JWjSoUGxOtn9vdw4N2Rx4Qv8NGokTRggIwSxESOpWC6jcUvy6cP5d+GTHMYN1ywBvgX4Ju37ppcwZhewELiIkTxpp4BUPH09EX9GDbv1Qxunvntn7sqzfuUsqUKYUe+bzdTaqqixYrTmvWbRTtAY/r1KqWKHtet34zwZ4FsWRxOA0bMtBgv/jvA/47gcDffuECvjbrwQ1ZAVaAFWAFko8CDHiTTy54JfFTgAFv/PTi1slHAQa8yScXvBJWgBVwTgUY8NqYt5y5XGn/gSN6n89KFcrQ1StXLPZG5WeNWrVp0oRxol2lylWpaNFihM/lp4R+/FRdPkj7Dp0pc+bMdOHCeZMqT7TL71eAgoPbUE5XV0qfPj09+esvunv3rvD83bd3jxgK/qBdu/agRk2a0TfffCM+6V+0UAcXpdi4IYLOnz+n/x3wsFPnbgJe5XJ1pTevX9PFCxfEGg4c2K+4zyZNm4tqS4DMxYsWUvkKlSgwqL7wJX396jUdPLCfwhfOF+AQgUOwWrVqQ4WKFKUMGTLQg/v3RbXoyhXLLOrYoGFjCihbjjw9vShFypR05/ZtQpXqtKk6kCYP+Lq2btNOXFqyZJGAggDuZQLKUaHCheld3DvC5/N//fVYcU54ug4fMYqio89SnZpVRZudu/eTp5cXDezfx+xaUTE6eco00X7D+gjq2b2zyfgArdmy6SpR/fJ5iSpZBDxvYy9cFc8WDhgDZDUO+csF44rUM9EXKEPGjAL65syWxeSAslKl/Wn5yrViSOSyRdNG+uEXhC+hChUri99bBzc3qLDFNazp1t3fRXXws2fPKL+Ph8HS7AG8FpNOJNaMtSNQtYzqZSnuPtAdpAaPYd+8bopD3bn/p1i/cRW9PXu+eOWm+JvC4XVurtkUD4OLOniU8N8LBFfxWssy32cFWAFWIHkqwIA3eeaFV2VdAQa81jXiFslTAQa8yTMvvCpWgBVwHgUY8NqYq/kLFxN8ThEAqa1aNrOx58dmGzZtowIFC4kKSYA4pbh87bY4IOv27VsUULq4vglAFaoHCxUuYnbe58+fi2rGEiVL0crV5g+XwgAzZ0yl8WNHi7HgGbts5VqzHqw7d2yjTh3aGlR2ot+ps+coU6bMonry2rWr5OdXwGRtuOdfsii169CROnTsogfk8obwKYbHq3F8/30WWrl6HeVyza24Z1gONGkcZADaUTUN6IhAdSUsMwCIpQO4cL1Ht060ccN6XZuff6EG/1eVjd9TpUolPr9HjmCzgIBdA/pjL//++6+4FrF2NY0YPlS/rllz5lO16jXF7+3aBCtWdo+fOJkaNdZVAPfv24tWr1ohfoZ9w/SZc8XPmzZuoO5dTX145Tk1riSWYCdAerHCfopa3b73hw7SGtlMSDkEHM6V/QeTHGMwVA9nz55DjIvnVl7h60jAK60N83p75hYvRqQAEMfBaoi6tavT2TOnDfYtr0zeumWTgQ92QveMFwU37/wm5jEH4nFvyNDh1L6jDvDPnzubRo0crpgTvsgKsAKsACuQfBVgwJt8c8Mrs6wAA15+QpxVAQa8zpo5XjcrwAokFwUY8NqYCVTvSqCxaKH89Oeff9jY82MzewCvHCCiIheHZQFwZsuenTJmzCTgHa675viRvLzy0orVEQKASWAT1ZfymDRhrPAlzZAhowC1kn8r2l29cpnSpXMhN3d3/fUjhw9Rk0ZBBmPIAZx0A5WNL1+8IFgdSGMCHsoBKyDjVylSELxjpahcIUD4GEuBimJAPMBuBOAlrAUAFwsWKkyZM38vrht/Bi8HvMbzSmPLAa8c3McnocaQP2LDFj18Rw6UDkKrUy+QwqbOFNNMDZtM8KRFdO7SnQYMGiJ+Hjp4AC1dskhxKRLIReV1jaoVRRvk70zMBfHzwQNR1Lypzk7BOE6fPU8ZM2US1iJyP9tLV2+JPEgvB5T6zluwSFSfI4ytEuSAF5XBT58+EVW1eD6hf3wDzwwqijt36UZ+BXSVzEoHpc2YNZdq1Kwt7mMeaCmv6JZbKRhX0SZ0z4D/V67fEXPi7x//HVAKeTX3rp3bqX3bVvGVgduzAqwAK8AKJLECDHiTOAE8fYIVYMCbYOm4YxIrwIA3iRPA07MCrIDTK8CA18YUSp9mW6q+tTaUPYD3+q37woMV8KxooXwUFxennw6A7pdRYwQYk39Cb8sha6j0RXUoYs3qldSvT0/9uLAT2Lpjj76yF1BRbusgB7wAw927dKSDB6NEf4BHWBJIgBYQDhWrPw8dRO/fvxdtQqdMp3pB9cXPqKgFeJUibNoscWgVYvKkCRQ2JcRAXvi34hAwxPCfh+gtKOSAF/fg0bp921baG7mLbt+6RXm9fWhv5B4BhhHQLn3678TP32XIQJu27BCVu2VKFRPXevbuS81bBNPhQweFRYMUAJmo6JVC/gIg+0+ZFR+FgIBytHjZSnFv3drV1KdXd/Hzr2PGizkQnTu2FQesKYVkOYCD33AAHAKWGoCZCONKVfkY0oFmyEOOrDo4jkBFKipTLR0GKPfhbdmsMUVF7dP3lwNe4zUD9gPOjhzxs96mQ3FjRJTHzY1WrV4vciB/GYD+sGcwhsWoql63fgt5eH489A7wetfOHfTjjz/qYTtgOaC5POzZswSHAfC93HPpn2X5+LBRwXOEgJVIowa655iDFWAFWAFWwHkUYMDrPLnilRoqwICXnwhnVYABr7NmjtfNCrACyUUBBrw2ZALACXANYanS0dpQCQW8ALsAvAhLn+Ebz28N8MorEpX8VTEeKjdRwYk4feqk8BSVQgK8+HTexyuPCYSbNmMO1apdRzQ3PjgM19KkSUPnL10X9+UHYaGKE76v0D0mJppq19BZY8gDmuCgLbQFfG3aWAeK5YD38qVL1KhhPXpuVL1sLk/tOnSiocNG0KmTJyioXi3RDIDbx8dXgG8AcHMh+eBaegGQL78fbd6q85GVr1nuCdu4YSAdPXJYcZobtx8I+wi576y8WnTVyuU0oF9vxb6R+w5SHjd3cc8jTw7xgkD+XN+9e0dYaSjFiJGjqVXrtuIWAD38lqWwBHilNgC95QNKGRw6ZzyPHFRL97Cm4cOG0P59kWZ1P34qmnAInVKEhkw08bq2d8+SHzPmu37tKlWqEGBgWQFY3n/AYHEoH8LY8zi1y0e4bnZTfIMVYAVYAVYgyRV49+E1vWruT+8DSzpkLSnWHqJvlx+hlF99/JrJIRPxoJpT4H9xH6iR9ygqls3wy7vEEmLLpYm0884s+irVt4k1JI/DCggFvvz7Bc1q7EWV82ZyiCJdVpyjdedf0lcpE/bf3TfPdDyAgxVgBViB5KoAA14bMiMHrLBFKOjnbUMv0yYJBbwYKTr2krA9QABAjh83WvyvpbAGeIuXKEmr1ui8aBeFL6DhwwYrDif5AhvbIUiA1xwc7tGzD/Xu21+Maa4yVYKWcs9hOQg9dPAAwXNWKQYOGkopUqQgOZyUA17jw8isJU2qZh7z60iaM3uGaA6InDJlSlGtKa/YNR4r5vwVcnFx0dtkKM2VN683bd+1V9ySA94ly1dRmTJlxXWAZXN5VQK8zZq3pNFjJ4i+StWq0jp27YnSV7tKgFf+XN+6eYPKllH+Ryx8itu21/kCGwNe6F3aP4DOxcbQgwcP6M2b15Q1azYKKFueqlStJoA0wtJhaLgPSDtuYgil/jo1fZ8lixhDChyKN3hgPwNJUXm9bsMWYUeC6t7NmzaSX4EC+kPs0BjXZ82cpveaxjV794xKY0BegFwEKsRhLYJDCTN//71Yt3QP943XntlV2SPZ2rPJ91kBZ1Xgw7s39PaPG/T5Z585ZAv//vcfpcuUjT77Jr1DxudBtavAi2e/0dMGhRwKeNNHxFDadMpnMmhXed65vQrEPX5IQW5DHAp49z1cRt+k52fX3lxxf0MF/n5yi2bUz+0wwNt1xXnafJModbqMCZL+4c3oBPXjTqwAK8AKfCoFGPDaqPS1m/cETJR8bm3sZtDMHsALC4bgVm0MxkO1KD6th+XAyBHDTD4XtwZ4cejZ4KE/izEteb9KVZKoxMyTK6t+DdYAb6s27WjEL7+K9uYArwRQ5YC3ddv2NHzEKJsllgNmewAvqolRVSx5LGfPkZMOHj5O5gC2fIGS1sYWCPI2pUr70/KVa8WlLZs3UdfO7cXPkyaHUf0GjcTPOLwP/r5KIR2UJvd/BRgGIEZsiFhHPXvoKkeNA3YZsNxAyC0kJNsHS4eGTZgUSg3/7yC6ju3b0I7tW23KDWw6YA0BQI6oVKGMwYF4lgb56aestDfqsL6vMfiWnkno3aVTO72tBfr9OnY8lS1bXj+8sQ+uvXsuX6ESzZ0fbgBy5XuRez/jIL7wBfP0t7mC16ZHhxupSIEPca8oOFMK6pAjg0N2teXPFxR67yX9myqtQ8bnQbWrAFfwajf3zr5zruB19gxqd/1cwavd3PPOWQFWIHEUYMBro45HT5yhH3/8SbTO5+Nh82f/8uHtAbwYB16tAG2oQjQOVBJOCws18Kq1BngBUQFTEZbAXdShY5QzZy7xKXrObB/f1lsDvC2DW9PIX8eK8c0BXqk6WA54AYUBhxGo/Hz9+pXFLN28cUN/uFh8AC+gp4vLx6ov+LpKc+J/UX0KD2EAO/jySlG9akW6e+e2wZq2bN9Nvr75xDVzHrw1a9Wm6TPnijZzZ8+k0b/+In5GlTOqnRE9unemjesjFPcrHbJ25fJlqlwxQLQBtMU+ELt37aB2bXRevsZx8kysOJjOGNJLgP3xo0dUqICPYt+Zs+dR9Ro6y4qqlcrRpUsXLeZDfnPMuInUtFkLcWnCuDE0Y3qYzX07de5GAwcPFe3l1cly2xC5FvKBy5WvSOGLl+kvSVXLuJAYe8bLnr79BlLhosUoY8aM9P7dO7r/4D5t3rhBeFoH1dcddtcgqA6dOH7M5j1zQ1ZAbQrgv589cmWknq6O+dwy4vfnNPzKH/T2v/gf6qg2rXk/iasAe/Amrp482qdTgD14P53WPFPiKsAevImrJ4/GCrAC2lOAAa+NOZcfRgZIBVgV35AAr6UqTyXgKZ8HHqKAVxUrVSY/v4KUO08eg0rCyhUCxCfjCGuAF7AY1ZmI8WNH08wZUxW3JNlDwKIAVgVSOArwNmjYmCaGTBHTxBcKxgfwSlXZ8c2j8WFz6A+YiLwg5DmQj91/4GDq0rWHuCQ/GE6+3zmzZtCY0SNNluSaOw/ti9J58x45fIiaNNL5qsGDGJW9CHOwE/ekvRpbJUi5NQa/8gVs2xlJ3t46+CsHpbbo1qZdB/p5uG4/liwklMaS+/KeOX2K6tWpIZrJD6WbGjaZQiaOV1yKBLVxUw5aHb1n+YF2nm45DQ5EtEUzbsMKqEkBBrxqyqa29sKAV1v5VtNuGfCqKZva2gsDXm3lm3fLCrACia8AA14bNW3StDmNHT9JtIZNA3x4rR3eBRhbpGgxfQXf6rUbqFjxEmIMVMKiItY4rAFe4/aYA+DYr0BBcStsSghNnqTzZJU+y3/37h2559Z9ni8Pdw8P2h15QFyCz22rFk1N2qBS8cr1OwIk3rt3l0qXKKJv4yjAK69KPX7sKDWsX9fGLBkesmbNg9clfXpKmUJnHzBv4WJxmNrsWdNp0cIF4hoAOfxU/UsVow/v3+vXgIPujKNPvwHUvYfugDOMMXa0qcWEHJTKIbEc3uJguCqVdH688ujbfyB1695LXJo/dzaNGjlcf1uqSDUHaeXjG0Ng6RA5DGYOTEtwGFXiuXPqqthtjSlhM6huoA5G9+/bi1avWmFrV2rRshWNGj1OtN+6ZRN16aSrNpcD3tDJE2nKZN3fpXHI9Q5u0VR/WJsj91ynXiCFTZ0plhK5Zxe1aaWrXuZgBbSqAANerWbe+ffNgNf5c6jVHTDg1WrmnX/fDHidP4e8A1aAFUhaBRjwxkN/yaoAXQA7A+vUJBw8phTwRp02cw69exdHRQrqPt1HVSqqNRH9+vSkNatXGnTFp+dz5i3UVWXevkUBpYuL++lcXKhf/0GKPru4j8/BQ0J11beAu4C8iI1bdpCfXwHxs7dnbnr1ytDqAHAY8A6WD4DN+X08hCWCPADYANoQ69etpV49u+pvOwrwYgJ5dW3LZo0pKmqfos74HD5T5sx6W4P4VPDKB7xw+QbBoqFU8Wk/P2UAACAASURBVMJ0//498vDwpF2RUfTs6VPK7+tp9SlBX3j4QtOnT56IFwBygA9vWAB35Bb3/fJ5GYwpaYk+Af4lDCwgMCaqUTNlyizsIrAe+cuFWXPmU7XqNcV4A/v3oZUrPloT4Nq8BYsIz5bScye3jVCC/HJgCW9geARLAcuSipWr0KKF8xX1AUA/deac/qC1wgV89X8v0KNRk6Y0dcpkYRthHNgz+mbMpPusW+4RXbFSFZq/cLG4bs47GGD+3MVrhMPYoBlecLz/P0hvz54tPQh4QYCD3+A5jDkL+fnQX389tvrscANWQM0KMOBVc3bVvTcGvOrOr5p3x4BXzdlV994Y8Ko7v7w7VoAVcLwCDHjjoTEqIffuPyQgHgKVvMuWLqZ9kXsoOvoM5c9fgIqXLEmlSpfR+7HiEDQJ8Mo/xUdV7YB+vSg2Npb8/ctQoybNyMsrr341csCbx82NIvcdEiBs+dLFtHbNKrp48YKoLi1Vyp8mhIQKf1WE3CN1ytSZVLdeoLiOT9y7d+1EL148pwoVK9ON69fo/Plz1LN3X+rVu59o8/LlS+FlGxN9VkBfQOX2HTuLe5jbN6+bwefmjgS8cq0ACCLWraGpYaECfCIP5ctXpHqB9cnTy0vAX0BgREIAL0BkzLnL9PbtW8In9YhBQ4ZRx05daf/+vRTcvIlNT8mmrTspf34/0Tb67BkBW2GXAQg9c9Y8wjwIWGHAEkMe8jzgULee3TrTgQP7hQXH+AmTqWChwqI5/G+RY3nIK3QBiAcP7EcbN0RQqq+/pm7deup9lgE43VyzmexFqgDGjUXhC2jGtDDxnNSoWVscAAcobfxs4XfJCxe6bVi/jg4eiKJjRw/T//viC6pbL4j6DxisPyTNuBK7bLkKtGjJckJV8I7t22jv3t10/OhRevv2DeEQsyFDh+vhLvyPC+Tz0gNaPJuxF64Kf2TEqZMnqFXLpvoXGNB52Yo1elsJub2DtPmE7hn9ixYrTnm9fYTGf3/4QEWKFqfadepRrdp19P9tQKUyKpY5WAGtK8CAV+tPgPPunwGv8+ZO6ytnwKv1J8B598+A13lzxytnBViB5KEAA9545qF6jZo0MSRMVAbaEtevXaUK5fz1TQESJdBnqb8S4JW3xz+aJdAsXTeusESVJGwGjNuhvRwySlYO0jiAhBLUk67JPWOla44EvJhj0dIVVLZseasy2wt4caAbDnaLiYmm2jWqiPl27N4ngPugAX1pxfKlVteABgDxm7fu0oNHXDPO04MH96lC2dImvqyAlrv3HhCH2ZkLvBSoW6ua4iFnoVOmU72g+mb7Yh2ogsULCeMIDGogKsCVnhOprdwiQbomP+zMkkAAtMWL+IkXCFJIgNeasFh344aBdOzoEYOmgKywPJHWjGcW1bKff/Y5fZchg/46YDnmjouLM+if0D1jEMBn6cWH8fqxXsD7WTOnWdsa32cFNKEAA15NpFmVm2TAq8q0amJTDHg1kWZVbpIBryrTyptiBViBT6gAA94EiI3K2ZDQaVSteg1R6aoEee7cuU3hC+bR4kULDW7D93b5irX66kTpJkBUj66daNbcBQIe3751U3yqj0iVKhWNHR9ClSpXUQTLUmXviOFDTdaCg9TgWWq8ztCQiTQl9KN3KSo1YfVgDPlg64DqSFRJGod0iJU5G4PmLYLF3IgO7VrTzh3bTMa4dPWWyX7ljQARcRCci4uLSV9UUKNSdvy40fr1yT+/V7IrUEp3+JLlVK5cBQP/YskL2ccrjwGYtPa4wEZh87adlCXLDwZNATlOnzopDvtS8l5GY2iPw/zg02ycB1SC165RlZT8f6WJ4APctVtPEzgPMNyxfRu9B63SHvz9A2jO/HADOI12WCs8hY0rjnEPLxCmz5xDPr75DA76k8bHnnft3E7dunQ0sWFI/913NHFSKBUvUcrsyxJUK7dvEywsM5QClghTp8+iXK65Ff8GN25YL6rkJWsG40YJ2TPGUAK8+BuEXUTP7l1EBTwHK8AK6BRgwMtPgrMqwIDXWTPH62bAy8+AsyrAgNdZM8frZgVYgeSiAANeOzOBQ8jw+by3ty+9fv1KeOeeOH7MLMSTQB76FC1anN68fUO7dmy3CO7kS4Qfbz7f/OTm4SH8YS9dvCBsAMxBQ2k+VKN6euUVHruxMdGK3sGo2sW6SpQoRY8fP6IDUfsFtEoOAUCdL7+fgImPHz2k2JgY4YOcXAOQPqBsOXL38KSTJ47T0SOHLeZIvg/AXUDe4iVKEirAo/bvM/FPtrRvvEQoX76SeB737N5l87OFMQGo8SIhbdp0AggDsloLrNfT04vc3N0pR85c9PbNWzpx4hidi40RcMdaYE5vH19yd/cQLyLwfJ45c8rmPcMLuFDhwuSV15vi3sbR2TOnRf83b95Ym1rcj++e06ZNS/ABxrx//vkH7d+316wXt00L4EasgIoVYMCr4uSqfGsMeFWeYBVvjwGvipOr8q0x4FV5gnl7rAAr4HAFGPA6XGKegBVgBVgBVoAV0KYCDHi1mXc17JoBrxqyqM09MODVZt7VsGsGvGrIIu+BFWAFklIBBrxJqT7PzQqwAqwAK8AKqFgBBrwqTq7Kt8aAV+UJVvH2GPCqOLkq3xoDXpUnmLfHCrACDleAAa/DJeYJWAFWgBVgBVgBbSrAgFebeVfDrhnwqiGL2twDA15t5l0Nu2bAq4Ys8h5YAVYgKRVgwJuU6vPcrAArwAqwAqyAihVgwKvi5Kp8awx4VZ5gFW+PAa+Kk6vyrTHgVXmCeXusACvgcAUY8DpcYp6AFWAFWAFWgBXQpgIMeLWZdzXsmgGvGrKozT0w4NVm3tWwawa8asgi74EVYAWSUgEGvEmpPs/NCrACrAArwAqoWAEGvCpOrsq3xoBX5QlW8fYY8Ko4uSrfGgNelSeYt8cKsAIOV4ABr8Ml5glYAVaAFWAFWAFtKsCAV5t5V8OuGfCqIYva3AMDXm3mXQ27ZsCrhizyHlgBViApFWDAm5Tq89ysACvACrACrICKFWDAq+LkqnxrDHhVnmAVb48Br4qTq/KtMeBVeYJ5e6wAK+BwBRjwOlxinoAVYAVYAVaAFdCmAgx4tZl3NeyaAa8asqjNPTDg1Wbe1bBrBrxqyCLvgRVgBZJSAQa8Sak+z80KsAKsACvACqhYAQa8Kk6uyrfGgFflCVbx9hjwqji5Kt8aA16VJ5i3xwqwAg5XgAGvwyXmCVgBVoAVYAVYAW0qwIBXm3lXw64Z8Kohi9rcAwNebeZdDbtmwKuGLPIeWAFWICkVYMCblOrz3KwAK8AKsAKsgIoVYMCr4uSqfGsMeFWeYBVvjwGvipOr8q0x4FV5gnl7rAAr4HAFGPA6XGKegBVgBVgBVoAV0KYCDHi1mXc17JoBrxqyqM09MODVZt7VsGsGvGrIIu+BFWAFklIBBrxJqT7PzQqwAqwAK8AKqFgBBrwqTq7Kt8aAV+UJVvH2GPCqOLkq3xoDXpUnmLfHCrACDleAAW8iSZwqVSqKi4tLpNF4GLUo4JI+PT17+jRB27Gn77fffkvv37+nDx8+xHvuL774gr7++mt6+fJlvPtizf/9+y+9ePEi3n0///xzcs2dm/784w969epVvPvb0yFDhoz0bZo0dPvWzQQNY0+uEjQhd2IFnEQBBrxOkihepokCDHj5oXBWBRjwOmvmeN0MePkZYAVYAVbAPgUY8CZQv8JFilLvPv0pZ65cBDj05ZdfipHevXtHz549pU0b19OMaWEJgmQJXJJJt6xZs1H6776j169f080b1xNrWNWPExjUgAYNHkbrI9bSmNEjxX7nzFtIBQsWptbBzejcuViLGoybEELlK1SkjBkz0WeffUZ///03/fHH77RwwTwKXzDPYt9mzVtSh05dKEuWH8QzBTjy+PEjOnggivr06m6xr69vPpoYEkbZsmcXgBYB0Hr1ymVq1zaYnj97ZrZ/mjRpaM68cMrr7UNp06YV7d6+fUv37t6loUMG0KmTJxT7VqxUhVq3aUc+vvkoderUBEiL+O+//+ivvx7T+LGjad3a1WbnTZEiBY0aPY5q16lHKVOm1Lf7559/6Mb169S3d3c6f/6cTc/cqjXrydvHl7Zu2UQD+/ex2qdEyVI0fuJk+umnrPp1oxP+XpYtXSTWjn2YC3vybHVx3IAVUIkCDHhVkkgNboMBrwaTrpItM+BVSSI1uA0GvBpMOm+ZFWAFElUBBrzxlPOrr76iaTNmU5Wq1a32xD9st23dTF06tbfa1hENDh87RYC8b968IS/3XI6YQpVjAhQWL1GSJk+aQGFTQsQer9+6T8g9dISeSgG4uWnrTgJoNReLwhfQ8GGDFW8P+/kXatu+o9m+ly9dohrVKhLgp3EAtM6dH24AKuVtUBFbtVI5un//nklfAM7tu/bqwa5xA0DOzh3b0Y7tWw1uAUIfPxVt9Rk4cvgQNWkUZNIOLx8OHz0lwLClGDp4AC1dsshiG7xwWRuxSQD1o0cOU+OGgRbbjx47gQDTLcWjRw+peJECJnrbm2ergnEDVkBFCjDgVVEyNbYVBrwaS7iKtsuAV0XJ1NhWGPBqLOG8XVaAFUh0BRjwxkNSgJ2zsZfIxcVF3+vK5ct07lwMXblymTw8PEUFoatrbkJlIuLhwz+pSEHzwC8e08e7KQPeeEsmOly4fINgcVCyWCF68OC+yOuuyChhtZDf19PsoNNmzKFateuI+6gC3bB+HcVEnyX/MmWpZq3aevjas3sXcU8eVavVoNlzF4hLAKrbtm6hqP17RWVsvcD6hApbxJ7dO6lta0MwCUCKNUvVs8eOHqGdO7dT2jRpqW5gEOXMqYP7fz1+TAX9vE3WD0gLWIu4d+8uRaxbQ0+fPBEvMUqWKi2uA9Jg7/IqYDngBQw9feokXbxwgXLnzkNlAsqK6nEpRgwfalK9fOjoScqWLbtoEhMTTUsXh9PmTRuoZCl/ata8BVWoWFk/d+kSRUzgNCqtS5cuQ94+PpQ7j5uAuwhrgBf7QkU2AjYWK1csExW7z54+oxbBrah582D92qOi9lHLZo0NNLMnzwl7IrkXK+C8CjDgdd7caX3lDHi1/gQ47/4Z8Dpv7rS+cga8Wn8CeP+sACtgrwIMeOOh4IRJodSwURPRA1YM3bp0pN27dpiMAA/TkNBpVLtOXQL4YsAbD5GTuCmgZHTsJWFP4OmWU6xm8JCfhW3Cvn2R1KpFU7MrvHbzngD7sGQoV6akgKVSVK9Rk2bOni9+vXb1ClUsX8ZgnG07I8nb20dcMwbAAKkHj5wQFcQYO0+urAK4StF/4GDq0rWH+HXL5k3UtfPHinFAT4BUVHIjatWoQrExH6tu3T08aHfkAXEPNhIlihY0sCUICZ1KQfUbivsL58+lX0YM08+bzsWF1kVsojGjR9G+vXtMdOnTbwB179FbXMeLkMoVA/RtYANx7uI18fvdu3fIv2RRk/5jxk2kps1aiOuTJoyjaVNDDdpE7jtIedzcTfpZA7xbtu/WV1k3alCPAMTlAbgffe6ysMiQPwdSG3vybLJYvsAKqFwBBrwqT7CKt8eAV8XJVfnWGPCqPMEq3h4DXhUnl7fGCrACn0QBBrw2ypwzlyvtP3BEXyVYqUIZunrlisXeqPysUau2gFOISpWrUtGixcQBUlNCJyn2bd+hM2XOnJkuXDhvUuWJDvn9ClBwcBvK6epK6dOnpyd//UV3794Vnr8SZMOBT1279qBGTZrRN998Iz4xX7RQBxel2LghwsDbFPCwU+duhE/dc7m60pvXr0U1JipNDxzYr7jWJk2bi2plgMzFixZS+QqVKDCoPvnmy0+vX72mgwf2U/jC+QIcIrLnyEmtWrWhQkWKUoYMGejB/fuiWhQVlJaiQcPGFFC2HHl6elGKlCnpzu3bAsoZAz+M8eOPPwlPWMSSJYvo7p3bBOBeJqAcFSpcmN7FvaPly5YIf1ilaN22PQ0fMYqio89SnZpVRZOdu/eTp5eX8HU1t1ZUk06eMk2037A+gnp272wyvLxi1S+fl6iSRQB2xl64Kp6t3357ICCrcchfLgwZ1J+WLV2sb3Im+gJlyJhRQN+c2bIYwF80KlXan5avXCvaI5ctmjbS910QvkRfKds6uDntjdxtMDXWdOvu76I6+NmzZ5Tfx8Niroxv3rn/p9gXKprzerjqb8srlg8fOkhNG9c3GRd/L/MW6KwZYHUCmwh59OjZh4oULaa/hH0irAHe02fPU8ZMmURbH688ij7Z8qrm7D9l1s9hT57jJRw3ZgVUogADXpUkUoPbYMCrwaSrZMsMeFWSSA1ugwGvBpPOW2YFWIFEVYABr41yzl+4mOBzigBIbdWymY09PzbbsGkbFShYSFRIAsQpxeVrt8UBWbdv36KA0sX1TQDJ1q3fTIUKFzE77/Pnzymftzvh8KiVqyMsrm/mjKniECkEPGOXrVxr1oN1545t1KlDW5MDp06dPUeZMmUWnrTXrl0lP78CJnPiHqoz23XoSB06dtEDcnlDJXiH+99/n4VWrl5HuVxzK+4FlgNNGgcZgHZUTU+dPlu0HzZkoLDMACCWPt/H9R7dOtHGDet1bX7+hRr8X1U2fk+VKpWo3ESOACURqOhEf+zl33//Fdci1q4m2A5IMWvOfKpWvab4tV2bYMXKbhzo1aixrgK4f99etHrVCvEz7Bumz5wrft60cQN172rqwyvPqXEl8d0HD0VfgPRihf0Utbp97w8dpDWymZByCAiTK/sPioeKoXo4e/YcYlw8t5YOHjOeXJr35cuXAqZKgerf2PO6FySohi9cwMcEtA4aMow6duoq2nTu2FbYVlgKSQdrgHfp8tXkX0ZXTWxclSyNL3kuG1us2JNni4vnm6yAShVgwKvSxGpgWwx4NZBklW6RAa9KE6uBbTHg1UCSeYusACvgUAUY8NooL6p3JdBYtFB++vPPP2zs+bGZPYBXDpZQkYvDsgA4s2XPThkzZhLwDtddc/xIXl55acXqCEqXLp0ebKL6Uh6TJowVVaAZMmQkQD7JvxXtrl65TOnSuZCbu7v+utJBWRIclI/74cMHevnihfAwlcbEP/DlgBWQ8asUKQwO16pcIUD4GEuBimJUtQJ2IwAvYS0AuFiwUGHKnPl7cR0WGIUL+Or7yQGv8bxSIznglYP7+CTUGPJHbNiih+/IgdJBaHXqBVLY1Jlimqlhkylk4njxc+cu3WnAoCHiZ0sHikkA8/z5c1SjakXRHvk7E3NB/HzwQBQ1b6qzUzAOqWoVMNU9t873FnHp6i2RB+nlgFJfVNGimhbhX6qYqIq2JVANjpcSiFs3b1DZMiUNup08E6vPI6wQOrVvQ/C8RcBz+NDRU+IZhpa5c/5kUplsvAZbAa/cLgNjRO7ZRd27dtIfnodK9oGDdfAeh7shJ1LYk2dbNOM2rIDaFGDAq7aMamc/DHi1k2u17ZQBr9oyqp39MODVTq55p6wAK+AYBRjw2qjrxSs3hd2Bpepba0PZA3ilisIXL15Q0UL5KC4uTj8dAN0vo8aIT+3ln9DbcsgaKn1RHYpYs3ol9evTUz8uDsDaumOPvrIXUBFwUQo54AUY7t6lIx08GCVuAzzCkkACtPhHPipWfx46SBxshQidMp3qBek+zUdFLcCrFGHTZlGduvXEr5MnTaCwKSEG8uKQLByWhRj+8xC9BYUc8OIePGu3b9tKeyN30e1btyivtw/tjdwjwDAC2qVPrzsM7LsMGWjTlh2icrdMKd2n/z1796XmLYIJNgKwaJDi6dMneiCIa/IXAPJP+uWLDggoR4uXrRSX1q1dTX16dRc//zpmvJgDYalSVbI7wMFvOAAOIYeoW7dsoi6dPvrvyuc+cvw0/fSTzrs3R1YdHEfcvPObsLCwdBig3IcXB45JENYgIQq/yD1yx435lWbN1FlYSAELk3UbtogKaSkeP3ok7EZwsBxeEiB/qIjevy/S2nRkK+DFQBNDpojKbinwd33i+DHhByxVWcMmpV7t6vrn1d48W90AN2AFVKgAA14VJlUjW2LAq5FEq3CbDHhVmFSNbIkBr0YSzdtkBVgBhynAgNcGaVF9CriGsFTpaG2ohAJeVLMC8CIsfYZvPL81wAs7givX74hu5vxV5T6op0+dpMC6OhsChAR44SmMz+/lB3/h/rQZc6hW7TqirfHBYbiGKs3zl66L+9Fnz1CdWtXEz6j8he8rdI+JiabaNXTWGPKAJldv3BVt5R6ucsB7+dIlatSwHj03ql42l6d2HTrR0GEj6NTJExRUr5ZoBsDt4+MrwDcAuLmQfHAtvQDIl9+PNm/dKYaQr1nug9u4YaDwkFWKG7cfCPsIQH7fvG6iidwTdtXK5TSgn+5QM+OQw1aPPDnECwL5c23uoDOMM2LkaGrVuq0YEoAefsvWQm6vAGDu7ZlbsQIXEBfaSdXexuNWq1yeLl7UVShbi/gAXowFKw88L0oBuFu9SgWTW/bkGYOldvkI163th++zAmpQ4EPcK+qUJRX1dNX5Xid2RPz+nEbdekb/pkqb2EPzeBpX4N2H1/SqSSl6X+ejXVZiSpJi/RH6dtUxSvlV6sQclsdiBeh/cR+okfcoKpYtyCFqbLk0kXbemUVfpfr4gt4hE/GgmlPgy79f0KzGXlQ5r2P+P0OXFedo3fmX9FXKhP13980zHQ/gYAVYAVYguSrAgNeGzMgBK2wRCvp529DLtElCAS9Gio69JCoaEQCQ48eNFv9rKawB3uIlStKqNTov2kXhC2j4sMGKw0m+wMZ2CBLgNQeHcQhW7779xZjmKlMlaCn3HJaD0EMHDxA8Z5Vi4KChlCJFClF1CZ9fhBzwGh9GZi1pUjXzmF9H0pzZM0RzQOSUKVOSl3sug4pd47Fizl8hFxcXvU2G0lx583rT9l17xS054F2yfBWVKVNWXAdYNpdXJcDbrHlLGj12guhrbCcgX8OuPVHk4ekpLkmAV/5cK1koSP3hU9y2vc4X2BbA27hJMxo3QVdxDehfP7C24p7yuLlRxIatokIcVd3bt26hgHLlhY5SwFKiR7fOBB9oaxEfwDtm3ERq2qyFGPL4saOUMlUqypcvv4GVCEB76+BmBtXy9uQZc2V2VfZItrY3vs8KOKsCr5/+QW3S/eNQwDv2fhx9mUnnE87BCiSWAi9e/UFxjx8SfZZYIxqN8z+ir9N8R2kyZHXQBDysVhXAcxvkNsShgHffw2X0TXrl80S0qjvv234F/n5yi2bUz+0wwNt1xXnafJModbqMCVrsw5vRCerHnVgBVoAV+FQKMOC1UelrN+8JmCj53NrYzaCZPYAXFgzBrdoYjIdqUXxaD8uBkSOGGXxKjobWAC8OPRs89GcxpiXv1+OnoilLlh8I/rp5cn38h4g1wNuqTTsa8cuvYnxzgFcCqHLA27ptexo+YpTNEssBsz2AF9XEqCqWPJaz58hJBw8fN1vdLF+gpLWxBYK8TanS/rR85VpxacvmTdS1s85OYdLkMKrfoJH4GYf3wd9XKaQDy+D/jDUiAIYBiBEbItZRzx5dFPvCLgOWGwi5hYRk+/Dbbw+oRNGCin0nTAqlhv93EF3H9m1ox/atZnNTt14QTZmqg+OIQQP60orlS03a42XFqTPnhD0E/HfhwXzv3l3RDrYT4yeEkGvuj4eyWaugRj9bAa+8shw+1HgRgIBdR99+A6lFcGuxLgQsIwoV8NGv3548izm4gtfss8M31KkAV/CqM69a2JWo4G3uT+8DDf3jE2vvKdYeom+XH+EK3sQSlMfRK8AVvPwwOKsCXMHrrJnjdbMCrEByUYABr42ZOHriDP3440+idT4fD5s/+5cPbw/gxTjwagVoQ+WlccCrdFpYqIFXrTXAC4gKmIqwBO6iDh2jnDlzmfgPWwO8LYNb08hfx4rxzQFeqTpYDngBhQGHEbAjeP36lcUs3bxxQ3+4WHwAL6Cni0t6/diSFyzmRMAOAR7CgLawGZCietWKJgeNbdm+m3x984km5jx4a9aqTdNnzhVt5s6eSaN//UX8jCpnVDsjenTvTBvXRyjuVwKYVy5fpsoVA0QbQFvsA7F71w7hV6sU0oFmxpBeAuzGIFM+xszZ86h6DZ1lRdVK5ejSpYuKc8BHeNTocfoq2BHDh1L4gnmKbeX2CPPnzqZRI4ebtJN7E9tSOW8L4MXfDl7WwJ4CfzM4vM048DIDzzwqtxFyexF78mzxIeabrIBKFWAPXpUmVgPbYg9eDSRZpVtkD16VJlYD22IPXg0kmbfICrACDlWAAa+N8soPI5sxPYwmjBtjY8+PzSTAa6nKUwl4yicCmCpXviJVrFSZ/PwKUu48efTVhmiHSsgrVy6LLtYAL2AxqjMR48eOppkzpiruSbKHePPmjbAqkMJRgBeHX+EQLAR0ht62RnwAr1SVbevYUjvjw+ZwPXzxMpEX4xzIx+4/cDB16dpDXJIfDCff75xZM2jM6JEmS0I1674onTfvkcOHqEkjna8avGtR2YuQg1/jAaS9yv170UbKrTH4lffftjOSvL11VaySvYPx+HJIjecbB8hFrFtjVlr5oXT+pYqZAHN0lMNYWw43tAXwyg+lw4GByKVSyKH28mVLaPDAfqKZPXmO73PG7VkBNSjAgFcNWdTmHhjwajPvatg1A141ZFGbe2DAq828865ZAVYg8RRgwGujlk2aNqex4yeJ1rBpgA+vtcO7AGOLFC1GJ44fE/1Wr91AxYqXED/nzJZFVMQahzXAa9wecwAc+xXQfV4fNiWEJk/SebJKn+XDx9Q9t+7zfHm4e3jQ7sgD4hJ8blu1aGrSBrYUOIgNIBGf0JcuUUTfxlGAV16VCn/UhvWVD8JSSl18AK9L+vSUMoWuSnPewsXiMLXZs6bTooULxDUAcnyqDwD54f17/XQ46M44+vQbQN176A44wxhjR5taTMhBqRwSSC8WfgAAIABJREFUy+EtDoarUknnxyuPvv0HUrfuvcQl44pXqQrXHKSVj28MgaVD5DCu/OWAfG4JDpureJ0ydSbVrRcouuCZbh3cnPab8U2WxpUD3lLFC9P9+/eU0imqbfEMmptb3skWwFuocBGK2LBFdDN3gB/uyfVev24t9erZVfSxJ8+KG+SLrIDKFWDAq/IEq3h7DHhVnFyVb40Br8oTrOLtMeBVcXJ5a6wAK/BJFGDAGw+ZJasCdAHsDKxTk3DwmFLAG3XazDn07l0cFSmo+3QfVamo1kQoeYpWqlyV5sxbqKvKvH2LAkrrTm5O5+JC/foPUvTZxf2g+g0pJFRXfQu4C8iL2LhlB/n5FRA/e3vmplevDK0OAIcB0FApCTCX38dDWCLIA5/ct2jZSlySgy787ijAi7Hl1bUtmzWmqKh9ijqXKFmKMmXOrLc1iA/glQ944fINgkWDBBs9PDxpV2QUPXv6lPL76g4nsxToCw9faPr0yRPxAkAO8H/6KasA7sgt7vvl8zIYTtISfQL8SxhUtGJMWCxkypRZ2EVgPfKXC7PmzKdq1WuK8Qb270MrVywzGHvegkWEZ0vpuZPbRihB/jr1Ails6kzRF97A8AiWAvB7w+btemsKeOkG1a1JFy9esCYXhU2bRXXq1tM9pxvWU49unUz64BC2yH2HxPUHD+5TyWKFLI5rC+CFlqh4xv/iRQ28jP/667HJuBs3b9e/NOnQrrX+kDd782xVGG7ACqhMAQa8KkuohrbDgFdDyVbZVhnwqiyhGtoOA14NJZu3ygqwAg5RgAFvPGRFJeTe/Yf0HqMARDikaV/kHoqOPkP58xeg4iVLUqnSZfTQC4egSYBX/ik+qmoH9OtFsbGx5O9fhho1aUZeXnn1q5EDXgl0oUJz+dLFtHbNKgHRANhKlfKnCSGhlDnz96Kv3CNVXll55vQp6t61E7148ZwqVKxMN65fI3yi3rN3X+rVW/f5+cuXL4WXbUz0WQF9AZXbd+ws7mFu37xuFBcXp1+jIwGvXCsAAnzuPzUsVIBP5KF8+YpUL7A+eXp5CfgLCIxICOBFJW/MucvisC9Pt5xinEFDhlHHTl1p//69FNy8iU1PyaatOyl/fj/RNvrsGQFbYZcBCD1z1jzCPAhYYcASQx7yPODQuJ7dOtOBA/uFBcf4CZOpYKHCojn8b5FjecgrdAGIYSewcUMEpfr6a+rWrafeZ/n9+/fk5prNZC9SBTBuLApfQDOmhYnnpEbN2uIAOEBp42cLv8+YNVe0kWJq2GRxIJ25uHzpIh07ekTcLlCwEK3fuFX/t2RsTYFq6mUr11K6dOlE+19HjaB5c2YZDA3YmirV1wbPI345e+Y0AcpKYfwSRl5JDe/hxo0C6fq1a6I59grfaPgJI4xtSXDNnjybFYdvsAIqVYABr0oTq4FtMeDVQJJVukUGvCpNrAa2xYBXA0nmLbICrIBDFWDAG095q9eoSRNDwih16tQ29bx+7SpVKOevbwuQKIE+SwMoAV55e/yjGVWI8jCusETVKGwGjNuhjxwySlYO0liAhBLUk67JPWOla44EvJhj0dIVVLZseas62wt4caAbDnaTf7K/Y/c+AdwHDehLK5YvtboGNACI37x1lziYTQrjPKEStULZ0gagHG0B1HfvPSAOszMXeClQt1Y1xUPOQqdMp3pB9c32xTqGDh4gXkgYR2BQA1EBrvScSG23btlEXTrpDuSTwtb8SO2NPW8liC7dx0uEJ0/+EtBWAru4B9Ddomkjk3VH7jtIedzcrebG2OM3TZo0dOJ0rEGeAKZRbZ8hQ0ZxuB4Cfwe1qlcWL0LkYU+erS6WG7ACKlOAAa/KEqqh7TDg1VCyVbZVBrwqS6iGtsOAV0PJ5q2yAqyAQxRgwJsAWVE5GxI6japVryHAnHHgH7R37tym8AXzaPGihQa34Xu7fMVaypgpk8F1AKYeXTvRrLkLBDy+feum+FQfkSpVKho7PoQqVa6iCJalyt4Rw4earAUHqf06ZrzJOkNDJtKUUJ2nMAKVmrB6MIZ8sHVo1bIpnTp5wmRs2AagcticjQGqIDE3Qv6Zu3ygS1dvmexXfh/WAjgIzsXFxWR+VFCjUnb8uNH69cktB5TsCpTSHb5kOZUrV8HAv1jyQvbxyiMqm20N2Chs3raTsmT5waALnonTp05Sg6A6it7LaAztcZgffJqN84BK8No1qpKS/680Efxhu3braQLnAYY7tm9j0RfX3z+A5swPN4CeGBeQE57CxhXHuCc/cMwWfZQ8b+vWCxIVs4CuxoGK40kTxtHcOTqLCOPYs/cAubl7WJ0avtGwVJEHbE/Cps2kgADDamipDdbapWM7YQ2hFPbk2eqCuQEroCIFGPCqKJka2woDXo0lXEXbZcCromRqbCsMeDWWcN4uK8AKJLoCDHjtlBQHQOHzeW9vX3r9+pXwzsWhakoHqElTAd6hT9GixenN2ze0a8d2i+DOGEzl881Pbh4eAqxeunhB2ABYmw/VqJ5eeYXHbmxMtKJ3MKp2sa4SJUrR48eP6EDUfvrttwd2KpQ43QHS8+X3Ix/ffPT40UOKjYkxgXaJM1PijAJIH1C2HLl7eNLJE8fp6JHDFnMknxXPByBv8RIlCRXgUfv3mfgnW1olXiKUL19JPI97du+y+dnCmACXeJGQNm06AYRhCfEpAp7HsG1wc3On+w/uEyxFzsXG2KxZQteYNm1aKlioiLBUSfV1KjHniePHFX15leawJ88JXTP3YwWcSQEGvM6ULV6rXAEGvPw8OKsCDHidNXO8bga8/AywAqwAK2CfAgx47dOPe7MCrAArwAqwAqyAGQUY8PKj4awKMOB11szxuhnw8jPgrAow4HXWzPG6WQFWILkowIA3uWSC18EKsAKsACvACqhMAQa8KkuohrbDgFdDyVbZVhnwqiyhGtoOA14NJZu3ygqwAg5RgAGvQ2TlQVkBVoAVYAVYAVaAAS8/A86qAANeZ80cr5sBLz8DzqoAA15nzRyvmxVgBZKLAgx4k0smeB2sACvACrACrIDKFGDAq7KEamg7DHg1lGyVbZUBr8oSqqHtMODVULJ5q6wAK+AQBRjwOkRWHpQVYAVYAVaAFWAFGPDyM+CsCjDgddbM8boZ8PIz4KwKMOB11szxulkBViC5KMCAN7lkgtfBCrACrAArwAqoTAEGvCpLqIa2w4BXQ8lW2VYZ8KosoRraDgNeDSWbt8oKsAIOUYABr0Nk5UFZAVaAFWAFWAFWgAEvPwPOqgADXmfNHK+bAS8/A86qAANeZ80cr5sVYAWSiwIMeJNLJngdrAArwAqwAqyAyhRgwKuyhGpoOwx4NZRslW2VAa/KEqqh7TDg1VCyeausACvgEAUY8DpEVh6UFWAFWAFWgBVgBRjw8jPgrAow4HXWzPG6GfDyM+CsCjDgddbM8bpZAVYguSjAgDe5ZILXwQqwAqwAK8AKqEwBBrwqS6iGtsOAV0PJVtlWGfCqLKEa2g4DXg0lm7fKCrACDlGAAa9DZOVBWQFWgBVgBVgBVoABLz8DzqoAA15nzRyvmwEvPwPOqgADXmfNHK+bFWAFkosCDHiTSyZ4HawAK8AKsAKsgMoUYMCrsoRqaDsMeDWUbJVtlQGvyhKqoe0w4NVQsnmrrAAr4BAFGPA6RFYelBVgBVgBVoAVYAUY8PIz4KwKMOB11szxuhnw8jPgrAow4HXWzPG6WQFWILkowIA3uWSC18EKsAKsACvACqhMAQa8KkuohrbDgFdDyVbZVhnwqiyhGtoOA14NJZu3ygqwAg5RgAFvIsmaKlUqiouLS6TReBi1KOCSPj09e/o0Qduxp++3335L79+/pw8fPsR77i+++IK+/vprevnyZbz7fvXVV4S/hRcvXsS7b2J2SOfiQm/fvLF5/xkyZKQUKVLQb789SNAy7MlVgibkTqyAkyjAgNdJEsXLNFGAAS8/FM6qAANeZ80cr5sBLz8DrAArwArYpwAD3gTqV7hIUerdpz/lzJWLAIe+/PJLMdK7d+/o2bOntGnjepoxLSxBkCyBSzLpljVrNkr/3Xf0+vVrunnjemINq/pxAoMa0KDBw2h9xFoaM3qk2O+ceQupYMHC1Dq4GZ07F2tRg3ETQqh8hYqUMWMm+uyzz+jvv/+mP/74nRYumEfhC+ZZ7NuseUvq0KkLZcnyg3imAEceP35EBw9EUZ9e3S329fXNRxNDwihb9uwC0CIAWq9euUzt2gbT82fPzPZPkyYNzZkXTnm9fSht2rSi3du3b+ne3bs0dMgAOnXyhNm+gJuzZs8n33z5KXXq1KKdtOe+vXvQiePHbHpmoNWpM+coZapUNKBfL9q2dYtN/dAIulWuUo3cPTyE7p9//rnoe/rUSQqsW9NgHMyD9g0aNaFcuVzFmnFNiqdPntDiRQtpathk+u+//8yuwZ4827wxbsgKOLkCDHidPIEaXj4DXg0n38m3zoDXyROo4eUz4NVw8nnrrAArkCgKMOCNp4yoUJw2YzZVqVrdak/8w3bb1s3UpVN7q20d0eDwsVMEyPvmzRvycs/liClUOeaqNeupeImSNHnSBAqbEiL2eP3WfULuoSP0VApAxU1bdxJAq7lYFL6Ahg8brHh72M+/UNv2Hc32vXzpEtWoVpH++ecfkzYVK1WhufPD9WDTuMGrV6+oaqVydP/+PZO+P/2Ulbbv2qsHu8YNADk7d2xHO7ZvNelbvUZNCps2S/+CQ2nxy5ctocED+1l9Vnr37U89evYR7UYMH2oVhqMdqm6RrwIFCymOf+vmDSpbpqTBvYCAcrR42Uqr6zl//hzVqFrRpJ29ebY6MTdgBVSkAANeFSVTY1thwKuxhKtouwx4VZRMjW2FAa/GEs7bZQVYgURXgAFvPCQF2Dkbe4lcXFz0va5cvkznzsXQlSuXycPDk7x9fMnVNbcAT4iHD/+kIgXNA794TB/vpgx44y2Z6HDh8g2CxUHJYoXowYP7Iq+7IqOE1UJ+X0+zg06bMYdq1a4j7qNqesP6dRQTfZb8y5SlmrVq6+Frz+5dxD15VK1Wg2bPXSAuAaiiejVq/17y8c1H9QLrEypsEXt276S2rVsa9EUFKtYsVa0eO3qEdu7cTmnTpKW6gUGUM6cO7v/1+DEV9PM2Wf/xU9GiYhhx795dili3hlDFipcYJUuVFtcBabB3eRUwqsNPno7Vw11U+a5auVwA8Dp16xm8BEEVLappjaNPvwGUO3ce8itQUL8GtLEF8OLlxdYdeyhdunRiWFQNYw34e3z54iUVKFiQ3r6No25dOhhMKwe8yC9yFBsTQ/+j/1H58hUF3JcidPJEmjJ5kkF/e/KcsCeSe7ECzqsAA17nzZ3WV86AV+tPgPPunwGv8+ZO6ytnwKv1J4D3zwqwAvYqwIA3HgpOmBRKDRs1ET1gxdCtS0favWuHyQjwMA0JnUa169SlR48eMuCNh8ZJ3RTQMjr2krAn8HTLKZYzeMjPwjZh375IatWiqdklXrt5T4B9gMZyZUoKWCoFKl1nzp4vfr129QpVLF/GYJxtOyPJ29tHXDMGwICvB4+cEBXEGDtPrqwCuErRf+Bg6tK1h/h1y+ZN1LXzx4pxWA8cOnpSVHIjatWoQrEx0fq+sDTYHXlA/A4biRJFCxrYEoSETqWg+g3F/YXz59IvI4bp+65bv5lgVYJYsjichg0ZaLAn/K3gbwaBv4PCBXxNtLtx+4Fi9a8tgHfj5u0CDCMuXrxATRvXt8nv2MfHl8ZNnCwqqZWgc+cu3WnAoCFiXNhx1KxWyWDd9uTZ7MPDN1gBlSrAgFelidXAthjwaiDJKt0iA16VJlYD22LAq4Ek8xZZAVbAoQow4LVR3py5XGn/gSN6r85KFcrQ1StXLPZG5WeNWrVp0oRxol2lylWpaNFihM/lp4QaVgVKA7Xv0JkyZ85MFy6cN6nyRJv8fgUoOLgN5XR1pfTp09OTv/6iu3fvCs/ffXv3iGHgidq1aw9q1KQZffPNN+KT/kULdXBRio0bIgifoEsBeNipczcB7HK5utKb16/p4oULYg0HDuxX3GeTps1FtTJAJjxLy1eoRIFB9YUX6+tXr+nggf0UvnC+AIeI7DlyUqtWbahQkaKUIUMGenD/vqgWXblimUUdGzRsTAFly5GnpxelSJmS7ty+TahSnTZVBw/l8eOPP1HrNu3EpSVLFtHdO7cJwL1MQDkqVLgwvYt7R7AM+Ouvx4pztm7bnoaPGEXR0WepTs2qos3O3fvJ08uLBvbvY3at8O2dPGWaaL9hfQT17N7ZZHyA1mzZsovrfvm8RJUsAp63sReuimcLh3wBshqH/OXCkEH9adnSxfomZ6IvUIaMGQX0zZktiwH8RaNSpf1p+cq1oj1y2aJpI33fBeFLqELFyuL31sHNaW/kboOpsaZbd38X1cHPnj2j/D4e+vsXr9wUzxcOcnNzzWYyLxpGHTxK+NtBKFXxohoWzzHixx9/1Le1BnjzuLlR5L5Dot/jR4+oUAEdHE+MwCFxV67fEUMZ58OePCfG2ngMVsDZFGDA62wZ4/VKCjDg5WfBWRVgwOusmeN1M+DlZ4AVYAVYAfsUYMBro37zFy4m+JwiAFJbtWxmY8+PzTZs2ia8QvEJPkCcUly+dlsckHX79i0KKF1c3wSgDRWThQoXMTvv8+fPKZ+3O5UoWYpWro6wuL6ZM6bS+LGjRRt4xi5budasB+vOHduoU4e2JgdOnTp7jjJlyiw+yb927Sr5+RUwmRP3/EsWpXYdOlKHjl0MDrOSGsOnGB6vxvH991lo5ep1lMs1t+JeYDnQpHGQAWhH1fTU6bNFe1SUwjIDgFh+iFaPbp1o44b1ujY//yIO25ICcA+HmyFHsFlAwK4B/bGXf//9V1yLWLta2AhIMWvOfKpWXXeYV7s2wYqV3eMnTqZGjXUVwP379qLVq1aIn2HfMH3mXPHzpo0bqHtXUx9eeU6NK4nvPngo+gKkFyvsp6jV7Xt/6CCtkc2ElENAmFzZf1A8VAzVw9mz5xDj4rmFNoDmN+/8Jq6Zg9K4N2TocGrfUQe758+dTaNGDldcHy7KK36tAV7pbwn9jKuSzU5g4w15PqKi9lHLZo0TJc82Ts/NWAFVKcCAV1Xp1NRmGPBqKt2q2iwDXlWlU1ObYcCrqXTzZlkBVsABCjDgtVFUVO9KoLFoofz0559/2NjzYzN7AK8cIKIiF4dlAXBmy56dMmbMJOAdrrvm+JG8vPLSitURwptUApuovpTHpAljRRVohgwZCZBP8m9Fu6tXLlO6dC7k5u6uv37k8CFq0ijIYAwJDsovoprz5YsXBKsDaUz8A18OWAEZv0qRguAdK0XlCgHCx1gKVBSjqhWwGwF4CWsBwMWChQpT5szfi+vGn/7LAa/xvNLYcsArB/fxSagx5I/YsEUP35EDpYPQ6tQLpLCpM8U0U8MmU8jE8eJnuSXA0MEDaOmSRYpLkUCu/PAv5O9MzAXR/uCBKGreVGenYBynz56njJkyCWsR99y6KmLEpau3RB6klwNKfectWCSqzxH+pYqJqmh5lSv+FvA3oRTyitddO7dT+7atzMocH8ArHXqHangfrzxUunQZ4VecPUcOevLkLzp18qS+ot3WvOKwuaAGDalrt556yF+6RBHhwyyFPXm2dR3cjhVQkwIMeNWUTW3thQGvtvKtpt0y4FVTNrW1Fwa82so375YVYAUSXwEGvDZqKn2Obqn61tpQ9gBeCWi9ePGCihbKR3FxcfrpAOh+GTVGfGov/4TelkPWUOmL6lDEmtUrqV+fnvpxYSeAQ6xgIYCoUbWiga2DHPACDHfv0pEOHowSbQEeYUkgAVr8Ix8Vqz8PHUTv378XbUKnTKd6QfXFz6ioBXiVImzaLHFQF2LypAkUNiXEQN458xbqD/Ea/vMQvQWFHPCiAzxrt2/bSnsjd9HtW7cor7cP7Y3cI8AwAtqlT/+d+Pm7DBlo05YdonK3TKli4lrP3n2peYtgOnzooLBokOLp0yeiolcK+QuA7D9lVnwU5Id7rVu7mvr06i7a/TpmvJgD0bljW3HAmlLcuf+nAOUAjjgADgFLDVR2I7Zu2URdOn3035WPceT4aQLARB5yZNXBcQSqcFGNa+kwQLkPL6pZUdWKkOAwYLaXey59XuXzwlIEmiJgq9GogS6nSmEr4IUG0AKB/KKqOmXKlCZD4pmExsa2E8YNZ8yaS2XLVTB44QDbB/Q1tiexJ89mN843WAEVK8CAV8XJVfnWGPCqPMEq3h4DXhUnV+VbY8Cr8gTz9lgBVsDhCjDgtUFiOVCyVOlobaiEAl5UswLwIix9hm88vzXAK6/CNPZXlcZC5SYqOBE4kAo+qlJIgFeqopQf/IU28FetVbuOaG58cBiupUmThs5fui7uR589Q3VqVRM/o/IXvq/QPSYmmmrX0FljyAOaXL1xV7QFfMUBWwg54L186RI1aliPnhtVL5vLU7sOnWjosBF06uQJCqpXSzQD4MahXADfAODmQvLBtfQCIF9+P9q8dacYQr5muQ9u44aBdPTIYcVppAPJAPl987qJNvIK2VUrl9OAfr0V+0buO0h53NzFPY88OcQLAvlzfffuHWGloRQjRo6mVq3bilsA9PBbRkjexPj5+rWrVKlCgIHFA8Bx/wGDxQF1CGP/X+O5bAW8rrnz0L4oU42kFwc46E4K5APPDw5LMxdyn2C0AbBeH7GWUE0tjSn1tSfPGMPlB2W7EbOL4xusgJMrEPfyCbXP+P+op2smh+wk4vfnNPruS/os7ccXVw6ZiAfVnAKv3zyhF42L0/vAkg7Ze4q1hyjd6pOUOrXOh56DFUgsBf5+8ZIaeA6nYtkMv7xLrPG3XJpIex4soFRpdAUSHKxAoinw+k+a2dCdKud1zP9n6LLiPG288o5SfpMuQUt+9vuNBPXjTqwAK8AKfCoFGPDaoLQcsMIWoaCftw29TJskFPBipOjYS8L2AAEAOX7caPG/lsIa4C1eoiStWqPzol0UvoCGDxusOJzkC2xshyABXnNwuEfPPtS7b38xprnKVAlayj2H5SD00MEDBM9ZpRg4aCgB5snhpBzwGh9GZi1pUjXzmF9H0pzZM0RzQGRUh6JCVV6xazxWzPkr5OLiorfJUJorb15v2r5rr7glB7xLlq+iMmXKiusAy+byqgR4mzVvSaPHThB9Ye0AKKkUu/ZEkYenp7glAV75c33r5g0qW0b5H7HwKW7bXucLLAe8OOgMkBcgF4FqWths4IC+zN9/T1mzZtPfw30cbjd4YD+zabAV8Mo9cgG7Ud0dvmCeHi6j8nzhoqV6oI0XEN6e5sFqt+69qGix4uJwwly5XPVV52/fvhWV3FK1NxZuT57RP7OrskeytWeT77MCzqrA66d/UJt0/zgU8I69H0dfZtL5hHOwAomlwItnv9HTBoUcCnjTR8RQ2nTKZzIk1j54HO0pEPf4IQW5DXEo4N33cBl9k56fXe09XY7d8d9PbtGM+rkdBni7rjhPm28SpU6XMUEbeXgzOkH9uBMrwAqwAp9KAQa8Nip97eY9ARMln1sbuxk0swfwwoIhuFUbg/FQnYhP62E5MHLEMJNqQ2uAF4eeDR76sxjTkvfr8VPRlCXLDwR/3Ty5surXYA3wtmrTjkb88qtobw7wSgBVDnhbt21Pw0eMslliOWC2B/CimhhVxZLHcvYcOeng4eNkDmDLFyhpbWyBIG9TqrQ/LV+5VlzasnkTde2ss1OYNPn/s3fW8VGc3du/2rctXghFStEQJAlJILgGTXB3dw/uVtwJIbi7uzskuJMESXALLVacom1/7+fc+8wyuzu7O5vNkuzuOf88m5lbrzP7fMp3z1x3COo3aCQ+0+F95O+rFNJBaXLPWwLDBIgptmzaiJ49NNWy+kF2GQQ+KeQWEpLtg6mD0iZNCRYHoFF06tAWe3bv1A5fvkIA5i9cogNy5XPLfZDNHZymFvA2btIMEyZpLDuM/TBB8Pp8+BWtvUg+Hw9xwJyaoLFpDopr0dGo6F9G282aPNMgPyVJrmYJ3IYVcBgF/vnyCYGZU9oU8I68+Qyff/haue8w4vFG4lWBL//3BX+3Km9TwJtseRh+/E7zIykHKxBXCnz/7/do4jPepoB3160Q/PAj//9uXOWMx9EokASfMbeZt80Ab9fVl7Du4jP88ONPsZL88wfNAdwcrAArwAokVAUY8KrMzMkzF5AxYybROq+3u+rX/uXDWwN4aRzyaiUIRvBKP6h6ckZIsI5XrTnASxCVYCqFPriTjx927BRcXbOLCknXLF9/rTcHeFu2aoNRY8aLoYwBXqk6WA54CQoTHKagCs13796azNLtW7e0h4tZAngJerq4fH01MkWKFNo56cOPP/4oqjkJUpIvrxRVK/uLg8bksWP3fvj45BWXjHnwyitP58+djbFjRor2VOVM1c4UPbp3wdbNmxT3Kx2yJoeOBG1pHxT79+1B+7YaL1/9OHshUhxMpw/pJcBOnrMF83sr9p09dwGqVtNYVlQOKIeoqKs67eiHj779BqJQkaJImzYtPn38iJiHMdi+dYvwd65XX3PwW4N6tXDm9CmjuVQLeOWV0Af270W7Ni0Vx5QfDte7Zzds2rje5HMkvyl5buv/oGNNnlVPzg1ZAQdSgD14HSiZTrYV9uB1soQ70HbZg9eBkulkW2EPXidLOG+XFWAF4lwBBrwqJZUfRjZrZggmTRinsufXZhLgNVXlqQQ85RORb2q58v7wD6gIX98CyJEzp071ZMUKZcRr8hTmAK8cqE0cPxazZ01X3JNkD0EWBWRVIIWtAG+Dho0xOWiamIZ0Jr3VhiWAV6rKVju21E7/sDm6vmTZSpEXCnkO5GP3HzgYXQN7iEvyg+Hk+503ZxbGjR1lsCS57+yJ48fQpJHGV408iKmyl0K/2lQ+iLRXuX/cUkjNAAAgAElEQVQv3Zdyqw9+5X137T0ILy8N/JXsHdRqJj/czSOXq87hgPpjqAW8avdM1hVkYUFh6vlW2ovcl7dQfh+tTYM1eVarGbdjBRxJAQa8jpRN59oLA17nyrcj7ZYBryNl07n2woDXufLNu2UFWIG4V4ABr0pNmzRtjvETp4jWVNVHPrzmDu8iGFu4SFFt1eK6DVtQtFhxMQZVwlJFrH6YA7z67WkOAse++QuIW+RHOnWKxpNVei3/48ePyJ1D83q+PHK7u2P/wSPiEvnctm7R1KANVWdeu3lPgMQHD+6jVPHC2ja2ArzyqtTTp06iYf3aKrOke8iaOQ9e8lxNnCixGHvB4mXiMLW5c2Zi6eJF4hoBcvKX9StZFJ8/fdKugQ66048+/Qagew/NAWc0xvixhhYTclAqh8RyeEsHw1UK0PjxyqNv/4Egr1iKhfPnYvSo4drbUhWuMUgrH18fAkuHyNFgxsC0BIepSjyHq6aKXU3UqlMXIdNni6YHD+xD29YtTHZTC3hpEGnP+j86yCdYtnINypQpJy6Z8jZWWlTkletIlSqVqN7OnvU37XfVmjyr0YzbsAKOpgADXkfLqPPshwGv8+Ta0XbKgNfRMuo8+2HA6zy55p2yAqyAbRRgwGuBrpJVAXUh2Fm3VnWdA5jkQ5E36ozZ8/Dx4wcULqB5dZ+qUqlak6Jfn55Yv26NzuwBFStj3oLFmqrMu3dQplQxcT+Viwv69R+k6LMr4FX9hggK1lTfEtwlyEuxdcce+PrmF5/pkCk6bEoeBIcJ3pHlA8HmfN7uwhJBHqPHTkCLlq3Fpc0bN6BXz0DtbVsBXppAXl3bslljhIUdVswUWQCkS59ea2tgSQWvfMAr0bdAFg0lixVCTMwDuLt7YN/BMOHbSv6t5oL6kocvafri+XPxA4Ac4GfKlFkAd8ot3ffN66kzpKQl9SnjV1zHAoLGJIuFdOnSC+BI65H/uDBn3kJUqVpdjDewfx+sWb1SZ2y5VYH+cye3jVCC/HJIS97A5BGsJgiWb9yyQxxQR2su6OuNv/56ZrKrJYB34+btKFS4iBhv8cL5GDlimM7Y5KV8MTJK2GzQ/PSDCv0vRYeOXXD+/FlcvHBecT3y79OrV6+Q1yu3tp21eVajHbdhBRxJAQa8jpRN59oLA17nyrcj7ZYBryNl07n2woDXufLNu2UFWIG4V4ABrwWaUiXkodBjAuJRUCXvyhXLcPjgAYSHX0C+fPlRrEQJlCxVWuvHSoegSYBX/io+VdUO6NcLkZGR8PMrjUZNmsHTM492NXLAmzNXLhw8fEz4p65asQwb1q/F1atXRHVpyZJ+mBQULPxVKeQeqdOmz0btOnXF9Qvnz6F7YGe8fv0KFfwr4tbNG7h8+RJ69u6LXr37iTZv3rwRXrYR4RcF9CWo3KFTF3GP5vbJk0vnFXtbAl65VgQIyD91ekiwAJ+Uh/Ll/VGnbn14eHoK+EsQmCI2gJcqeSMuReP9+/cgGwGKQUOGoVPnQISGHkKr5poDxszFtp17kS+fr2gWfvGCgK1kl0EQevacBaB5KMgKgywD5CHPAx3q1rNbFxw5EiosOCZOmooCBQuJ5uR/SzmWh7xClwDx4IH9sHXLJiRJmhTduvXU+ix/+vQJudyyGGxDqoalG3Ro2awZIeI5qVa9pjgAjqC0/rMlDVKkaDHk8fIW8335/BmFixRDzVp1UKNmLe33ZN3a1ejfV1N9rB/048VP/zvooHadetpD/4KnTsbqlStE889fPhtUy6dJkxb0/NHa6PkgT+MJ48cIqE5wecmyVUibLp3orz+/ZBtx//49rF+7BmfOnBL5csuRA4HdeoGgt/Qdl/9gIq3dmjybe4b4PivgaAow4HW0jDrPfhjwOk+uHW2nDHgdLaPOsx8GvM6Ta94pK8AK2EYBBrwW6lq1WnVMDgpBsmTJVPW8eeM6KpTz07YlkCiBPlMDKAFeeXv6R7MEoaTr+hWWVDVKNgP67ai9HDJKVg7SOATJJKgnXZN7xkrXbAl4aY6lK1ajbNnyZnW2FvDSgW50sFtERDhqVqsk5tuz/7AA7oMG9MXqVRrQaC4IxG/fuU8czCaFfp4ePoxBhbKlDLxoCajvP3REHGZnLOhHgdo1qhgcckbtg6fNRJ169Y32pXUMHTxA/CChH3XrNRAV4ErPidR2545t6NpZcyCfPIYMHa79EUD/Hs1JIHvO7BlG13Xr7kNRZWsqjFmMyG0rjD27VI1NVdnykACvuXxeuXIZVStVMGhmTZ7Nzcn3WQFHU4ABr6Nl1Hn2w4DXeXLtaDtlwOtoGXWe/TDgdZ5c805ZAVbANgow4I2FrlQ5GxQ8A1WqVhOVrkpg6969u1iyaAGWLV2sc5t8b1et3qCtLpRuUtVmj8DOmDN/kYDHd+/cFq/qUyRJkgTjJwYhoGIlRbAsVfaOGD7UYC302vuYcRMN1hkcNBnTgjWewhRUqUmvputDPrJ1aN2yKc6dPWMwNtkGUOWwMRuD5i1aibkpOrZvg717dhmMEXX9jsF+5Y3ItmLSlGC4uLgY9KUKaqq8nDhhrHZ9cssBJbsCpXQvWb4K5cpV0PEvlryQvT1zispmtUE2Ctt37UWGDL/pdCHIcf7cWTSoV0vRe5kak/Z0mB/5NOvngSrBa1arDCX/X2ki8ocN7NbTAM4TIO3UoS1CDx80ug0/vzKYt3CJDpymxgT7yVNYv+JYGkgJ8NLz+McfD9Gze1dRDW4qrAG8NG6t2nXEd0MO1ek66b1i+VIMGzLQYHo6eK1j564gr2eloPVPmzrF5OF+1uRZ7bPE7VgBR1CAAa8jZNE598CA1znz7gi7ZsDrCFl0zj0w4HXOvPOuWQFWIO4UYMBrpZZ0CBm9Pu/l5YN3794K79wzp08ZhXgSyKM+RYoUw9/v/8a+PbtNgjv5EumV9rw++ZDL3V2A1airV4QNgNKBbVI/goVUjerhmUd47EZGhCt6B1PVLq2rePGSePbsKY6EhQpQlxCCQHrefL7w9smLZ0+fIDIiQvggJ9QgSF+mbDnkdvfA2TOncfLEcZM5ku+D8kWQt1jxEqAK8LDQwwb+yab2TT8ilC8fIJ7HA/v3qX62aEwCl/RDQsqUqQQQJksIU5EyZUr4B1RCxoyZ8PjxI4QePmTUl9qWuaKq2hIl/ZAieQqcPn1SWJKY+k7QWuiZyp3bXXwvsrm6IubBA+HNe/PGDdVLtSbPqifhhqyAHSvAgNeOk+fkS2fA6+QPgB1vnwGvHSfPyZfOgNfJHwDePivAClitAANeqyXkAVgBVoAVYAVYAVZASQEGvPxc2KsCDHjtNXO8bga8/AzYqwIMeO01c7xuVoAVSCgKMOBNKJngdbACrAArwAqwAg6mAANeB0uoE22HAa8TJdvBtsqA18ES6kTbYcDrRMnmrbICrIBNFGDAaxNZeVBWgBVgBVgBVoAVYMDLz4C9KsCA114zx+tmwMvPgL0qwIDXXjPH62YFWIGEogAD3oSSCV4HK8AKsAKsACvgYAow4HWwhDrRdhjwOlGyHWyrDHgdLKFOtB0GvE6UbN4qK8AK2EQBBrw2kZUHZQVYAVaAFWAFWAEGvPwM2KsCDHjtNXO8bga8/AzYqwIMeO01c7xuVoAVSCgKMOBNKJngdbACrAArwAqwAg6mAANeB0uoE22HAa8TJdvBtsqA18ES6kTbYcDrRMnmrbICrIBNFGDAaxNZeVBWgBVgBVgBVoAVYMDLz4C9KsCA114zx+tmwMvPgL0qwIDXXjPH62YFWIGEogAD3oSSCV4HK8AKsAKsACvgYAow4HWwhDrRdhjwOlGyHWyrDHgdLKFOtB0GvE6UbN4qK8AK2EQBBrw2kZUHZQVYAVaAFWAFWAEGvPwM2KsCDHjtNXO8bga8/AzYqwIMeO01c7xuVoAVSCgKMOBNKJngdbACrAArwAqwAg6mAANeB0uoE22HAa8TJdvBtsqA18ES6kTbYcDrRMnmrbICrIBNFGDAaxNZeVBWgBVgBVgBVoAVYMDLz4C9KsCA114zx+tmwMvPgL0qwIDXXjPH62YFWIGEogAD3oSSCV4HK8AKsAKsACvgYAow4HWwhDrRdhjwOlGyHWyrDHgdLKFOtB0GvE6UbN4qK8AK2EQBBrw2kZUHZQVYAVaAFWAFWAEGvPwM2KsCDHjtNXO8bga8/AzYqwIMeO01c7xuVoAVSCgKMOBNKJngdbACrAArwAqwAg6mAANeB0uoE22HAa8TJdvBtsqA18ES6kTbYcDrRMnmrbICrIBNFGDAG0eyJkmSBB8+fIij0XgYR1HAJXVqvHzxIlbbsaZvihQp8OnTJ3z+/NniuX/44QckTZoUb968sbjvTz/9BPouvH792uK+1nT4/vvvkSHDb/jzzz9AQImDFWAFEoYCDHgTRh54FZYrwIDXcs24R8JQgAFvwsgDr8JyBRjwWq4Z92AFWAFWQK4AA95YPg+FChdB7z794Zo9O9KkSYsff/xRjPTx40e8fPkC27ZuxqwZIbGCZLFckkG3zJmzIPUvv+Ddu3e4fetmXA3r8OPUrdcAgwYPw+ZNGzBu7Cix33kLFqNAgUJo06oZLl2KNKnBhElBKF/BH2nTpsN3332HL1++4NGjP7F40QIsWbTAZN9mzVuiY+euAlbSM0Vw5Nmzpzh6JAx9enU32dfHJy8mB4UgS9asAtBSEGi9fi0a7du1wquXL432//nnnzFvwRLk8fJGypQpRbv379/jwf37GDpkAM6dPWO0L4HoOXMXwidvPiRLlky0k/bct3cPnDl9SrFvPt/8WLhomarn6dChAxjQr7e2LenTo1cflClbDr/8kgYElqWg7+Dp0yfRq0cgXjx/rjj+kuWr4O3lo2ruAP8y2nEmTQlGuXIVVPWjRqdOnUS3rh1Vt+eGrICjKcCA19Ey6jz7YcDrPLl2tJ0y4HW0jDrPfhjwOk+ueaesACtgGwUY8FqoK4GkGbPmolLlqmZ70j9sd+3cjq6dO5hta4sGx0+dA0Hev//+G565s9tiCoccc+36zShWvASmTpmEkGlBYo8378QIiEg6kp5KQVWk23buBYFWY7F0ySIMHzZY8faw30eiXYdORvtGR0WhWhV//PPPPwZt/AMqYf7CJaA1KMXbt29ROaAcYmIeGNzOlCkzdu87pAW7+g3+++8/dOnUHnt27zToW7VadYTMmKP9gUNp7lUrl2PwwH4GtwIqVsaCRUtVPUMREeGoWa2Stu3W7bvhm7+Ayb607mqV/XH16hWDdqfPhQuIriZKFiuk1W3H7v0m86s/3q2bN1C+bCk103AbVsAhFWDA65BpdYpNMeB1ijQ75CYZ8DpkWp1iUwx4nSLNvElWgBWwoQIMeC0Ql+DZxcgouLi4aHtdi47GpUsRuHYtGu7uHvDy9oGbWw4kSpRItHny5DEKFzAO/CyY3uKmDHgtlkx0uBJ9C2RxUKJoQTx8GCPyuu9gmLBayOfjYXTQGbPmoUbNWuI+VU1v2bwREeEX4Ve6LKrXqKmFrz27dxX35FG5SjXMnb9IXCIwuWvnDoSFHoK3T17UqVsfVGFLcWD/XrRr01KnL1XN0poluHvq5Ans3bsbKX9Oidp168HVVQP3/3r2DAV8vQzWL4edDx7cx6aN60XFKv2IUaKkBk4SpKG9y6uAqTr87PlILdylKt+1a1YJAF6rdh2dH0Hq1q6O8+fO6swtB7yk7Z+P/jSq7eFDBzBl0gTtfQnwklbhFy8IiPv0yRNUrFwFHh6eIJsJCqpg9smTy+ieaV9RUVdNPiiNG9TRWk707T8Q5cr7m2xPVduennlEGwa8sfsOci/HUYABr+Pk0tl2woDX2TLuOPtlwOs4uXS2nTDgdbaM835ZAVYgrhVgwGuBovR6dsNGTUQPeg28W9dO2L9vj8EIBJeCgmegZq3aePr0CQNeCzSO76YELcMjo4Q9gUcuV7GcwUN+F7YJhw8fROsWTY0u8cbtBwLskz1BudIlQLBUCqp0nT13ofjzxvVr8C9fWmecXXsPwsvLW1zTB8BUaXr0xBlRQUxj58yeWcdntv/Awega2EP03bF9GwK7fK0YJ9h47ORZUclNUaNaJURGhGvnzu3ujv0Hj4i/yUaieJECAjBLERQ8HfXqNxR/Ll44HyNHDNPe27h5O8iqhGL5siUYNmSgzp7ou0LfGQr6HhTKr2uJIAe8M6YH6wBcc8/BuAmTBVgePfJ3AxsUAt7nLl7W2kVQ5bI+xJWgNvkU53LTaBNX0b5jZwwdNkIMt23rFnQPNF6VHVdz8jisQEJVgAFvQs0Mr8ucAgx4zSnE9xOqAgx4E2pmeF3mFGDAa04hvs8KsAKsgGkFGPCqfEJcs7sh9MgJ4alKEVChNK5fu2ayN1V+VqtRUwuuCGgVKVIU9Lr8tOApin07dOyC9OnT48qVywZVntSBfEtbtWoLVzc3pE6dGs//+gv3798Xnr9U5UhBnqiBgT3QqEkzJE+eXLzSv3SxBi5KsXXLJly+fEn7N8HDzl26CWCX3c0Nf797h6tXrog1HDkSqrjWJk2bi2plApnLli5G+QoBqFuvvvBifff2HY4eCcWSxQsFOKTIms0VrVu3RcHCRZAmTRo8jIkR1aJrVq80qWODho2F1ypVZiZKnBj37t4FVakSFNSPjBkzoU3b9uLy8uVLcf/eXVHNWbpMORQsVAgfP3wEWQb89dczxTnbtOuA4SNGIzz8ImpVryza7N0fCg9PTwzs38foWsm3d+q0GaL9ls2b0LN7F4PxCbRmyZJVXPfN66n1dSXP28gr18Wz9ccfDwVk1Q/5jwtDBvXHyhVfvWsvhF9BmrRpBfR1zZLB4JCxkqX8sGrNBjEk5bJF00ba4RctWY4K/hXF321aNcehg/t1pqY13bn/p6gOfvnyJfJ5u2vvX712WzxfdJAbQVKlw83Cjp4EfXco9Kt4rQG8Jh8YANNCZonqZYoJ48ZgzmxNbqSwFeAlnUgX8kCm7x3pRd93DlbAWRVgwOusmbf/fTPgtf8cOusOGPA6a+btf98MeO0/h7wDVoAViF8FGPCq1H/h4mUgn1MKAqmtWzZT2fNrsy3bdiF/gYKiQpJAnFJE37gr4NDdu3dQplQxbRMCbVQxWbBQYaPzvnr1Cnm9cqN4iZJYs26TyfXNnjUdE8ePFW3IM3blmg1GPVj37tmFzh3b6VR2Ur9zFy8hXbr04pX8Gzeuw9c3v8GcdM+vRBG079gJHTt11QJyeUPyKSaPV/349dcMWLNuI7K75VDcC1kONGlcTwe0U9X09JlzRXuqKCXLDALEEpin6z26dcbWLZs1bX4fiQb/q8qmv5MkSSIqQylHZLNAQXYN1J/28u+//4prmzasw4jhQ7XrmjNvIapUrS7+bt+2lWJl98TJU9GosaYCuH/fXli3drX4TPYNM2fPF5+NVXzKc6pfSXz/4RPRl0B60UK+ilrdffBIA2n1bCakHBKEyZ71N4Mc02BUPZw1azYxLj23pA1B89v3/hDXjEFpujdk6HB06KSB3Qvnz8XoUcO167Ml4JUDcao6pupjedgK8I4YNRat27QTU61YvhRDBw9QzAdfZAWcRQEGvM6SacfbJwNex8ups+yIAa+zZNrx9smA1/FyyjtiBViBb6sAA16VelP1rgQaixTMh8ePH6ns+bWZNYBXDhCpMpAOyyLAmSVrVqRNm07AO7ruli2j8P9cvW4TUqVKpQWbVH0pjymTxosq0DRp0gpQK/m3Urvr16KRKpULcuXOrb1+4vgxNGmkqYiUQoKD8mtUzfnm9WuQ1YE0Jv0DXw5YCTL+lCiR9hV66l+xQhnhYywFVRRTVSvBbgqCl2QtQHCxQMFCSJ/+V3Fd/9V/OeDVn1caWw545eDekoTqQ/5NW3Zo4TvlQOkgtFp16iJk+mwxzfSQqQiaPFF87tK1OwYMGiI+ExAkMKgUEsilyms6PIyC8nchQnOI2NEjYWjeVGOnoB/nL15G2nTphLVI7hyaKmKKqOt3RB6kHweU+tJBaARjKfxKFhVV0QTCr928J67Rd4G+E0ohr2zet3c3OrRrrW0mB7xUVb1y+VL8+9+/uHvnjqgKtibk31cl/18J8NI8lQLKIVnSpPjw8YOYWyl3atZCPsnhl6IF/CbrBzqQL7ZjqZmP27AC9qAAA157yBKvUUkBBrz8XNirAgx47TVzvG4GvPwMsAKsACtgnQIMeFXqJ72Obqr61txQ1gDem3dihAcrHRpVpGBefPjwQTsdAbqRo8eJV+3lr9CrOWSNKn2pOpRi/bo16Nenp3ZcshPYueeAtrKXoKLc1kEOeAkMd+/aCUePhon+BB7JkkACtPSPfKpY/X3oIAG/KIKnzUSdevXFZ6qoJfAqRciMOeKgLoqpUyYhZFqQjrzzFizWHuI1/PchWgsKOeClDuRZu3vXThw6uE/Auzxe3jh08IAAwxSkXerUv4jPv6RJg2079ojK3dIli4prPXv3RfMWrXD82FFh0SDFixfPRUWvFHKgmDVTesVHoUyZcli2co24t3HDOvTp1V18HjNuopiDokunduKANaW4F/NYgHI6+I0OgKMgSw2q7KbYuWMbunb+6r8rH+PE6fPIlEnj3ZstswaOU1AVLgFJU4cByn14WzZrjLCww6KvBIcJYhLMlPIqn5csRUhTCrLVaNRAk1MKOeDV3y99zwjojx0zEnR4myUh14RymcddYxEhD/nBcvr33rx5g9WrlovnTmlPxtYifyaDgyYbtWGxZC/clhWwdwUY8Np7Bp13/Qx4nTf39r5zBrz2nkHnXT8DXufNPe+cFWAF4kYBBrwqdCSoRnCNwlSlo7mhYgt4CewS4KUw9Rq+/vzmAK+8ClPfX1UaSw7hzp87K3xUpZAAL3mMenvmNPBgnTFrHmrUrCWa6x8cRteo4vFy1E1xP/ziBdSqUUV8pspf8n0l3SMiwlGzmsYaQx6kyfVb90Vbgq9NG2tAsRzwRkdFoVHDOnilV71sLE/S4VgEFOvVqSGaEeD29vYR4JsAuLGQfHBN/QCQN58vtu/cK4aQr1nug9u4YV2cPHFccZpbdx8K+wiC/D55cok28grZtWtWYUC/3op9Dx4+ipy5cot77jmziR8I5M/1/fv3hJWGUshtBwjQk98yheRNTJ9v3riOgApldCweCBz3HzBYHFBHoe//awrwyteh9OwYywP5GZ8+F6H9YWHShHGYNTPEoLkpwCs1JuuJksUKKdpW6A9I8Jy+b6QpfR+8PJRtRVx+U75u9MHiG6yAnSvw4c1zVE7+L+r85mKTnRx7/g5rn37E/3NRtj2yyaQ8qFMo8O7v53jduBg+1S1hk/0m2nAMqdadRbJkqW0yPg/qvAp8ef0GDTyGo2gW3Tfv4kqRHVGTceDhIiT5WVMgwcEKxJkC7x5jdsPcqJgnXZwNKR+o6+rL2HrtIxInTxWr8V/+eStW/bgTK8AKsALfSgEGvCqUlgNWskUo4Oulopdhk9gCXhopPDJK2B5QEICcOGGs2cpGc4C3WPESWLte40W7dMkiDB82WHFfki+wvh2CBHiNweEePfugd9/+YkxjlakStJR7DstB6LGjR0Ces0oxcNBQJEqUCHI4KQe8+oeRmUuaVM08bswozJs7SzQniJw4cWJRoSqv2NUfK+LyNbi4uGhtMpTmypPHC7v3HRK35IB3+aq1KF26rLhOYNlYxaoS4G3WvCXGjp8k+pryfN13IAzuHh6inQR45c/1ndu3ULa08j9iyae4XYdOoq8c8ObMlUtAXgK5FFQtTTYbdEBf+l9/RebMWbT36D7ZMAwe2E8rDR26N3DQEESEh4uD+ujgu19//RX58xdE3foNtZXjVAHoX94PN2/cMJlCehaOHD+NDBl+E+3ooMKqlSoo9unbfyCSJ0+BK5cv4emTJwLMkt1Jrdp1hQWIZCmiZE2iNKD03aZ7pmw20rspeySbezb5Pitgrwq8ffEIid49w0/faw4ojev48t//4fvEP+P/pdP4hHOwAnGlwOuXf+BFg4I2BbypN0UgZSr+cSKucsbjaBT48OwJ6uUaYlPAe/jJSiRPzc8uP3Nxq8CX53cwq34OmwHewNWXsf02kCxV2lgt/Mnt8Fj1406sACvACnwrBRjwqlT6xu0HAiZKPrcqu+k0swbwkgVDq9ZtdcajalF6tZ4sB0aNGGbwOrk5wEuHng0e+rsY0xSUkvuV5syeWbsGc4C3ddv2GDFyjGhvDPBKAFUOeNu064DhI0arllgOmK0BvFRNTFXFkscyAcijx0/DGMCWL1DSWt8CQd6mZCk/rFqzQVzasX0bArto7BSmTA1B/QaNxGc6vI/8fZVCOihN7nlLYJgAMcWWTRvRs4emWlY/yC6DLDco5BYSku2DqYPS5AeWderQFnt279QOX75CAOYvXKIDcuVzy32Q6VC6JYsWqM7rodBjyJFTU6k8d85MjB9r/JkgyBx69KR2j1TpTjYbllgsSAsrV94fi5euEJCXPHrlz7zS4uU2FM+ePkXB/N5G9/hTkuSq988NWQFHUOCfL58QmDklerrZphpn05+vMPLmM3z+IZEjyMV7SEAKfPm/L/i7VXmbAt5ky8Pw43eaH0k5WIG4UuD7f79HE5/xNgW8u26F4Icf+f934ypnPI5GgST4jLnNvG0GeLuuvoR1F5/hhx9/ipXknz9oDuDmYAVYAVYgoSrAgFdlZk6euYCMGTOJ1nm93VW/9i8f3hrAS+OQV2vDRk2EF69+UPXkjJBgHa9ac4CXICrBVAp9cCcfP+zYKbi6Zhevqrtm+fprvTnA27JVG4waM14MZQzwStXBcsBLUJjgMAXZEbx799Zklm7fuqU9XMwSwEvQ08Xl66uRKVKk0M5JH8gOgTyECVKSl6sUVSv7i4PG5LFj9374+OQVl4x58FavURMzZ88XbebPnS38ZSmoygX7m3kAACAASURBVJmqnSl6dO+CrZs3Ke5XOmTtWnQ0KvqXEW0I2tI+KPbv24P2bTVevvpx9kKkOJhOH1hKgN0UmJw9dwGqVtNYVlQOKIeoqKs6w9MPH337DUShIkWRNm1afPr4ETEPY7B96xbh71yvvubgtwb1auHM6VMmcym/WaRoMazfuFVcunD+HOrUqqbYl3yU9x86IjyGKehHj7J+xU1WXJtbhPTMUztzhyrK23Zs3wZ79+wyNzzfZwWcRgH24HWaVDvcRtmD1+FS6jQbYg9ep0m1w22UPXgdLqW8IVaAFfjGCjDgVSm4/DAy8vQkb09LQwK8pqo8lYCnfB6qKqQKQ/+AivD1LYAcOXPqVE9WrFBGvCZPYQ7wEiym6kyKiePHYvas6YpbkuwhyKKArAqksBXgbdCwMSYHTRPTGPNQNaa9JYBXqsq2NI/6h81R/yXLVoq8UMhzIB+7/8DB6BrYQ1ySHwwn3++8ObMwbuwogyW55ciJw2Eab165bQB5EFNlL4Uc/OoPIO1V7t9LbaTcmqpU3bX3ILy8NFWpkr2DWs3kh7t55HLVORzQ3BgE3K9Ea7yujFlI0GF+5C/skloD6u/euY2K/mVjVbkrXw9Zl5CFCYUp24zKVaph7vxFoh3ZTJQqXtjctvg+K+BUCjDgdap0O9RmGfA6VDqdajMMeJ0q3Q61WQa8DpVO3gwrwArEgwIMeFWK3qRpc4yfOEW0JpsG8uE1d3gXwdjCRYpqqxbXbdiCosWKizGoEpYqYvXDHODVb09zEDj2zV9A3AqZFoSpUzSerNJr+R8/fkTuHJrX8+WR290d+w8eEZfI57Z1i6YGbag689rNe+IwM32AZSvAK69KPX3qJBrWr60yS7qHrJnz4CUomDhRYjH2gsXLxGFqZAWwdLEG2BEgp1f//UoWxedPn7RroNf/9aNPvwHo3kNzwJkxOwE5KJVDYjm8pYPhKgVo/HjlQZ6x3br3EpcWzp+L0aOGa29LVbjGIK18fH0ILB0iR4MZA9MSHKYq8Ryumip2NVGrTl2ETJ8tmh48sA9tW7dQ003bhoA5gXMKpefT0zMPNm3dqT1QLTz8ImrXqGJw2J9Fk/6vsbxiP5dbFqPAWO6NbQoEx2YN3IcVcAQFGPA6Qhadcw8MeJ0z746wawa8jpBF59wDA17nzDvvmhVgBeJOAQa8FmgpfxWbYGfdWtVBB48pBXmjzpg9Dx8/fkDhAppX96kqlao1Kfr16Yn169bodA2oWBnzFiwWMFVuWZDKxQX9+g9S9NmlAegV+KBgTfUtwV2CvBRbd+yBr29+8dnLIwfevtW1OiA4TPCOLB8INufzdheWCPIYPXYCWrRsLS5t3rgBvXoGam/bCvDSBPLq2pbNGiMs7LCizmQBkC59eq2tgSUVvPIBqVKUKkZLFiuEmJgHcHf3wL6DYXj54gXy+WgOJzMV1Jc8fEnTF8+fix8A5ACf7AMIuFNu6b5vXk+d4SQtqU8Zv+I6FhA0JlkspEuXXsBLWo/8x4U58xaiStXqYryB/ftgzWoNFJViwaKloGeLQv+5k9tGKEFUOaQlb2DyCFYTBMs3btkhDqijNRf09RaHqMmDgPXSJQsNnkupjVT9S3/LD76jvytVrgraN+lJIfc0Nrc++m6SpsaeKf+ASli4eJkYhqw58ri7KQ7ZvmNnDB02Qty7evUKqlQsb25qvs8KOJ0CDHidLuUOs2EGvA6TSqfbCANep0u5w2yYAa/DpJI3wgqwAvGkAANeC4SnSkg6+IngEAVV8q5csQyHDx5AePgF5MuXH8VKlEDJUqW1fqzkByoBXvmr+FRVO6BfL0RGRsLPrzQaNWkGqkiUQg54c+bKhYOHjwn/1FUrlmHD+rUCKFF1acmSfpgUFCz8VSnkHqnTps9G7Tp1xXXyMO0e2BmvX79CBf+KuHXzBi5fvoSevfuiV+9+os2bN2+El21E+EUBfQkqd+jURdyjuX3y5NJ5xd6WgFeuFQGCTRvXY3pIsACflIfy5f1Rp259eHh6ClBHEJgiNoCXKnkjLkXj/fv3IBsBikFDhqFT50CEhh5Cq+ZNVD0l23buRb58vqJt+MULAraSXQZB6NlzFmhtBMgKgywx5CHPAx3q1rNbFxw5EiosOCZOmooCBQuJ5uR/SzmWh7xClwDx4IH9sHXLJiRJmhTduvXU+izTgWNUjaofUgUwXV+6ZBFmzQgRz0m16jXFAXASRFXy3yWf3Dxe3mK+L58/o3CRYqhZqw5q1Kyl/Z6sW7sa/ftqqo/lQQe8UW7DQg9hz+5dwnrixYvn4vszZtwE/Pqrxu+Znsu8Xrl1gLnkRyxpQt8JY0Fz0PeGnmGK6TPniueEvptr16zCqZMnxPcjw28Z0aVrN+FzLX3Hx4wegQXz5hgMTZpcvXZbWz1coVwp3LxxQ9Vzwo1YAWdSgAGvM2XbsfbKgNex8ulMu2HA60zZdqy9MuB1rHzyblgBVuDbK8CA10LNq1arjslBIaCDndTEzRvXUaGcn7YpgUTJL9RUfyXAK29P/2iWIJR0Xb/CkqpGyWZAvx21l0NGycpBGocgoQT1pGtyz1jpmi0BL82xdMVqlC1rvirSWsBLB7rRwW4REeGoWa2S2N6e/YcFcB80oC9Wr1qhJtUgEL995z4t9KNO+nl6+DAGFcqWMvCiJaBOB4XRYXbGgn4UIAsC/UPOqH3wtJmoU6++0b60jqGDB4gfJPSjbr0GogJc6TmR2u7csQ1dO2sO5JPHkKHDtT8C6N+jOQlkz5k9Q3FdBHhNzUmd6FmkHx2OHzuqM4Yc8KpJDtlsSAfjSYDXXD/6AYSsNJRi5OhxaNW6rbhFgLhRgzrmhuP7rIBTKsCA1ynT7hCbZsDrEGl0yk0w4HXKtDvEphnwOkQaeROsACsQjwow4I2F+FQ5GxQ8A1WqVhOVrkpg6969u1iyaAGWLV2sc5t8b1et3oC06dLpXKeqzR6BnTFn/iIBj+mwKHpVnyJJkiQYPzEIARUrKYJlqbJ3xPChBmuhasQx4yYarDM4aDKmBWs8hSmoUpOsHvSBG9k6tG7ZFOfOnjEYm2wDqHLYmI1B8xatxNwUHdu3wd49uwzGiLp+x2C/8kZkLUAHwbm4uBj0pQpqqpSdOGGsdn1yywEluwKldC9ZvgrlylXQ8S+WvJC9PXOKClK1QTYK23ftRYYMv+l0Ichx/txZNKhXS9F7mRqT9nSYH/k06+eBqk1rVqsMJf9faSLyAQ7s1tMAzhMY7tShLUIPHzS6DT+/Mpi3cIkOnKbGBFjJU1i/4lgaSAnw0vP4xx8P0bN7V1ENbizIjqSUXxmjP5bQjyOtWjQFQXH9sBTwStYbNA55+/4+fCSyuWZXBMzkNUzfDzpMUSkoN7fuPhQV9JTXYoXzm8yL2meH27ECjqgAA15HzKpz7IkBr3Pk2RF3yYDXEbPqHHtiwOsceeZdsgKsgO0UYMBrpbZ0CBm9Pu/l5YN3794K79wzp08ZhXgSyKM+RYoUw9/v/8a+PbtVAyLy483rkw+53N0FWI26ekXYACgd2CZtjYAUVaN6eOYRHruREeGK3sFUtUvrKl68JJ49e4ojYaEC1CWEIJCeN58vvH3y4tnTJ4iMiBCHviXUIEhfpmw55Hb3wNkzp3HyxHGTOZLvg/JFkLdY8RIgyBkWetioT63S/ulHhPLlA8TzeGD/PtXPFo1FgJp+SEiZMpUAwkrVwvI5U6ZMCfKszZgxEx4/foTQw4eM+lIby1XmzFnEs+nmlgP0fbp44TzOnTtjUOUc17mmueh5onmzZsuGmAcPcPr0KfHjCgcrwArEjQIMeONGRx7l2yvAgPfba84zxo0CDHjjRkce5dsrwID322vOM7ICrIBjKcCA17HyybthBVgBVoAVYAUSjAIMeBNMKnghFirAgNdCwbh5glGAAW+CSQUvxEIFGPBaKBg3ZwVYAVZATwEGvPxIsAKsACvACrACrIBNFGDAaxNZedBvoAAD3m8gMk9hEwUY8NpEVh70GyjAgPcbiMxTsAKsgEMrwIDXodPLm2MFWAFWgBVgBeJPAQa88ac9z2ydAgx4rdOPe8efAgx44097ntk6BRjwWqcf92YFWAFWgAEvPwOsACvACrACrAArYBMFGPDaRFYe9BsowID3G4jMU9hEAQa8NpGVB/0GCjDg/QYi8xSsACvg0Aow4HXo9PLmWAFWgBVgBViB+FOAAW/8ac8zW6cAA17r9OPe8acAA974055ntk4BBrzW6ce9WQFWgBVgwMvPACvACrACrAArwArYRAEGvDaRlQf9Bgow4P0GIvMUNlGAAa9NZOVBv4ECDHi/gcg8BSvACji0Agx4HTq9vDlWgBVgBVgBViD+FGDAG3/a88zWKcCA1zr9uHf8KcCAN/6055mtU4ABr3X6cW9WgBVgBRjw8jPACrACrAArwAqwAjZRgAGvTWTlQb+BAgx4v4HIPIVNFGDAaxNZedBvoAAD3m8gMk/BCrACDq0AA16HTi9vjhVgBVgBVoAViD8FGPDGn/Y8s3UKMOC1Tj/uHX8KMOCNP+15ZusUYMBrnX7cmxVgBVgBBrz8DLACrAArwAqwAqyATRRgwGsTWXnQb6AAA95vIDJPYRMFGPDaRFYe9BsowID3G4jMU7ACrIBDK8CA16HTy5tjBVgBVoAVYAXiTwEGvPGnPc9snQIMeK3Tj3vHnwIMeONPe57ZOgUY8FqnH/dmBVgBVoABLz8DrAArwAqwAqwAK2ATBRjw2kRWHvQbKMCA9xuIzFPYRAEGvDaRlQf9Bgow4P0GIvMUrAAr4NAKMOB16PTy5lgBVoAVYAVYgfhTgAFv/GnPM1unAANe6/Tj3vGnAAPe+NOeZ7ZOAQa81unHvVkBVoAVYMDLzwArwAqwAqwAK8AK2EQBBrw2kZUH/QYKMOD9BiLzFDZRgAGvTWTlQb+BAgx4v4HIPAUrwAo4tAIMeOMovUmSJMGHDx/iaDQexlEUcEmdGi9fvIjVdqzpmyJFCnz69AmfP3+O1dzx0en777+HW44cePzoEd6+fRsfS4j1nNbkKtaTckdWwA4UYMBrB0niJSoqwICXHwx7VYABr71mjtfNgJefAVaAFWAFrFOAAW8s9StUuAh69+kP1+zZkSZNWvz4449ipI8fP+LlyxfYtnUzZs0IwZs3b2I5g/XdMmfOgtS//IJ3797h9q2b1g/oJCPUrdcAgwYPw+ZNGzBu7Cix63kLFqNAgUJo06oZLl2KNKnEhElBKF/BH2nTpsN3332HL1++4NGjP7F40QIsWbTAZN9mzVuiY+euyJDhN/FMERx59uwpjh4JQ59e3U329fHJi8lBIciSNSuSJk0q2r5+/RrXr0WjfbtWePXypaoM9uk3AK3btEdMzANUDiinqo9+oyZNm4vvB8WsWdON7jtRokQYPXYCataqg8SJE2uH+eeff3Dr5k307d0dly9f0hmenun9B8IsWlfdOjVw/95dbZ8ly1fB28tH1RgB/mXw4vlzg7bW5FnVxNyIFXAABRjwOkASnXQLDHidNPEOsG0GvA6QRCfdAgNeJ008b5sVYAXiTAEGvBZK+dNPP2HGrLmoVLmq2Z70D9tdO7eja+cOZtvaosHxU+dAkPfvv/+GZ+7stpjCIcdcu34zihUvgalTJiFkWpDY4807MaDck46kp1JQBeq2nXtBoNVYLF2yCMOHDVa8Pez3kWjXoZPRvtFRUahWxR8EP/XDP6AS5i9cAlqDUlBFLMFagramgipRj504C6oAph8nvD1zWpxj0m7Nuk0CblOsWL4UQwcPMBiHQO3xk+eQLFkyk3NQXxpDiixZsuLYybMWratm9cqICL+o7XP6XLiA6GqiZLFCOrpZm2c1c3IbVsBRFGDA6yiZdL59MOB1vpw7yo4Z8DpKJp1vHwx4nS/nvGNWgBWIWwUY8FqgJ4Gdi5FRcHFx0fa6Fh2NS5cicO1aNNzdPeDl7QM3txygykSKJ08eo3AB48DPguktbsqA12LJRIcr0bcE4CxRtCAePowRed13MExYLeTz8TA66IxZ81CjZi1xn6qmt2zeKKCiX+myqF6jpha+9uzeVdyTR+Uq1TB3/iJx6b///sOunTsQFnoI3j55Uaduffz888/i3oH9e9GuTUudvgRIac0S3D118gT27t2NlD+nRO269eDqqoH7fz17hgK+Xgbrz1+gIBo1boocOXLCJ28+bTV6bAAvwddDYccFDJfCGOAlSEvtKSIiwrFi2RJs37YFJUr6oVnzFqjgX1HcI0BUqnhhLWRNmTIl1qzfbDa5WbNmQ/LkyUU7Y4CXxo6KumpyrMYN6ohKaCmsybPZRXMDVsDBFGDA62AJdaLtMOB1omQ72FYZ8DpYQp1oOwx4nSjZvFVWgBWwiQIMeC2QddKUYDRs1ET0ICuGbl07Yf++PQYj/PDDDwgKnoGatWrj6dMnDHgt0Di+m1JVaXhkFN6/fw+PXK5iOYOH/C5sEw4fPojWLZoaXeKN2w8E2CdLhnKlS+DBg/vatlWrVcfsuQvF3zeuX4N/+dI64+zaexBeXt7imj4ApkrToyfOCGhKY+fMnllATyn6DxyMroE9xJ87tm9DYJevFeNURUsglSq5KWpUq4TIiHCduUeMGovWbdoZ7MtSwEtQ/MTpCyAAKw8lwEttLl29IZrdv38PfiWKGMw/bsJkNG3WQlyfMmkCZkwPtujxkEA9AfN83u46kFaq4CWf4lxuGm3UhjV5VjsHt2MFHEUBBryOkknn2wcDXufLuaPsmAGvo2TS+fbBgNf5cs47ZgVYgbhVgAGvSj1ds7sh9MgJ7WvnARVK4/q1ayZ7U+VntRo1BZyiCKhYGUWKFBUHSE0LnqLYt0PHLkifPj2uXLlsUOVJHfL55kerVm3h6uaG1KlT4/lff+H+/fvC8/fwoQNiTHrNPjCwBxo1aSYqGOmV/qWLNXBRiq1bNul4mxI87NylG8hbOLubG/5+9w5Xr1wRazhyJFRxreSzStXKBDKXLV2M8hUCULdefVEF+u7tOxw9EoolixcK/1mKrNlc0bp1WxQsXARp0qTBw5gYbNq4HmtWrzSpY4OGjVGmbDl4eHgiUeLEuHf3LqhKVQn4ZcyYCW3athfjLV++VPiuEnAvXaYcChYqhI8fPmLVyuX4669ninO2adcBw0eMRnj4RdSqXlm02bs/FB6enhjYv4/RtZJv79RpM0T7LZs3oWf3LgbjyytWffN6an1dCXZGXrkunq0//niI4kUKGPSV/7gwZFB/rFyxTNvmQvgVpEmbVkBf1ywZdOAvNSpZyg+r1mwQ7SmXLZo20hmf8iZpRjeKFisuNLME8NLajxw/DaqapQgOmoxeffqJz0qAV16xfPzYUTRtXN9gz/R9WbBIY81AViddOmnyqiZ69+2PHj37iKYb1q9F394aAC5FbAGvNXlWs25uwwo4mgIMeB0to86zHwa8zpNrR9spA15Hy6jz7IcBr/PkmnfKCrACtlGAAa9KXRcuXgbyOaUgkNq6ZTOVPb8227JtF+h1eKooJBCnFNE37ooDsu7evYMypYppmxBA27h5OwoWKmx03levXiGvV24UL1FSeKCaitmzpmPi+LGiCXnGrlyzwaDyUuq/d88udO7YTqxbHucuXkK6dOmFJ+2NG9fh65vfYEq6R9WZ7Tt2QsdOXbWAXN7QGLz79dcMWLNuI7K75VDcClkONGlcTwe0U9X09JlzRfthQwYKywwCxJIfLF3v0a0ztm7RvOJPvrcN/leVTX8nSZJEWBTQXslmgYIqU6k/7eXff/8V1zZtWIcRw4dq1zVn3kJUqVpd/N2+bSvFyu6Jk6cKKwSK/n17Yd3a1eIz2TfMnD1ffN62dQu6Bxr68Mpzql9JfP/hE9GXQHrRQr6KWt198EhYOJizmaDOEZeixY8ElgDe1Ws3okTJUmLuCePG4OTJ49i+c6/4WwnwpnJxQeRlzQ8kVA1fKL+3wYGEg4YMQ6fOgaJNl07thG2FmqAqaqrepR8tPn/+DC+PHKBKXXnEFvBak2c1a+c2rICjKcCA19Ey6jz7YcDrPLl2tJ0y4HW0jDrPfhjwOk+ueaesACtgGwUY8KrUlap3JdBYpGA+PH78SGXPr82sAbxysEQVuXRYFgHOLFmzIm3adALe0XW3bBnh6ZkHq9dtQqpUqbRg8+XLlzrrnTJpvKgCTZMmLQjUSv6t1O76tWikSuWCXLlza6+fOH4MTRrV0xlDArzyiwTU3rx+DbI6kMakf+DLAStBxp8SJdI5XKtihTLCx1gKgnNU1Uqwm4LgJVkLEHgtULAQ0qf/VVwnC4xC+X20/eSAV39eqZEc8MrBvSUJ1Yf8m7bs0MJ3yoHSQWi16tRFyPTZYprpIVMRNHmi+Nyla3cMGDREfNY/UEy+JgnkXr58CdUq+4tblL8LEVfE56NHwtC8aUPFbZy/eBlp06UTMDV3Do3vrbGwFPCOHD0OrVq3FcNt3rgBvXoGIm8+X5OAl9qevRCpzSNZYnTu0BZhYYfFOOQ5fOzkOfEMk5Y5XDMZVCYbW39Q8HTUq6/RYe6cmRg/drRBUwnw0vNaKaAckiVNig8fP+DunTuKuZMGsCbPljxf3JYVcBQFGPA6Siadbx8MeJ0v546yYwa8jpJJ59sHA17nyznvmBVgBeJWAQa8KvW8eu22sDswVX1rbihrAO/NOzGiIpEOeypSMC8+fPignY4O2SLIRodSkdeoFGoOWaNKX6oOpVi/bg369emp7U8HYO3cc0Bb2UtQkeCiFHLAS2C4e9dOOHo0TNwm8EiWBBKgpX/kU8Xq70MHaaspg6fNRJ16mlfzqaKWwKsUITPmoFbtOuLPqVMmIWRakI688xYsRqXKVcW14b8P0VpQyAEv3SPP2t27duLQwX0C3uXx8sahgwcEGKYg7VKn/kV8/iVNGmzbsUdU7pYuWVRc69m7L5q3aAWyESCLBilevHguKnqlkP8AkDVTesVHoUyZcli2co24t3HDOvTp1V18HjNuopiDwlSl6r2YxwKU08FvdAAcBVlqUGU3xc4d29C181f/XfkiTpw+j0yZNN692TJr4LixsATw0rpp/RRyWws1gJcsTDZu2SEqpKV49vSpsBuhg+XoRwLKH1VEhx4+aHLN0k35DxYEjfO4uxlUnlNbCfAqDUqVy6tXLRfPnX7lrzV5VrUBbsQKOJgCDHgdLKFOtB0GvE6UbAfbKgNeB0uoE22HAa8TJZu3ygqwAjZRgAGvClkJqhFco5BsEFR0M2gSW8BLYJcAL4Wp1/D1JzQHeMmO4NrNe6IbAVo5HJbGkvugnj93FnVra2wIKCTAS57C3p45DSosZ8yahxo1a4m2+geH0TWq0rwcdVPcD794AbVqVBGfqfL3zv0/BcyMiAhHzWoaawx5kCbXb90XbeUernLAGx0VhUYN6+CVXvWysdy179gZQ4eNwLmzZ1CvTg3RjAC3t7ePAN8EwI2F5INr6gcAOfSUr3nRkuUCzlM0blgXJ08cV5zm1t2Hwj6CIL9PnlyijdwTdu2aVRjQr7di34OHjyJnrtzinnvObDo/EOh3UAt46YcBsmagPFFFO0FnqXJZDeCleQniknZStbf+WqpULI+rVzUVympi5er1KOWnOcBu7OiRmD9PUzGtH6YAr9SW/JBLFiukA4ityTONm95N2UJDzd4+vnuJ//tPYxFii0iULBW+/38/2GJoHtOJFXj34hHapvoHPd3S2USFTX++wviYD/gxncb/m4MViCsFXr/8Ay8aFMSnuiXiakidcRJtOIbUmyKQMpWyZZdNJuVBnUKBD8+eoF6uISiaRffNu7ja/I6oyTj8ZCWSp+ZnN6405XE0Cnx5fgez6udAxTy2+W+GwNWXsf02kCxV2lhJ/uS27kHVsRqEO7ECrAArYEMFGPCqEFcOWMkWoYCvl4pehk1iC3hppPDIKAHDKAhATpwwVvyvqTAHeIsVL4G16zVetEuXLMLwYYMVh5N8gfXtECTAawwO0yFXdNgVhbHKVAlayj2H5XDw2NEjIM9ZpRg4aCjIb/X+/XvC55dCDnj1DyMzlzSpmnncmFGYN3eWaE4QOXHixPDMnV2nYld/rIjL1+Di4qK1yVCaK08eL+zed0jckgPe5avWonTpsuI6gWVjeVUCvM2at8TY8ZNEXyWvW2kd+w6Ewd3DQ/wZF4CXDsw7FHpMAGeqZC5RrKDw95VCDeDNmSsXNm3ZKSrEqVJ2984dKFOuvNBRCrKU6NGtC8gH2lzQeAcPHxPNjD2T0hh9+w9E8uQpcOXyJTx98kRAarI7qVW7rrAAkSxF9K1JrMkzzR1bwPvhzXPgSzKkTPW1Qt+cHpbc//D+Cd5/vI8UaW3zH9SWrIXbOpYCDHgdK5/OtBsGvM6UbcfaKwNex8qnM+2GAa8zZZv3ygqwArZQgAGvSlVv3H4gYKLkc6uym04zawCv3OdUGpSqRZ88eSwsB0aNGGbwOrk5wEuHng0e+rsYzpT3q9yvNGf2zNo9mQO8rdu2x4iRY0R7Y4BXAqhywNumXQcMH2Hom2pMcznMswbwUjUxVRVLHssEMY8eP20WFtK6JK1NWSCULOWHVWs2iG3s2L4NgV00dgpTpoagfoNG4jMd3kf+vkohHZRG1bK0RgoCwwSIKbZs2oiePboq9iW7DLLcoDBmISF1VFPBK3kX035bNG0kDtmTh7dPXlAbCrLfGD92lPju/PXXM3GNfqw4d+ESfvjhB5CVAnkwP3hwX9wj24mJk4LgliOndkhzFdTUcO/+UHh4eoo+ShXjxp4f/evlyvtj8dIVAvKSR6/8mbcmz2rnV2pHOmd1a4KCJaZZM4zRvn/G7MH5493wzz9vbTI+D+q8CrBFg/Pm3t53zhYN9p5B510/WzQ4b+7tfeds0WDvGeT1swKsQHwrwIBXZQZOnrmAjBkzidZ5ZFJvJAAAIABJREFUvd1Vv/YvH94awEvjkNdpw0ZNhBevfpBX6YyQYB2vWnOAlyAqwVSKTh3aYs/unYpqhB07BVfX7Ab+w+YAb8tWbTBqzHgxpjHAK1UHywEvQWGCwxRkR/DunWnodPvWLe3hYpYAXoKeLi6ptXuWvGBpTgqqTiUPYQIU5MsrRdXK/rh/766OVjt274ePT15xzRhArV6jJmbOni/azJ87G2PHjBSfqcqZqp0penTvgq2bNynmQTpk7Vp0NCr6lxFtCNrSPij279sj/GqVQjrQTB9YKrVVA3jlthKKExq5KGkzfeZcUW1NsXD+XIweNdygh9yb2FzlvByeW2JjYmzt0jNP9+WHKlqTZ0t00m/LgNca9bhvfCrAgDc+1ee5rVGAAa816nHf+FSAAW98qs9zW6MAA15r1OO+rAArwAoADHhVPgXyw8hmzQzBpAnjVPb82kwCvKaqPJWAp3wiqiqkCkP/gIrw9S2AHDlziipIKagS8tq1aPGnOcBLsHjSlGDRduL4sZg9a7riniR7CHoVn6wKpLAV4G3QsDEmB2kqFUln0lttWAJ4papstWNL7fQPm6PrS5atFHmhkOdAPnb/gYPRNbCHuCQ/GE6+33lzZmHc2FEGS6Jq1sNhGm9euW0AeddSZS+FHPzqDyDtVe7fa2zf3wLwyg8r8ytZ1ACY09rohwxaNz3z5g43lHvqUkXxkSOhlqZVpz1Zl5CFCYXcNsOaPFuzIAa81qjHfeNTAQa88ak+z22NAgx4rVGP+8anAgx441N9ntsaBRjwWqMe92UFWAFWgAGv6megSdPmGD9ximhPr5qTD6+5w7sITBUuUhRnTp8S/dZt2IKixYqLz65ZMugc3iQtxBzg1V8wzUHg2Dd/AXErZFoQpk7ReLJKr+WTj2nuHJrX8+WR290d+w8eEZfI57Z1i6YGbciWgg5iI5BIr9CXKl5Y28ZWgFdelXr61Ek0rK+p9FQTlgBel9SpkThRYjHsgsXLxGFqc+fMxNLFi8Q1AuQEzwlAfv70STs9VYjqR59+A9C9h+aAMxpj/FhDi4ldew/Cy8tbtJFDYjm8pYPhKgVo/HjlQZ6x3br3Epf0K14lmwtj1bny8U1BYGk+NYCXrCx+SWP8gAIvLy9ttfLOHdswZfJE/PPlC2JiHohp5ICXDjKTruvvWwLTVKGew1VTQa8f8h8qbt28gfJlS6l5VEy2kVfs53LLorU/sSbP1iyKAa816nHf+FSAAW98qs9zW6MAA15r1OO+8akAA974VJ/ntkYBBrzWqMd9WQFWgBVgwGvRMyB/bZtgZ91a1UEHjykFeaPOmD0PHz9+QOECmlf3qSqVqjUplDxFAypWxrwFiwVMlVsWpHJxQb/+gxR9dmmsevUbIihYU31LcJcgL8XWHXvg65tffPbyyIG3b3WtDggOE0CjSkmqkMzn7S4sEeQxeuwEtGjZWlzavHEDevUM1N62FeClCeTVtS2bNUZY2GFFnYuXKIl06dNrbQ0sAbzyAa9E3wJZNEiw0d3dA/sOhomDw/L5aA4nMxXUlzx8SdMXz5+LHwBIUykyZcosgDvllu775tV4xUohaUl9yvgV16lopTHJYiFduvTCLoLWI/9xYc68hahStboYamD/PlizeqXO2AsWLQU9WxRqvGzVAF5zepg7ZC1kxhzUql1H85xu2Ywe3TobDCk/NO3hwxiUKFrQoA1pQ7pL9hrVqwTg0qVIk8uj7yb1M/ZM+QdU0voHkzVHHnc37XjW5tmcbsbuM+CNrXLcL74VYMAb3xng+WOrAAPe2CrH/eJbAQa88Z0Bnj+2CjDgja1y3I8VYAVYAY0CbNFgwZNAlZCHQo8JOERBlbwrVyzD4YMHEB5+Afny5UexEiVQslRprR8rHYImAV75q/hUVTugXy9ERkbCz680GjVpBk/PPNrVyAGvBLqoQnPVimXYsH4trl69IqpLS5b0w6SgYKRP/6voWzmgHKKirorP06bPRu06dcXnC+fPoXtgZ7x+/QoV/CuCKh0vX76Enr37olfvfqLNmzdvhJdtRPhFAX0JKnfo1EXco7l98uTChw8ftGu0JeCVa0WAYNPG9ZgeEizAJ+WhfHl/1KlbXxyqRaCOIDBFbAAvVfIS1KTDvjxyuYpxBg0Zhk6dAxEaegitmjdR9ZRs27kX+fL5irbhFy8I2Ep2GQShZ89ZAJqHgqwwyBJDHvI80KFxPbt1ETYDZMExcdJUFChYSDSn3FKO5SGv0CVAPHhgP2zdsglJkiZFt249tT7Lnz59AlWj6gflOlUqF+3lg6HHkDJlSuE7XNZPU3FO8eLFc/HMqwlzgDd/gYLYvHWn9rukb01B1dQr12xAqlSpxHRjRo/AgnlzDKaWV9SS5rVqVDG7PMn/l76ba9eswqmTJ8T3I8NvGdGlazfhcy19x5XmtSbPZhdnpAED3tgqx/3iWwEGvPGdAZ4/tgow4I2tctwvvhVgwBvfGeD5Y6sAA97YKsf9WAFWgBXQKMCA18InoWq16pgcFIJkyZKp6nnzxnVUKOenbStVR5rrrAR45X3oH80ShJKuHz50AK1bNtM2o6pRshnQb0cN5JBRsnKQOhIkpEpTecg9Y6XrtgS8NMfSFatRtmx5c1JZDXjpQDc62C0iIhw1q1US8+3Zf1gA90ED+mL1qhVm10ANCMRv37lPHMwmhX6eqBK1QtlSOqCc2hJk3X/oiDjMzljQjwK1a1TRAnx5u+BpM1GnXn2jfWkdQwcPED9I6If8UDtTG50eMhVBkyeq0sIc4KVBJIguDUg/Ijx//heSJEmqBbt0j0A3+erqB9mHUOU1aUf7K12qmKKXr34/+QFvpjZDP4CQlYZ+WJNnVeIpNGLAG1vluF98K8CAN74zwPPHVgEGvLFVjvvFtwIMeOM7Azx/bBVgwBtb5bgfK8AKsAIaBRjwxuJJoMrZoOAZqFK1moBL+kH/oL137y6WLFqAZUsX69wm39tVqzcgbbp0OteparNHYGfMmb9IwOO7d26LV/UpkiRJgvETgxBQsZIiWJYqe0cMH2qwFqpGHDNuosE6g4MmY1qwxlOYYsrUEGH1oA+DydahdcumOHf2jMHYZBtAlcPGbAyat2gl5qbo2L4N9u7ZZTBG1PU7BvuVNyJrAToIzsXla4WpdJ+qSalqc+KEsdr1Va9RU+v9qmRXoJTuJctXoVy5Cjr+xZIXsrdnTlHZrDbIRmH7rr3IkOE3nS70TJw/dxYN6tVS9F4WX8bvvgMd5kc+zfp5oGrTmtUqQ8n/V5qIqlkDu/U0gPMEhjt1aIvQwwcVtzF8xGhtla+pfcr9nc3pQRW4O/ccEM2WL1uCYUMGKnapXaceRo0ZD/L01Q+qOJ4yaQLmz5ut2FduHyKv4ja3NjoM7/fhI5HNNbvijx/k90vfD1OH+1mTZ3PrU7rPgDc2qnGfhKAAA96EkAVeQ2wUYMAbG9W4T0JQgAFvQsgCryE2CjDgjY1q3IcVYAVYga8KMOC18mmgKkJ6fd7Lywfv3r0V3rl0qJrcf1V/CoJ31KdIkWL4+/3f2Ldnt0lwJ+9Pfrx5ffIhl7u7AKtRV68IGwBz81E1qodnHuGxGxkRrugdTFW7tK7ixUvi2bOnOBIWij/+eGilQnHTnUA6VYV6++TFs6dPEBkRIQ59S6hBkL5M2XLI7e6Bs2dO4+SJ4yZzJN8HPR8EeYsVLwGqAA8LPWzgn2xq3/QjQvnyAeJ5PLB/n+pnKz61JM9jsm3IlSs3Yh7GCMuES5ERqjWLzdrpu0vPk5tbDmTNlg0xDx7g9OlT4scVtWFNntXOQe0Y8FqiFrdNSAow4E1I2eC1WKIAA15L1OK2CUkBBrwJKRu8FksUYMBriVrclhVgBVgBQwUY8PJTwQqwAqxAAleAAW8CTxAvz6gCDHj54bBXBRjw2mvmeN0MePkZsFcFGPDaa+Z43awAK5BQFGDAm1AywetgBVgBVsCIAgx4+dGwVwUY8Npr5njdDHj5GbBXBRjw2mvmeN0MePkZYAVYAVbAOgUY8FqnH/dmBVgBVsDmCjDgtbnEPIGNFGDAayNheVibK8CA1+YS8wQ2UoABr42E5WFtrgADXptLzBOwAqyAgyvAgNfBE8zbYwVYAftXgAGv/efQWXfAgNdZM2//+2bAa/85dNYdMOB11szb/74Z8Np/DnkHrAArEL8KMOCNX/15dlaAFWAFzCrAgNesRNwggSrAgDeBJoaXZVYBBrxmJeIGCVQBBrwJNDG8LLMKMOA1KxE3YAVYAVbApAIMePkBYQVYAVYggSvAgDeBJ4iXZ1QBBrz8cNirAgx47TVzvG4GvPwM2KsCDHjtNXO8blaAFUgoCjDgTSiZ4HWwAqwAK2BEAQa8/GjYqwIMeO01c7xuBrz8DNirAgx47TVzvG4GvPwMsAKsACtgnQIMeK3Tj3uzAqwAK2BzBRjw2lxinsBGCjDgtZGwPKzNFWDAa3OJeQIbKcCA10bC8rA2V4ABr80l5glYAVbAwRVgwOvgCebtsQKsgP0rwIDX/nPorDtgwOusmbf/fTPgtf8cOusOGPA6a+btf98MeO0/h7wDVoAViF8FGPDGr/48OyvACrACZhVgwGtWIm6QQBVgwJtAE8PLMqsAA16zEnGDBKoAA94EmhhellkFGPCalYgbsAKsACtgUgEGvPyAsAKsACuQwBVgwJvAE8TLM6oAA15+OOxVAQa89po5XjcDXn4G7FUBBrz2mjleNyvACiQUBRjwJpRM8DpYAVaAFTCiAANefjTsVQEGvPaaOV43A15+BuxVAQa89po5XjcDXn4GWAFWgBWwTgEGvNbpx71ZAVaAFbC5Agx4bS4xT2AjBRjw2khYHtbmCjDgtbnEPIGNFGDAayNheVibK8CA1+YS8wSsACvg4Aow4I2jBCdJkgQfPnyIo9F4GEdRwCV1arx88SJW27Gmb4oUKfDp0yd8/vw5VnNb0ym266bvUMqUqfD48aNYTW/NnjNk+A0vXjwXmlkatN///v0Xr1+/trSr6vYMeFVLxQ0TmAIMeBNYQng5qhVgwKtaKm6YwBRgwJvAEsLLUa0AA17VUnFDVoAVYAUUFWDAG8sHo1DhIujdpz9cs2dHmjRp8eOPP4qRPn78iJcvX2Db1s2YNSMEb968ieUM1nfLnDkLUv/yC969e4fbt25aP6CTjFC3XgMMGjwMmzdtwLixo8Su5y1YjAIFCqFNq2a4dCnSpBITJgWhfAV/pE2bDt999x2+fPmCR4/+xOJFC7Bk0QKTfZs1b4mOnbuCgCM9UwRHnj17iqNHwtCnV3eTfX188mJyUAiyZM2KpEmTirYEHa9fi0b7dq3w6uVLVRns028AWrdpj5iYB6gcUE5Vn9js2dMzDzp16QY/v9JI8fPP+OGHH8RctGd6ZjesW4PRo4bjv//+M7qG2Ow5UaJE6NylG6pVr4GMmTKDwDLliYJyde/uHfTp3QOREeGK8/oHVEKbtu3h7ZMXyZIlw/fffy/a0Tr/+usZJo4fi40b1qnSTW0jBrxqleJ2CU0BBrwJLSO8HrUKMOBVqxS3S2gKMOBNaBnh9ahVgAGvWqW4HSvACrACygow4LXwyfjpp58wY9ZcVKpc1WxP+oftrp3b0bVzB7NtbdHg+KlzIMj7999/wzN3dltM4ZBjrl2/GcWKl8DUKZMQMi1I7PHmnRhQ7klH0lMpCPRt27kXBB2NxdIlizB82GDF28N+H4l2HToZ7RsdFYVqVfzxzz//GLQh6Dh/4RItbNRv8PbtWwFrCdqaCqpGPXbiLKgaln6c8PbMabK9NXuOvnFXC6KNTfLy5UsUKZhXsbI2tnvu1r0X+vYfaPbZHTdmFObNnaXTjsD76XPK4Ffe8MTxY2jSqJ7ZOdQ2YMCrVilul9AUYMCb0DLC61GrAANetUpxu4SmAAPehJYRXo9aBRjwqlWK27ECrAAroKwAA14LngyCWRcjo+Di4qLtdS06GpcuReDatWi4u3vAy9sHbm45QFWCFE+ePEbhAsaBnwXTW9yUAa/FkokOV6JvCcBZomhBPHwYI/K672CYsFrI5+NhdNAZs+ahRs1a4j5VoG7ZvBER4RfhV7osqteoqYWvPbt3FffkUblKNcydv0hcokrQXTt3ICz0kKgSrVO3Pn7++Wdx78D+vWjXpqVOX6oipTVLlaSnTp7A3r27kfLnlKhdtx5cXTVw/69nz1DA18tg/fkLFESjxk2RI0dO+OTNp61GVwN4rdmzBHjfv3+Pc+fO4MrlS/jxhx9RqUpV8cOEVFWrBEut2bMc8N68cR2RkRG4dfMmipUogUKFimihM4Ep//J+uHnjhlYzOeB9+vQJzp87i6tXrgjtSpcpKyrmpRgxfKjZim21TygDXrVKcbuEpgAD3oSWEV6PWgUY8KpVitslNAUY8Ca0jPB61CrAgFetUtyOFWAFWAFlBRjwWvBkTJoSjIaNmogeZMXQrWsn7N+3x2AEetU8KHgGataqDYJADHgtEDmemxKgC4+MAkFHj1yuYjWDh/wubBMOHz6I1i2aGl3hjdsPBNin1/zLlS6BBw/ua9tWrVYds+cuFH/fuH4N/uVL64yza+9BeHl5i2v6AJig4tETZ0QFMY2dM3tmYWMgRf+Bg9E1sIf4c8f2bQjs8rVinCDpsZNnBTClqFGtkoH1wIhRY9G6TTuDfakBvNbseePm7Th08ADmzpmpsx9aCEHnzVt3CshLPsK0Z3lYs+dateugUeNmGDJ4gKJ1yc49B+Dt7SOmmz93NsaOGamdOpWLCzZu2oZxY0fj8KEDBpqRvUX3Hr3Fdfrxp6J/mTh5ohnwxomMPEg8KMCANx5E5ynjRAEGvHEiIw8SDwow4I0H0XnKOFGAAW+cyMiDsAKsgBMrwIBXZfJds7sh9MgJbVVhQIXSuH7tmsneVPlZrUZNTJk0QbQLqFgZRYoUBb0uPy14imLfDh27IH369Lhy5bJBlSd1yOebH61atYWrmxtSp06N53/9hfv37wvPXwk40Wv2gYE90KhJMyRPnly80r90sQYuSrF1yyZcvnxJ+zfBQ/IlJW/h7G5u+PvdO1GZSJWmR46EKq61SdPmolqZQOaypYtRvkIA6tarL6pA3719h6NHQrFk8ULhP0uRNZsrWrdui4KFiyBNmjR4GBODTRvXY83qlSZ1bNCwMcqULQcPD08kSpwY9+7eBVWpzpgebNAvY8ZMwh+VYvnypbh/767wdi1dphwKFiqEjx8+YtXK5cIrVSnatOuA4SNGIzz8ImpVryya7N0fCg9PTwzs38foWsm3d+q0GaL9ls2b0LN7F4PhCbRmyZJVXPfN64kXz5+LzylTpkTklevi2frjj4coXqSAQV/5jwtDBvXHyhXLtG0uhF9BmrRpBSR1zZLBAJaWLOWHVWs2iPaUyxZNG+mMT3mTNKMbRYsVF5qZA7zW7Nlkwv938+SZC6B8UhTI56WTM2v3bGr+cuX9sWSZ5pk8d/YM6tWpoWa52jb3Yh6LXFIVdx53N4v6GmvMgDdOZORB4kEBBrzxIDpPGScKMOCNExl5kHhQgAFvPIjOU8aJAgx440RGHoQVYAWcWAEGvCqTv3DxMpDnJwWB1NYtm6ns+bXZlm27RGUivYJPIE4ppNfW7969gzKlimmbEDCiiseChQobnffVq1fI65UbxUuUxJp1m0yub/as6eIwKAryjF25ZoMAjUqxd88udO7YzuCwq3MXLyFduvTCk/bGjevw9c1v0J3u+ZUogvYdO6Fjp65aQC5vSD7FXTppoKw8fv01A9as24jsbjkU10WWA00a19MB7VQ1PX3mXNF+2JCBwjKDALH0uj9d79GtM7Zu2axp8/tINPhfVTb9TQdu0eFmlCMCdBRk10D9aS///vuvuLZpwzrQK/hSzJm3EFWqVhd/tm/bSrGye+LkqcIKgaJ/315Yt3a1+Ez2DTNnzxeft23dgu6Bhj688pzqVxLff/hE9CWQXrSQr6JWdx88EhYO5mwmqHPEpWjQjwTmAK81e1ZcpN5FORAnL2D5gYVxvWf51HIgfvLEcTRuWFfNcrVtJK3N6WfJoAx4LVGL2yYkBRjwJqRs8FosUYABryVqcduEpAAD3oSUDV6LJQow4LVELW7LCrACrIChAgx4VT4VVL0rgcYiBfPh8eNHKnt+bWYN4JXDNKrIpcOyCHBmyZoVadOmE/COrrtlywhPzzxYvW4TUqVKpQWbdFiVPKZMGi+qQNOkSQsCtZJ/K7W7fi0aqVK5IFfu3NrrSj6oEuCVj0uv0795/Vp4kUpj0j/w5YCVIONPiRKBfFSlqFihjPAxloIqiqmqNWnSpOISwcvIiHABXgsULIT06X8V18kCo1B+zev0FHLAqz+v1EYOeOXg3pKE6kP+TVt2aOE75UDpILRadeoiZPpsMc30kKkImjxRfO7StTsGDBoiPg8dPAArli9VXIoENanyulplf9GG8nch4or4fPRIGJo3bajY9/zFy0ibLp2wFsmdQ1NFbCzUAl5r9mxOa6ogvnbznoDt0nMt9bHFnuXrGTNuIpq3aCUuUS4oJ2qDKuDphxiKO7dvoWzpEmq7mmzHgDdOZORB4kEBBrzxIDpPGScKMOCNExl5kHhQgAFvPIjOU8aJAgx440RGHoQVYAWcWAEGvCqTf/XabWF3YKr61txQ1gDem3dihAfr69evUaRgXnz48EE7HYHSkaPHoYJ/ReTzdtdeV3PIGlX6UnUoxfp1a9CvT09tf7ITID9SqbKXoKLc1kEOeAkMd+/aCUePhon+BOGoAlMCtPSPfKpY/X3oIHz69Em0CZ42E3Xq1RefqaKWwKsUITPmgLxSKaZOmYSQaUE68s5bsBiVKlcV14b/PkRrQSEHvHSPPGt379qJQwf34e6dO8jj5S18XwkMU5B2qVNrDsb6JU0abNuxR1Tuli5ZVFzr2buvgH3Hjx0VFg1SvHjxXFT0SiH/ASBrpvSKj0KZMuWwbOUacW/jhnXo06u7+CwHil06tRMHrCmF9Oo/HfxGB8BRyIHizh3b0LXzV/9d+RgnTp9Hpkwa795smTVw3FioBbzW7NnkAgCMGDkGrf9ntaFvk2CLPUvroech/FK09pDEUsUL63gpm1v3wcNHkTNXbtFswrgxmDNbY9thbTDgtVZB7h9fCjDgjS/leV5rFWDAa62C3D++FGDAG1/K87zWKsCA11oFuT8rwAo4uwIMeFU8AVR9SnCNQrJBUNHNoElsAS+BXQK8FKZew9ef0BzgJTsCqpKkIEArh8PSWOQbvGCRpqL0/LmzqFtbY0NAIQFe8hSmV+jlB3/R/Rmz5qFGzVqirf7BYXTt559/xuWom+J++MULqFWjivhMlb937v8pqn4jIsJRs5rGGkMepMn1W/dFW4KvTRtrQLEc8EZHRaFRwzp4pVe9bCx37Tt2xtBhI3R8V6UDtwh8EwA3FpInrKkfAPLm88X2nXvFEPI1L1qyXMB5CrIDIFsApbh196GoaCXI75Mnl2gi98Fdu2YVBvTTHPClH3Lw6J4zm84PBPpt1QJea/ZsVEgAxYqXEBYjlH96pir5l9Wp7rbFnqX1SH7L9Lf+825qzXRv0JBh6NQ5UDSjHwm8PHIYfCfMjWHsPgPe2CrH/eJbAQa88Z0Bnj+2CjDgja1y3C++FWDAG98Z4PljqwAD3tgqx/1YAVaAFdAowIBXxZMgB6xki1DA10tFL8MmsQW8NFJ4ZJSwPaCgisaJE8aK/zUV5gAvgbS16zVetEuXLMLwYYMVh5N8gfXtECTAawwO9+jZB7379hdjGqtMlaCl3HNYDkKPHT0C8pxVioGDhopKy/v37wmfXwo54NU/jMxc0qRq5nFjRmHe3FmiOUHkxIkTwzN3dp2KXf2xIi5fg4uLi4GdgLxdnjxe2L3vkLgkB7zLV61F6dJlxXU60MtYXpUAb7PmLTF2/CTR15SdwL4DYXD38BDt4grwWrNnY7nImSsXdu89JKrVKeggPemQQqmPLfZMY8ttUKg6myrl6ccLNdG4STNMmKSpMiegVb9uTcU8pndT9kg2N8f718/w//5LgwyZNNYccR1v39zEX09PIGUGzaF2HKxAXCnw7sUjeP3fGxRN/dWSJ67GpnGi337EuQ//Dz+ld43LYXksVgCvXjzEO7dU+Mczi03U+OHqfaS4+xYpXX6zyfg8qPMq8P7pI+RIUQCZUnraRITrz07gj3/vIHlq5fNEbDIpD+oUCnx6dgsVciSHWzrb/DfD/qvPcPN9CiRLlTZWej65HR6rftyJFWAFWIFvpQADXpVK37j9QMBEfT9Qld1FM2sAL1kwtGrdVmc6qhZ98uSxsBwYNWKY1vpAamQO8NKhZ4OH/i6am/J+PX0uHBky/Aby182ZPbN2DeYAL71iT6/aU/z/9u4DzIlq/eP4a7mKIgoWkCsKKL33DiJNUbogKkrvSLtYEFFARKQXAQWkiaKodJQqvSu9dxC8Igh2LHD1/7wn/xlns8lmkgyE7H7P8/jIbmbOOfOZyWzyy8k5wQJeK0B1BrzNW7aWXr37uqZ1BszRBLw6mlhHFVtzLGfOklVWrdkQdHSzs4OWdVJTIDgX75o3d4480943ncLgoSOkwWOPm3/r4n06v2+gYi3epfM/ax+1aDCsAbG5vmZ8Il06dwi4r3PBsmBTSFg7uh3BG80xB+pk1nvvk0VLltvTI+jifm1aNU+06aU45uEjRkvdR+ubtvQ6f/ihynLwwAFX12DdevVl+EjfBwJaXnzhWZn2/tSA+0Ya8GplZ47v1vTYVZ8i2ejm9PfI9TfeHMmu7INAkgIa8l7Kkjpternq6msuZRPUnQIF/v7rL/n1B990TpeqpE6XQa666upLVT31plCBv/53UfSD4UtZCHcvpW7Krft/F/+U3346e8kA9H6r991ICwFvpHLshwACl0uAgNel9Lpvhlc+AAAgAElEQVSNm+Wuu3yj2wrmz+X6a//O6qMJeLUenau14eNP2qMbnXXrXLNvjhiWYK7aUAGvhqgapmpp27qFLPhsfkCNFavXS9as9yaafzhUwNukaXN59bX+ps5gAa81OtgZ8DrnX9XpCH75JelRlIcPHbIXFwsn4NXQM126W+1jTpMmjfm3tqlFp0PQOYQ1tNWv3FvlkepV5fixowms5n22WAoUKGh+FyxArVmrtowaM85sM+7tMdLvtT7m3zrKWUc7a+ncqb3Mnjkj4HmwFlnbt3evPFi1otlG50nW49CyeNECadXCtziYf9m0ebtZmM4/pA+0rduAN5pj9m9XRzfPmvuZHe76L2Ln3N7rYx7z9nh5pEYt04Q+j+rVfkR27Nge0NH/lzo/c99+b9iLCPbu1VMmTRjval82QgABBBBAAAEEEEAAAQQQQAABBLwQIOB1qehcjGz0qBEy8I3XXe75z2ZWwJvUKM9AgaezIZ2XtFLlqlK12oNSuHBRyZY9u1x77bX2Jg9WqWjPVxoq4NWweODgYWbfAf37yZjRIwMekzU9hH5tXacqsMqlCngfa/iEDBoy3DSjzurttoQT8Fqjst3WbW3nv9ic/n7SlPfMedHiPAfOup/v3kM6PNPZ/Mq5MJzzeMe+NVpe7/dqoi7dly27LFvhm5t37ZrV8uTjvtGmOgexjuzV4gx+/SuwjtU5f2+w43Yb8EZzzM62dWTzlKkf2NexcwG6QH306pj1ufTxjDlmoTot58+fl1o1HnQ9ctcZzOtzWhfNm/HJR+FeTmyPAAIIIIAAAggggAACCCCAAAIIRCVAwOuS78lGT0v/AYPN1jpNg87DG2rxLg2QSpQsJRs3rDf7Tf94lpQqXcb8O+s9Gc2IWP8SKuD1317b0OC4cJGi5qERw4fI0MG+OVmtr+X//vvvkjNb5kRt5cyVSxYvXWl+r/PcNmvcKNE2Oi2FLsSmodpXXx2X8mVK2NtcqoDXOUJzw/p10rBBXZdnKbw5eNPdequkuj6VqXv8xCmSP38BefutUTJ54gTzOw3INTyvUK6U/PnHH3YfdKE7/9LtuRekU2ffAmdaR/9+iaeY+HThUsmXL7/ZxhkSO8NbXRjuoWq++Xid5dnnu0vHTl3Nr94Z97b0fbWX/bA1zUWw0bnO+pMKga0K3Qa80Ryz1ZbOXavPK72Ok7Lz94j2mFOnTi2fLlgiOi2EFl08UYN5nf7CTRk+cozUrfeo2VSfx82bPi3Lg8wV7aY+tkEAAQQQQAABBBBAAAEEEEAAAQQiFSDgDUPOmqpAd9Gw89E6NUUXHgtUdJ7QN8eMld9//01KFPV9dV9HpepoTS3PdesiH03/IMGu1R6sLmPHT/SNyjx6RCqWL20eT5sunTz3/IsB59nVx+s3aChDhvlG32q4qyGvltnzFkjhwkXMv/PlzpZowSgN1XRkpy5opSFVofy57OkJrI7p188bN2lmfpz5ycfStcszdp8vVcCrDThH1zZ56glZsWJZQOcyZctJ+gwZ7GkNwhnB66xw195DolM0lCtdXE6c+Epy5coti5aukO/PnZNCBXyLkyVVdF+dw1dNz509az4AcAb4mTLdbQJ3Pbf6eOGCCRe+sCx1n4oVyiSYAkLr1CkW0qfPYKaL0P44P1xwLg7W/flu8sG09xJ0dfyEyaLXVrDrzv+43Aa80R6zc4oQPS6dB/q9qVNCUZvHoznmu+++R+YvWCJp06Y1delz+eEHK7taUE0Df51KwpqOQ0f91q9bU3bv3uWq32yEAAIIIIAAAggggAACCCCAAAIIeC1AwBuGqI6E/Hz5anu0oY7k1UBq2dIlsnXrZilUqIiULltWypW/3w6AdBE0K+B1fhVfR9W+8FxX2b59u1SocL88/uRTkidPXrs3zoA3e44csnTZajN/6vtTp8jHH31oAiUNm8qVqyADhwwz86tqqV6tkuzZs9v82znKcPOXX0inZ9rJjz/+IFWqPiiHDh6QnTt3SJf/PCtd//Oc2f6nn34yc9lu27rFhL4aKrdu2948pm0XyJtDfvvtN7uPlzLgdVpp+KdffR85YpgJPvU8VK5cVeo92kBy58ljwl8NgbVEEvDqSF4NNTWsy53DtxL7iy+9LG3bPSPLl38uTZ9+0tVVMmf+QilUqLDZduuWzaJh6759e0VD6DFvjRdtR4tOhaFTYjiL8zzoonFdOraXlSuXmyk4BgwcKkWLFTeb67nVc+wszhG6GhD36P6czJ41Q2648Ubp2LGLPc/yH3/8ITnuS7wauJ7rtGnT2VUuXb5abrnlFjPv8AMVfCPOtZw7d9aMXneWSI/ZOR+x1jd71kzZvj34yrTatnNu4miO2ZqPWNvVaUeGDB5ggvNgRRcxtOZcHv3WOKlRs7a96cgRQ80ifMHK3j27Zf26ta6uHzZCAAEEEEAAAQQQQAABBBBAAAEEIhEg4A1T7ZEaNWXQkBGiX/F2Uw4e2C9VKlWwN7VGR4baN1DA69xHAynra+3W7/0XptJRozrNgP92ur0zZLSmcrDq0ZBQR5o6i3POWOv3lzLg1TYmT50mDzxQORRV1AFvsxatRBd227Ztq9Su8ZBpb8HiZSZwf/GFZ2Xa+1ND9kE30CB+7vxFZmE2q/ifp5MnT0iVB8onCMp1Ww1ZF3++0ixmF6zohwJ1az1sB/jO7YYNHyX16jcIum9SI2Sdi9oldaAaZg4ZNCDBJpEes07N8MZA30hzNyXQNCORHrPb56DVL+dxu70mrX31QxSdjoOCAAIIIIAAAggggAACCCCAAAIIXCoBAt4IZHXk7JBhb8rDj9QwwZx/0TDt2LGjMmnCeJkyeWKCh3Xe2/enfSx3pE+f4Pc6CrDzM+3krXETTHh89Mhh81V9LTfccIP0HzBEqj34UMBg2RrZ27tXz0R90YXUXnt9QKJ+DhsySIYP880prGXw0BFmqgf/MPjnn3+WZk0ayRebNiaq2xoJGWwag6cbNzVta2nTqrksXPBpojr27D+S6HidG+nUAroQXLp0/4wwtR7X0aQ6UnbAG/3s/jlHhgaariDQ6Z707vtSqVKVBPMXW3Mh58+T3Yxsdlt0GoW5ny6UjBn/nWAXvSa+/GKTPFa/TsC5l3VjtdfF/HSeZv/zoCPBa9eoLoHm/7Ua0jlxn+nYJVE4r+Fo29Ytgs4R65wqIanjdM7v7NwukmN2jtB2YxtsHulIjtlaNNBNu7rNsKGDZPhQ33PFubCcm/2dHxq42Z5tEEAAAQQQQAABBBBAAAEEEEAAgXAFCHjDFfPbXhch06/P58tXQH755Wczd64uqhZoATVrVw3vdJ+SJUvLr+d/lUULPksyuHM2qfPxFixQSHLkymXmh92ze5eZBiBUezoaNXeevGaO3e3btgacO1hH7Wq/ypQpJ2fOnJaVK5bL11+fjFLIm901SC9YqLDkL1BQzpz+VrZv22bmTr1Si4b0FR+oJDlz5ZZNGzfIurVrkjxHzuPQ60ND3tJlyoqOAF+xfJmr+WGtOvRDhMqVq5nrccniRa6vrWgtoznmaNuO1TFH22/2RwABBBBAAAEEEEAAAQQQQAABBKIVIOCNVpD9EUAAAQQQQAABBBBAAAEEEEAAAQQQQACBGAkQ8MYInmYRQAABBBBAAAEEEEAAAQQQQAABBBBAAIFoBQh4oxVkfwQQQAABBBBAAAEEEEAAAQQQQAABBBBAIEYCBLwxgqdZBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgWgEC3mgF2R8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEIiRAAFvjOBpFgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFaAgDdaQfZHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRiJEDAGyN4mkUAAQQQQAABBBBAAAEEEEAAAQQQQAABBKIVIOCNVpD9EUAAAQQQQAABBBBAAAEEEEAAAQQQQACBGAkQ8MYInmYRQAABBBBAAAEEEEAAAQQQQAABBBBAAIFoBQh4oxVkfwQQQAABBBBAAAEEEEAAAQQQQAABBBBAIEYCBLwxgqdZBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgWgEC3mgF2R8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEIiRAAFvjOBpFgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFaAgDdaQfZHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRiJEDAGyN4mkUAAQQQQAABBBBAAAEEEEAAAQQQQAABBKIVIOCNVpD9EUAAAQQQQAABBBBAAAEEEEAAAQQQQACBGAkQ8MYInmYRQAABBBBAAAEEEEAAAQQQQAABBBBAAIFoBQh4oxVkfwQQQAABBBBAAAEEEEAAAQQQQAABBBBAIEYCBLwxgqdZBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgWgEC3mgF2R8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEIiRAAFvjOBpFgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFaAgDdaQfZHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRiJEDAGyN4mkUAAQQQQAABBBBAAAEEEEAAAQQQQAABBKIVIOCNVpD9EUAAAQQQQAABBBBAAAEEEEAAAQQQQACBGAkQ8MYInmYRQAABBBBAAAEEEEAAAQQQQAABBBBAAIFoBQh4oxVkfwQQQAABBBBAAAEEEEAAAQQQQAABBBBAIEYCBLwxgqdZBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgWgEC3mgF2R8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEIiRAAFvjOBpFgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFaAgDdaQfZHAAEEEIhKIHXq1PLrr79GVQc7IxAvAtddd51cvHhR/vrrr3jpMv30UOCWW24x5597noeoVJXsBHhdEN+n9IYbbpDffvstvg+C3iOAAAJxKEDAG4cnjS4jgAACV4LA0mWrJG3adKYrJ058JXVrP+KqWzlz5ZL+bwyWHDlzyU033SRXXXWV/P333/Lnn3/Kr7/8Ivv27ZVp778r8+fNNb/Xcv3118ua9V/IVXJVwDYerVdLjh87GrT9SPvq6oBSyEaNmzSTTp3/Yx9tjxefl8WLFgQ9en2DvnL1BvvxZcuWyvPPdg26vV4Hy1eulZtuSmO2OXbsqNSvVyvB9rPnfiaZMt3tSvzi/y5KqeKF7W379ntDqldPfI3+ecF33W3btlWGDx0sX399MmD9M2fPl3vuyRzwsTdHDpMpkycGfCx9+gzSt19/yZkrt2TIcKfceOONZrsLFy7Izz/9JGvXrpFBA/snef3q9inlGo7mHM+et0Ay3ZVJTp48IXVqPZzkdfL+Bx9Lzpy55Pvvz0nVyvfb2/pft9YDej39+MOPcu7cWfnk4+ky45OPXF2HGugPGDhUipUoIXfemVH0Zy2///67fPPfr2XNmtXy8kvd7Xudf6WBrtu/xXe/PP3tt7J40UIZ+/boRB8YBDuOYJ3ev3+fNHqigatjCmcjZ/+13zUfflBOnfomaBWt2rSTNm3a24+/8Hw3+XzpYvNzOH8Hqj9cQ/q+1j9BO9q+up//9bycOXNa1q5ZLRPeGWsskyqBrkm9HnS/c+fOycED+2XqlEmyY8f2JOtx9qlP754yb+4cV5TRPCdCNRDIKal9PvjgPRkyaEDQTSK9T4X7umDUmHFSqlTpUIcX8PEJ74yTt8a8GdG+keyUOUtWmTFzrr3r/PlzpfcrL4V9zQXbYd26tdLpmbYS7b0rnOeXf1+ebtxUHq3/mGTOnEXSpksnV199tbmnnT9/Xv779Unz9/G9qVOC3ue0vnBfY0RyLtgHAQQQSO4CBLzJ/QxzfAgggMAlEKhUuapMmvJegpqrVCovBw8cSLK1t8a+Iw8/UtNVj44fPyYVypY026ZJk0Z27T0UdL/aNavLtq1bAj4eaV9ddTIFbbR2w5cJwtWdO3dIjepVgwrom7ztO/fZj+ubvSKF8sq5s2cD7tOmbQfp0fMV+7Eff/xRCuTNkWBbvQb0WnBbMmfKYG/68Yw5UqJkqZC7zprxiXTp3CHRdjv3HJSbb7454P6TJ02QXi/3SPRY+w6dpNtzL8i1114bst2vvjou5cuUSPHXcDTnePe+w+ZDo59//lny5c6WpPmXW3bKHenTm6A9W9ZM9rb+122wSnQEbs1HHpTDhw4GbadM2XIy7p3JIa/Z78+dM+Hq7t27EtXl5rrVY3i2W2eZPXNG2Mdh7XDm9GkpViR/yOs03A38+790ySJp0axx0Gqsc2ht8ErPF+0PT8L5O9C6TXt56eVeIburI+nXr1sr7dq0EL3nBCpur0k1HDJ4gHwwLeHfRqtOZ5/eeP011yGj2/atdpz3vVAAbp2sevRDvVYtmnp6n4rkdcGyFWvkvmzZQx1ewMf1A5puXTtFtG8kOw0bPkrq1f/nwxP9kCFntsAfFlr1h3PO9QOGKpUqmGDV+Tc33HtXOM8vq+677sokU6ZOk+w5coak0fvUa317y+SJ7wTcNtzXGCEbZAMEEEAgBQoQ8KbAk84hI4AAAtEKBAod5s6ZLR07tAla9YBBQ+XxJxrZj//000+yc8d22bhhvWTNeq/kzJ1b7r77HjsM+fbbU1KiaEGzvY7u7Nylm+gAXg3NdKSJvjEfMXyIeXziO+NE6wtUIulrtD7JbX99E7du4+YEh6WBbe4cWYN+DTPQm81P58+V9m1bBeTZtnOfpEvnGxGuJamAV9vev++f8DhQhTrC7pGHqtgPOa+DrVs2yx9//CHXXHONpE2bVu7KdLc9slZ3mPruZOnZ44UE1T7x5FOS4c47pX6DhuY61aJBjo5GXLJoYaJw7r1pH0n5Cv+MDNXr+csvNsn2bdskY8aMkr9AQcmWPYdp3yrBgpmUdA1bwUYk59jrgFdDXL1HabkxdWq57bbbRJ8LVtGgpmypYvLdd2cSXYI1a9UWHWVoFR3JtnHjevli40b517/+JcVLlDQfOFgjevV4dcS6XiPOEui6TXXDDXLrrbeaD1x0pJwW3b9Zk6dk+bKl5mfn80/7eexo8G846PZ79+wO+MFGtPcy/2tX79uF8ucKGKY+9XQT6dd/YIImnQFvOH8HnMGljso/8dVX5u+GPt/SpLlZbrv9dvN3xSqnT39rPlAM9LVy65rUvm/auMGYax0333Kz+RaLjpx0Fmefnb+PNuCN5DkR6vw5+6Qfvp0+fTrJXaZPn2b+3gYqkdynIn1d0PvVflK6dNlE3fj3XXfZH8R9881/zah7/zJ50jtBQ/hQXpE8HiisbdOquSxc8GnQ6sK5D65ft0Z69+qZ4Dkfyb0rnOeXdlxHXS9cvNy+B+nzY/OXX5h75qlTp6RQ4cKSO3ce0RHM1n1q/rw50qFd60THHclrjEjOBfsggAACyV2AgDe5n2GODwEEEPBYQEcj7j903IxK1DfFt99+h3nxrm8o8uS8N2Br+sZ6z/4jZh99k9q2dYugb240SOvRs5f89tt5O+B1Vrptx15Jd+utJqDLcZ8vaAtWIumrx1zJoro3Bg4RPS9a9u3dK7ly5zb/HjSgv4x6c3jAYwwU8OobQB2VqyMsnaVO3Xoy4s23EvwuqYD3l19+kby57gvL1hk+FC6YJ9FIYg0MmjVvaerUME7D60Bl0rvvS6VKvuA42Kj1BypVkcnvvm+20etdvw48oH+/gPXpV9Jf6P6SCf0CBbwp7Rq2go1IzrHXAe8XmzYmmiZEg4gly1bZod7ggW+ITtHhX3bsPiA6366WXbt2ymOP1k407+6tt90mc+YtsKf+0CCyTMmiCapK6rrVYHH6J7Mlf/4CZh/9sKFksULm387nX6DjCOvJE8XGgUK/2bNmSueO7RLVao2qdj4QLCwN9XcgVJiqdm3adZC27Z4xwa8WHUV/f7lSiaa7CHVNaljf/cWeUqz4PyPw9fj0OJ0lVJ+CMYdqP4rTI5H2yb/NSO5TXr4usPrz+huDpNFTvhHiLZs3kSWLF0bDE/W+Oor/g+m+kfXOv51bNn+Z5LRWkZzzUM95t/cu7Wuo55dus3rdJvvepWF6wwb1Ak41lDHjv2XC5KmSN28+CRbwRvIaI+qTQwUIIIBAMhQg4E2GJ5VDQgABBC6lQJOmzeXV/5/bcPSoEVKyZGn7jW2Tp56QFSuWJWq+XPkKonNeWm9yHqxaMWQXc+XKbebj9S9u3nhY+0TS15AdS4EbWGGVhuqVK5Yz8yFr0blOdQRjoOJ8s6lvZosU9W330fQP5LluXRLsoqOD9c2nfsU59U03mdG0lzvg1Q45A6biRQqYDzD8S6iAV0dBbd+13w73kgrBrbp16oeer/QJOEdxSruGIwk2LMfLEfBqW3XqPSojRo4xzQYKT5/v3kM6PNM55HPE6rdz+o8XX3hWpr0/1b7sQn0woR+u7Tt4zP5WQ9Z7Mpp9Q4U9l+s2ZvVfP9zRaXf02xq6yJxOoeEcLVu5SjWZONl33GqqoamWSxXwWsevX/NfsOhzO+TdunWL1KlZPQGP22ty5Ki3pXadumbfQCOyIw1T3bYfyTmNtE/+bUVyn/LydYHVnyst4NXXPXqcWvQDwTnzFpoPh/T5oNM0BJv/OZJz7uY5H+reZTmGep3VrEUr6d3nNbO5fhiXP0/2kAuH6nPj6quvkVkzP0l0qUbyGiOS6519EEAAgeQuQMCb3M8wx4cAAgh4LGDNfadvYHU0Zpmy5WXseN8CUxvWr5OGDXxvcJ3F+UbuuzNnpGjhfBH3KtQbD2fFkfQ14o4l0x11VNqMWfPM0VnzZ274YqvoqBwtupCZjt7xL843m7q4ygOVKpsQV+fh09G3GhZrKV2mrHz4kW+kmy7CpiNpYxXw6gJB1lyCumigBtP+JVTAW7defRk+crTZTb/yrKOFoykp7RqOJNiwfC9XwJsnT15ZsNj3QZbOwVupYrkEp9g5ejfYh17OHZo2byl9XvWN8NYFK8uVLm4/HCrg1Q1XrPZNc6OlYoUycvTI4Ssy4NW5d6252/We8NKLz9vHuWLVOsl6732i8xHrnNZduz1nHrvUAa+2oR8mfrpwqT1Xtn5opR9eWSWca9J5f/AP/yMNU8NpP9x7TaR98m8nkvuUl68LrP5cSQGvfth38MgJ8+0M63XPm6PHSq3adUx3dT7a8WMTfnMlkmvO2sdNwBvq3mXVFep11uatu+T2O+4wm+vf7ekfTgv30rO3j/Q1RsQNsiMCCCCQjAUIeJPxyeXQEEAAAa8FdGoEfeGvxVrYQ/994LBvfkMdmZX93rsTjeS44YYbzCgzq3R/vlvEc+CFeuNhtRFpX702i/f6Jk+dJg88UNkcRq0aD8n2bVvFOUJR56HV8+lf/APeDevX2nOSTpr4jr2K+KIlK8yUD9aI3b0HjsYs4LWuLT0Wnf7DCqGdxxYq4H3t9QGiK4prcTN6N6nrIyVew9GEWZcr4G34+JMycLBvWgb9xoKGuM5y7MQpM7/rDz/8IAXzhV58yNxPj5ww8/H6Tw/iJuC1RsBrPToyVqdAcRP2XI57k3MEr44u3rR5u2TIcKcZuajToOjfjIKFCsvc+b6v0vd65SVJe0vayxrwarufzJxrjxr2v6eFc03qlEWbt/kWy9NRmtaIav050jA1nPbDPaeR9snZTqT3KS9fF1j9uZICXp3WSKce0DJpwngzT272HDlk6bLV5ndHjx6RiuVLBzxlkZxzN8/5UPcuqzOhXmcdPva1+UAkqam53F6Lkb7GcFs/2yGAAAIpSYCANyWdbY4VAQQQiFLgpZ69pHXb9qYW58iqCZPelSpVH0z0e2dzny363MzBZhUNIXZs3yabN38ha1avMl/L1TfEoUqoNx7W/tH0NVQfUtLjVvDknDJB5xbVaQg0xAo0lYL6+Ae8Olpv6/Y9ovOOanCaK3sWuS9bNvvNrrWqvJuAV+vXYCipoteSfthglVBBmfMrxjoiWUcmByqhAl5nUPREw0dl3do1EV8uKfEadi5IFO45vhwBr06JsGX7HntBQP/FkpyLBTk/BAt1ETinB8ly953mK/5aQl23ztFvupiafu3b//nn5vly7OgRqfxA+VDdDPtx/4D3sYZPyKAhvnm7335rlPTv11dmz1sghQsXMV/11tH9Xbo+e9kD3mef7y4dO3U1/fKfHzXcsM36wFPr0jmRdW5kLZGGqdE8J0KdMGef9Jr73//+l+Qun3w8XV547j8JtonmPuXV6wKrQ1dSwGt9eKl9K1oon70Yo3P0q/P3TlTnOddvggQrI0YMlckT30n0nA80dUyoe5ezjaReZzk/xNBpV3RxwmhKpK8xommTfRFAAIHkKkDAm1zPLMeFAAIIXAIBK4TQ8Oy+LHfZgWyhwkXMYkFaDh08EDAo0K/0f7ZwqQn4AhV9c3nmzGmZOeNjGTVyeKKFuKx93Aa80fT1EtDFZZXO+fo+/OD9BG/sQ01nECjgdYaoI0cMlRIlSkmp0mXMqEVdoE+vAbcBrxtQ56JlzqBMQ7mzZ7+Tm2++RbJkzSq1ateVQoV8ga72oVmTp2T5sqUBmwgV8FojFHVnDbGd84y66bNzm5R4DQdacT4pN+c59jrg1YD2xe7PmZFqGtzmL1BQHn+ikaRKlcp0aeuWzVKn1sMJulezVm17pPqyZUulWeNGrk67M+h6+MHKsnu3bxRoUgFvi1ZtzAJ91iJhU9+dLD17vGD2C7TIYVId0fmvixXJ76qv4WzkH/DqvtYUFhpIV6tSUVat2WCqHDZkkAwfNjgmAa/zb5gutla+zD8LpoUb8FrTFegxPf1kQ1m1aoU5Pi8CXjf2gRZrDLafs09u6l68aIG0auH7hoJVorlPefW6wOrLlRLw6rzqep3rh6D+IahzQU+djqTXyz0S0bu9Dzr3dz7nI7l3OTuR1OusR2rUlDFv+0Ll1UAJ4OgAACAASURBVKtWylNPPubm0gm4TTSvMSJulB0RQACBZCxAwJuMTy6HhgACCHgp4PxqYaDRIdabdg3IChXILT98/32i5nUEySu9+0rNmrXt+dsC9VHf+Dd+6nHZuGF9oofdBLxe9NVLu3itS+elzJfPF/r4z0vpnDc0UJAVKODVeqwQTufi1eBM3wCPGT1SBvT3zUHqJuDVDxg+ne+bFzhY0dGfXTr5RptrcQZlwfbR+T8bPdHADtcCbRcq4HVO86Bfz3YzKj1QOyn1GraCjUjOsdcBb7DrRO9xb415075mnds5v5a9cMGnoh8muCnzFyyR/PkLmE0fq1/Hvvc5r9uffvrJXE/61XYr1LXq/vrrk1KmZFG7KefzT6eK0CAmqaKB0Ijhvq+Te1kCBbzt2neU7j16mmb0K9666JQ1ql+PLxYjeO+5J7OsXrfJ9Ml/8chwA96Fi5dL7jy+ubedczBHG/BG8pwIdS6dfdJrYN++fUnusuCzeQnuvV7cp7x4XWB1+koJeJ0jwq1vp1h9dI6A1b85+nrJv1jXnN5rrA97Ap2YcW+PljmzZ5mH3Hyok9S9y1l/Uq+znPe4JYsXSsvmTUJdZkEfj+Y1RsSNsiMCCCCQjAUIeJPxyeXQEEAAAS8FRo0ZJzo6TcuwoYNkxXLfIkNWebHHy2Y0ppaxb42W1/u9mmTz+makfPkKUrJUGSlcpKhkz54jQWihb/x1ETf/r2m7CXi97quXjvFSl4ZIGrZqAKvB0tONGiboui4co9MRaNH5NJ3TIfi/2XQuqNTlP89K1//4FlCy9rXm4tSf3QS81le5w7F0E/DqYlm6aFZSJVTA6xyJWbtmddm2dUs43bS3TanXcLhhmhPXCnjdXB/WqEP9oCFb1kx2NW5Cki+/2CSP1q0Z8Lzqgl2LlvpGbO7atVMeeaiKq/PvnEfXOfI71HWrgY0+v15+qbs9rYP/8y/QB3KuOuXBRoECXr2n7Nl/xMy1bRVrjlL9ORYBr/PbBTt37pAa1avafQv3mnQuslehXCk5fuyoqSvagNfNdR3uKYu0T1Y7Xt+nIn1dYPXnSgl4N365Te68M6Ppln5g4z+f++R3p9nTvDhH7FvHEe415/+cD3YdJHXvcu6T1OssZ6gf7Btbbq7DaF9juGmDbRBAAIGUJkDAm9LOOMeLAAIIRChgBW9udo/k6776pr/DM52l23MviI7o0dK5U3uZPXNGgibdBLyXuq9uDOJ9G52PUkchuS2dO7aT2bNm2psHG8Gr51YX3LNGIL7/3rvSo/s/ge/lCHirV6sk586dM319Z9K79shJDbLLlipqAu1gJVTAO+LNt6RO3Xpm96RWSQ/lmlKv4UiCDcvSmuM50AcO/t479xwU/Rq1/yJBzutWg76WzRqbXfPkzScTJ081H3hosaYT8K9XH9dF1rScPv2tFC/iG5UbqmjgqSNZ/fvuDHh1Pufff/9N9BsOBw8ekG1bt8rmLzeZebD9i5sFl0L1yYvHAwW8Wm+Pl16RNu06mCb0QzydosUKwWIR8I55e7w8UqOW6Y+OiOz0TFv78MO5JvX+duT4f811ouG7juK35lOONEwNp/1wz1mkfbLaudT3KbevC6z+XAkBb+YsWe1pR9ycj0ULP5PWLZsl2DSScx7tvcvZgVCvs6yFJHUtBV3YMZIS7WuMSNpkHwQQQCC5CxDwJvczzPEhgAACHghUqlxVJk15L6yaqlQqLwcPHAhrH9145uz5UrRYcbOf86v7VkWh3nhczr6GfXBxtMPaDV9Kpkz/LFIWquv+o96CBbxaT99+b0jjJs3M1831zaGGbP6BQaDF2yJ502vVG2wu0+uuu07Wbdgsd6RPbzY9ceIrM/+mFcr4H3eogLd5y9bSq3dfs1s4Izid7aTkaziac2wtaqTnThcqS6ocOnpSdBS6/9fxkwpGn27cVF57fYBd7TPtW8u8uXMSNWOFXtoPvZb0mkqqOBdK+/bbU1KiaEF781CLrAWr90oPePV5p6G2noOZn3wsXbs8Yx/K5Q54tS9fbNkpadOmNX3wH1EZzjWp8yK/0sv37ZW9e/bIQ9UesI8r0jA1nPZD3af9H4+0T1rP5bxPhXpdYB3XlRDwDhs+SurVb+D6VDgXR7R2iuSce3HvstoP9TrL+oBMt6/5cDXZsWO76+O1Noz2NUbYDbIDAgggkAIECHhTwEnmEBFAAIFoBfSr+MVL+FZK7tKpg1k0JFBp+PiTZhEiLXPnzJaOHdqYf2tQeH2qVCG//q7bvjFwiOgcb1pef+1VGfv26ARNhXrjEW1fo7VKDvvrglL6lXEteq71nAcrH34004zG1TBLp1qwFhVLKuDV7e+vWElOffPfRG8ML8cI3sIF84hzZXL9Ku2qtRvtUcXr162Vxx/zjcL1L6ECXrXTN67WSE9dkEgXJgpVypQtJzpCU0tKvoYjCTYsWx1hW7lKNfOjc+5Tf3vnglr+0xeECkadAZJ+QFG7xkOJruGp70+XCvdXNM26mR5h+cq1cu99vlFw/iPak2vAq8eaN28+uSvT3bJ2zaoEH/Jc7oDXuWDkqVPfSMlihRJcMm6vSQ08naO827dtmWC+2kjDVLfth7rHBHo80j55cZ/y8nWBdWxXQsDrnGdep2cIVgYOGirZc+Q0D+tc3Tpnt1UiOede3Lus9kO9zpry3gdSsWIls7n//N/BjlcX2E1/R3rZt2+vWbQy2tcYkVzv7IMAAggkdwEC3uR+hjk+BBBAIEoBXQjr4JETZtoE/ep6/jzZg9Z4yy23yPZd+0245fzqs/VVPF2Mq2vnZwIuwKaV6lem127YbP6vpVTxwvLNN/9N0F5Sbzy86GuUXMli9wGDhtpBfe9ePUXnxwxWnKHa4IFvyJsjh5lNkwp4k0KKRcCr/SlStJgZPW4Fs855g539DRXw6rbOkOH8+fPStPGTARcM1G015NDR8Tly5pLMmTKYheeifb7F80UYSbBhHa9zhK2OzL2/XKlEc3jr+dVFsHLl9i1s5Lxm/a/bYOHsrDmfmutFi46+03Y0GLRKultvlS3bdttTzQSbzkG31xHB2m8teq3o/dU573hyDniDXaeXK+DVr9KPHPWWFCpU2HRFP6TSOZP9F7UKdU3qNaXnsFef18zzV0uguU4jDVNDtR/N8z3SPnlxn/LydYFlEOuAVz+o+2C6b1op/cDuiYaPBj099Rs0lCHDRprHt27ZLHVqPWxvG8k5DxXwauWh7l1WB0IFvPoabfO23aKj37VoON2uTcugi4rq9Fv/efZ5s12Hdq3Fi9cY0Vz37IsAAggkVwEC3uR6ZjkuBBBAwCOBps1bSp9X+5naPvl4unTr2inJmpetWCP3ZfOFwE0bN5Lly5aKc641HfW2evVK2fzFF+b/u3ftlCxZs0rtOvWkSdMWctNNNwV8w6MrT2vIvHT5atEgWeeqLFvKF7LoXJemPQ/66hFbXFdjLRKk50oXT/Nf6M55cM6vlzu/7n4pA15dGOvtt0YlaXzxwkUZPmywvY2boExHoA8c7AuotfR65SWZPPEd82+95q6/PpUJhEqXKWt+p6N8Dx86JD/88L25Hq2igY9+0KH7WGXpkkUyd84sWbVqpWS6K5OUr1BRSpQqJfff/4AdBGrAm9KvYSvYiOQcq/WGL7ZKxoz/Nuw6F3if3j1l1coVJngoXaac9OrT15565Pvvv5dC+XMluI7chCQabunoswwZfNNA6GjwUiUKJ1hIqXef16RZi1Z23foV5gnvjDWLU157zbVSuUpVaduugz1yVzfUhdLenTIpQX/cXLeBngjO49D74/QPpyX5fDl29Ki5v3tdgs3Bm1Q7SQW8bv4OaN3O4HL58s9l+edLJVWqGyTjv/8t6dOnl/wFCso992S2u6Hhbt9Xe8mE8WMTdc26JvU5/tqrveSqq6+W2267zSyipSMR9dstVtClO+s0Gw9UKJNgVLJ/n/TDgw0b1gVl0OtVPxjQfkX7nEjK2ukUqk9az+pVK82HVV7cp7x4XeB/bLEOeKd9+ImULVfedCupbxHo4/p3QqeK0fuJnu+c2TLbf0cuVcAb6t7l9vml/XdOR6Q/67RKusDumjWr5Kuvjku5cuXNIrpVqlaz78nz580xAa8XrzG8vldRHwIIIJAcBAh4k8NZ5BgQQACBSyjgDGwrVigjR48cTrI15xyEmzZukAaP1jaLpz3fvYfrXmogUa50cTswSZMmjXmTG6zUqvGQbN+2Vbzoq+tOJtMNnYHt1q1bpE7N6iGP1Hozqhtao64vZcAbskP/v4EGplZxG5T16fu6NG3Wwuym4Yq+SV+5crk45xz0b3/SxHek9ysvJfi1rjQ+cfJ7CUKkpPqtgWa2rJlS/DXsvJbcnGfnOdbtdWTtjFnz7NA8WB16bps3fVqWfb4kwSZuAl7dQYOQ1es2yY033mj237d3rzxY1Tctg1X69R8ojZ5qbI8KT6ovw4cOTvCBRLjXrX/dzuNw4xjJwphu6vUy4HX7d0D75QwuQ/VTg6nOHdubDyMDFbfXpF5Teq9o1rhRwJGM4fRJ+5HjvnvM30C37Vt9939OJHX84fZJp5vRaWe8+Fsb7euCQMcVy4BXA1v99oXOK62j8XXKolBFpziyPjDs17ePjBs7xuxyqQLepO5d4Ty/rON68aWXzXPNWhg31PFOnjRB5s2dbe7RWqJ5jRGqLR5HAAEEUqIAAW9KPOscMwIIIOBSQEclHTj8lQko3AYAus/+Q8fNC34rtNLmHqr+iDRr3tIsoKZvgAIVfVM0ZtRI+2v+1ja6urwuyBOs6CIfOq+bV311yZMsNxs7fqI5V1o6d2wns2fNDHmcw0eMlrqP1jfb6XQOOq2Djl7VUTpapr47WXr2eCFkPbqBNUXDDz/8IAXz+eYntEo0QYfzjXShArnl+3PngvZn+sezpFTpMuZxvYaLFckvq9ZsTDAi17mzdcyBKmzVpp107tJN9M1zoKKjP2fPmiFDhww0YU5Kv4ajOceWr47gnTB5qpnjNVA5eGC/CXd1lJl/cV631gdUwS6UAgUKypz5C+1wI9A3HDRwfnvcBEmfPkOioFcDQR313qxJo6ALUoZz3Tr76TwON088/VCteJECbjYNaxur//otgPuy3OVqX+fITr1v6P1Di5u/A9ZiT84PGv0b1dGSv/zyi5kTXoP1FSuWJdmvYNeknj+9P5w9+50s/OxTGTZ0kBnFGKwk1adA++i3J3TUsBfPCa/6pF+x79ihrWf3qWheFwQ6JueUJ82aPJXoAxxXF2CEG9WuU1dGjnrb7L1o4WfSumWzkDU5F6rT+1KVShXMPtY5//nnn81CpG5KtPeuV3q+GPJ1VqDF1PR+O37iFMmdO489RYmzv/oc2bVzhxmRrh+AePUaw40J2yCAAAIpTYCAN6WdcY4XAQQQuAIEdI5KfTOQPXsOue7662Xvnt1mBK6+maEgkBwF9EOSfPnymxGm+hXvE199JZs2rueav4QnWxfz0wXVihQpJtdcc43s2L5Ntm7dHDNzDYTLlqsgf174U9auXmU+lKIggIBPgNcF8X8l6DksWbK0ZM16r5mXfP++vbJnz+74PzCOAAEEEIgTAQLeODlRdBMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEPAXIODlmkAAAQQQQAABBBBAAAEEEEAAAQQQQAABBOJUgIA3Tk8c3UYAAQQQQAABBBBAAAEEEEAAAQQQQAABBAh4uQYQQAABBBBAAAEEEEAAAQQQQAABBBBAAIE4FSDgjdMTR7cRQAABBBBAAAEEEEAAAQQQQAABBBBAAAECXq4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgTgUIeOP0xNFtBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAgJdrAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFMBAt44PXF0GwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQIODlGkAAAQQQQAABBBBAAAEEEEAAAQQQQAABBOJUgIA3Tk8c3UYAAQQQQAABBBBAAAEEEEAAAQQQQAABBAh4uQYQQAABBBBAAAEEEEAAAQQQQAABBBBAAIE4FSDgjdMTR7cRQAABBBBAAAEEEEAAAQQQQAABBBBAAAECXq4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgTgUIeOP0xNFtBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAgJdrAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFMBAt44PXF0GwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQIODlGkAAAQQQQAABBBBAAAEEEEAAAQQQQAABBOJUgIA3Tk8c3UYAAQQQQAABBBBAAAEEEEAAAQQQQAABBAh4uQYQQAABBBBAAAEEEEAAAQQQQAABBBBAAIE4FSDgjdMTR7cRQAABBBBAAAEEEEAAAQQQQAABBBBAAAECXq4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgTgUIeOP0xNFtBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAgJdrAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFMBAt44PXF0GwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQIODlGkAAAQQQQAABBBBAAAEEEEAAAQQQQAABBOJUgIA3Tk8c3UYAAQQQQAABBBBAAAEEEEAAAQQQQAABBAh4uQYQQAABBBBAAAEEEEAAAQQQQAABBBBAAIE4FSDgjdMTR7cRQAABBBBAAAEEEEAAAQQQQAABBBBAAAECXq4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgTgUIeOP0xNFtBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAgJdrAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFMBAt44PXF0GwEEEEAAAQQQSI4CzVq0kpat2gQ8tD//+EPO//abHD1yRMaPe0u2b9saFwSP1Kgpg4eONH39888/pWC+nHHRbzqJAAIIIIAAAgggEB8CBLzxcZ7oJQIIIIAAAgggkCIEhgwbKfUbNHR1rN+dOSONnmgg+/btdbV9rDZq0rS5vPpaf7v5zJkyxKortIsAAggggAACCCCQDAUIeJPhSeWQEEAAAQQQQACBeBUIJ+DVY9QRsQ8/VFkOHjhwxR4yAe8Ve2roGAIIIIAAAgggkCwECHiTxWnkIBBAAAEEEEAAgeQh4Ax49+zZLdWrVbIP7NbbbpNixUpI567dJF++/Pbvv/76pJQpWfSKBUiTJo0ULuzr32+//yZfbNp4xfaVjiGAAAIIIIAAAgjEnwABb/ydM3qMAAIIIIAAAggkW4GkAl7nQb837SMpX+F+86u///5bstx9Z1gmV199tfz1119h7ePc+Nprr5WLFy9GvL+bHaPto7MNL+ty03e2QQABBBBAAAEEELh8AgS8l8+alhBAAAEEEEAAAQRCCLgNeDNnySqr1mywa3usfh3ZuGF90Nrvvvseef2NQZIzVy657bbbRQNand7h7Nnv5POlS6RnjxdMUJxU0akWnm7cVO7JnEWuv/56s+n58+dl7ZpVcvzYMSlVpqz53eCBb8jyZUvtqnTk8dT3p5ufjx09Ih3atQ7aTMdOXaV2nbpyV6a75cYbbzQh9NnvvpMDB/bL8892lZMnTwTct2at2tK2fUfz2OxZM2T82LekS9dnRX9/9z2ZTX8vXLggp09/K71efkmWLF7ItYgAAggggAACCCCQTAQIeJPJieQwEEAAAQQQQACB5CDgNuDVgPbwsa/tQ27ZvEnQ0LJFqzbS8+XeoqNYg5VzZ8/K4w3ryf59+xJtcvPNN8vUaR9JoUKFXREPGzpIhg8dbG+rofLipSvNzz///LPky50tUT1p06WT6R/Nkly5cwdtQ0cMv/xSd5n2/tRE2/Tp+7o0bdbC/P7I4UNyU5o0kj598MXcxoweKQP693N1PGyEAAIIIIAAAgggcGULEPBe2eeH3iGAAAIIIIAAAilKwG3AW6x4CZkxa55tU7xIATM61b88372HdHims/3rX375RQ4e2C8//vSjZL4ns2S99z77sW+/PSUlihZMVMeK1esla9Z77d9bo2ov/u+ipEt3q6RKlSrBPpEEvFu37xEd6WsVDYK/PnlSbkl7i2TIcGeCcLpb107yyce+EcFWcQa8/gegI5U1EHcG3HoMRQrlle/PnUtR1xcHiwACCCCAAAIIJEcBAt7keFY5JgQQQAABBBBAIE4F3Aa8ny5cai+09uuvv0qenP8EsNaha2C6eesuO9ic+u5kMwLWORVD8RIl5YPpM+Rf//qX2e3VPq/IhPFjbT2dluHV1/rbP3++dLHoaGHn/L0lS5WWt8dOsAPacAPeZzp2kedeeNG0oX0bMmiAvDlymN1mxoz/ljnzF5igV4uGv/nzZE9wHP4Br9bz0fQPZPSokXL82FGzX+MmzcyxXHXVVeZn9dCpKSgIIIAAAggggAAC8S1AwBvf54/eI4AAAggggAACyUogVMCrc+kOGzFKNJi1yqAB/WXUm8MTOWhwW6ZsOfP7FSuWSZOnnghopXPVdu32nHlMR/dWqVTB3m7vgaNmLlwtq1etlKeefCxgHbPnfiaFixQ1j4Ub8B44/JU9p++HH7wvLzz3n0RtpE6dWnbsPmBG4moZPWqEDHzjdXs7Z8D73ZkzUrtm9YDz9c6a86kUKVrM7Ldp4wZp8GjtZHX9cDAIIIAAAggggEBKFCDgTYlnnWNGAAEEEEAAAQSuUAFnwKtzzn7zzX9NT1Ndn0pS33STHbZa3depCnTKgkBlz/4josGoloL5c8kP338fcDvdRrfV8uOPP0qBvDnMv9Pdeqts27HX/FtHxOr0DYGmgdDHIw14s+fIIUuXrTZt6KhgbVtH6AYqo8aMM4umadm1a6c88lAVezNnwLtq5Qp5ulHDgHXodBU6bYWWEye+knKli1+hVwLdQgABBBBAAAEEEHArQMDrVortEEAAAQQQQAABBC65gDPgTaqx8+fPS/OmT8n6dWsDbqbTEBw7ccp+7PjxY0n2PXPmLOZxDVmz3pPR/PuRGjVlzNvvmH/rXLWFCgRfAC3SgPexhk/IoCG+0cdnTp+WYkXyB+1nnXqPyoiRY8zjOkq3aOF89rZuA9669erL8JGjzX7B5hy+5CeZBhBAAAEEEEAAAQQ8FSDg9ZSTyhBAAAEEEEAAAQSiEfAPeJ1z3ToXCTt16hspXaJIgrlwne3mzZtPPlv0eURdyZwpg9nv5Vf6SMvWbc2//adu8K840oDXGczu27tXHqxaMWifncd04cIFyZY1k72t24C3UuWqMmnKe2Y/At6ILg92QgABBBBAAAEErjgBAt4r7pTQIQQQQAABBBBAIOUKJDUH7xsDh8gTTz5l42zdslnq1Ho4IFblKtVk4uSp9mMa0LopFy5elOrVKplNX3t9gDzduKn59949e+Shag8ErcI5t+2wIYNk+LDB9rY5c+WSxUtXmp91+oV8ubPZjw0fMVrqPlrf/Lx16xapU7N60DYyZ8kqq9ZsMI87RxrrzwS8bs4u2yCAAAIIIIAAAslTgIA3eZ5XjgoBBBBAAAEEEIhLgVCLrDmDVD3AYHPw+s+fm+XuO8P2aNq8pfR5tZ/ZT0cMlyxWKGgdkY7gbde+o3Tv0dPUe/LkCSlbyrcAWqDiHH3rHxQT8IZ9etkBAQQQQAABBBBINgIEvMnmVHIgCCCAAAIIIIBA/AuECnivvfZaWbdxs2TI8E9g+/prr8rYt33zyjrL4WNfi26vRUfl7tmzOyyg4iVKyicz55p9dMRsruxZ5I8//ghYR6QBb+kyZeXDj2aaOn///XfJmS1z0D7+59nnpXOXbubxo0ePSMXype1tCXjDOrVsjAACCCCAAAIIJCsBAt5kdTo5GAQQQAABBBBAIL4FQgW8enS3336HrN3wpaRKlco+2JbNm8iSxQsTHPwXW3ZI+vS++XSPHD4kD9xfNiTO9ddfb4e4N9xwg+w9cFR0wTYtE98ZJ316v5yojrvuyiSfLlgiOmpYy7Chg2T4UHdTNKROnVr27D9i1/n8s11l+ofTAvZz2469dhufL10szZs+bW9HwBvy1LIBAggggAACCCCQbAUIeJPtqeXAEEAAAQQQQACB+BNwE/DqURUoUFDmzF8o1sJrFy9elEceqiL79u21D7p+g4ai9Vll3tw50qVTe9Ft/Uv2HDlk2IjRcvPNN0uFsiXth9+ZOEWqVnvI/lmnhBg/9i05ceIrKV+hotSuU1eqP1zDDoHDDXh1+49nzJESJUuZNnTqhQerVJSvvz6ZoIsv9ewlrdu2N7/7+++/5f7ypeX4saP2NgS88Xet02MEEEAAAQQQQMArAQJerySpBwEEEEAAAQQQQCBqAbcBrzZUt159GT7yn6kZzp8/L2VLF5NzZ8/a/fh04VLJly+//bNus3zZUtmze7fcmPpGKV68pGTLll1uve02s40Gt+VKF7e3199v3rrLDpLdHGA4I3i1vjvvzCjrN22x27hw4YIZxauLyN122+1Su249yZs3n930ooWfSeuWzRJ0hYDXzZlhGwQQQAABBBBAIHkKEPAmz/PKUSGAAAIIIIAAAnEpEE7AqwfoHNmqP3/77SkpU7KoPUpXp3P4ZOYcyXrvfa48/ANe3UlHC3/w0Uy56aabAtahbeqoYJ2qQUu/vn1k3Ngx9rY5c+WSxUtXmp/9F0ezNmrWopX06t03wUjgQI3p3Ls1H65m6nEWAl5Xp5eNEEAAAQQQQACBZClAwJssTysHhQACCCCAAAIIxKfAwMHDpOHjT5rO79q100y7EKq8N+0jKV/hfnuz1atWylNPPpZgtycbPS09evaSNGnSBKxOR/auXrVCRo0cLjt2bE+0je7XsVNX0YXXsmTJKj/+9KMcPnRQVq5YLu9OmSRLl62S7Dlymv0aPdFA1qxeqFgrPQAAC0RJREFUZddxX7bssmzFGvPzjz/+KAXy5gjYB50m4oMPZ8gd6dMnelynZZg8aYL0fuWlgPu+/Eofadm6rXls2bKl0qxxo4DbVahQUaZOm24e++ab/0qp4oVD8fI4AggggAACCCCAwBUuQMB7hZ8guocAAggggAACCCDgncB1110nBQsVlkKFi8hVcpUcOnRQdmzfJt99dyaqRnbsPiC33HKLqSN/nuzy008/RVxf2nTp5P77K0q+fAVMILxq5fKAoXPEDbAjAggggAACCCCAQLISIOBNVqeTg0EAAQQQQAABBBC43AI1a9WWUWPGmWZ1/txsWX1TNVAQQAABBBBAAAEEELgcAgS8l0OZNhBAAAEEEEAAAQTiVmDF6vVy9rvvZPasGbJhwzo5dPCg6JQJujhaq9ZtpUWrNvbcuVPfnSw9e7wQt8dKxxFAAAEEEEAAAQTiT4CAN/7OGT1GAAEEEEAAAQQQuIwC+w8dl1SpUiVoUQPeq666KsHvdB7fvLnuk7/++usy9o6mEEAAAQQQQAABBFK6AAFvSr8COH4EEEAAAQQQQACBJAUCBbz+O+zbu1daNHtaTp48gSYCCCCAAAIIIIAAApdVgID3snLTGAIIIIAAAggggEC8CTxQqYo8VP1hKVCwkFlI7cYbU8vFCxfk1Len5Mjhw7Lgs/nmPwoCCCCAAAIIIIAAArEQIOCNhTptIoAAAggggAACCCCAAAIIIIAAAggggAACHggQ8HqASBUIIIAAAggggAACCCCAAAIIIIAAAggggEAsBAh4Y6FOmwgggAACCCCAAAIIIIAAAggggAACCCCAgAcCBLweIFIFAggggAACCCCAAAIIIIAAAggggAACCCAQCwEC3lio0yYCCCCAAAIIIIAAAggggAACCCCAAAIIIOCBAAGvB4hUgQACCCCAAAIIIIAAAggggAACCCCAAAIIxEKAgDcW6rSJAAIIIIAAAggggAACCCCAAAIIIIAAAgh4IEDA6wEiVSCAAAIIIIAAAggggAACCCCAAAIIIIAAArEQIOCNhTptIoAAAggggAACCCCAAAIIIIAAAggggAACHggQ8HqASBUIIIAAAggggAACCCCAAAIIIIAAAggggEAsBAh4Y6FOmwgggAACCCCAAAIIIIAAAggggAACCCCAgAcCBLweIFIFAggggAACCCCAAAIIIIAAAggggAACCCAQCwEC3lio0yYCCCCAAAIIIIAAAggggAACCCCAAAIIIOCBAAGvB4hUgQACCCCAAAIIIIAAAggggAACCCCAAAIIxEKAgDcW6rSJAAIIIIAAAggggAACCCCAAAIIIIAAAgh4IEDA6wEiVSCAAAIIIIAAAggggAACCCCAAAIIIIAAArEQIOCNhTptIoAAAggggAACCCCAAAIIIIAAAggggAACHggQ8HqASBUIIIAAAggggAACCCCAAAIIIIAAAggggEAsBAh4Y6FOmwgggAACCCCAAAIIIIAAAggggAACCCCAgAcCBLweIFIFAggggAACCCCAAAIIIIAAAggggAACCCAQCwEC3lio0yYCCCCAAAIIIIAAAggggAACCCCAAAIIIOCBAAGvB4hUgQACCCCAAAIIIIAAAggggAACCCCAAAIIxEKAgDcW6rSJAAIIIIAAAggggAACCCCAAAIIIIAAAgh4IEDA6wEiVSCAAAIIIIAAAggggAACCCCAAAIIIIAAArEQIOCNhTptIoAAAggggAACCCCAAAIIIIAAAggggAACHggQ8HqASBUIIIAAAggggAACCCCAAAIIIIAAAggggEAsBAh4Y6FOmwgggAACCCCAAAIIIIAAAggggAACCCCAgAcCBLweIFIFAggggAACCCCAAAIIIIAAAggggAACCCAQCwEC3lio0yYCCCCAAAIIIIAAAggggAACCCCAAAIIIOCBAAGvB4hUgQACCCCAAAIIIIAAAggggAACCCCAAAIIxEKAgDcW6rSJAAIIIIAAAggggAACCCCAAAIIIIAAAgh4IEDA6wEiVSCAAAIIIIAAAggggAACCCCAAAIIIIAAArEQIOCNhTptIoAAAggggAACCCCAAAIIIIAAAggggAACHggQ8HqASBUIIIAAAggggAACCCCAAAIIIIAAAggggEAsBAh4Y6FOmwgggAACCCCAAAIIIIAAAggggAACCCCAgAcCBLweIFIFAggggAACCCCAAAIIIIAAAggggAACCCAQCwEC3lio0yYCCCCAAAIIIIAAAggggAACCCCAAAIIIOCBAAGvB4hUgQACCCCAAAIIIIAAAggggAACCCCAAAIIxEKAgDcW6rSJAAIIIIAAAggggAACCCCAAAIIIIAAAgh4IEDA6wEiVSCAAAIIIIAAAggggAACCCCAAAIIIIAAArEQIOCNhTptIoAAAggggAACCCCAAAIIIIAAAggggAACHggQ8HqASBUIIIAAAggggAACCCCAAAIIIIAAAggggEAsBAh4Y6FOmwgggAACCCCAAAIIIIAAAggggAACCCCAgAcCBLweIFIFAggggAACCCCAAAIIIIAAAggggAACCCAQCwEC3lio0yYCCCCAAAIIIIAAAggggAACCCCAAAIIIOCBAAGvB4hUgQACCCCAAAIIIIAAAggggAACCCCAAAIIxEKAgDcW6rSJAAIIIIAAAggggAACCCCAAAIIIIAAAgh4IEDA6wEiVSCAAAIIIIAAAggggAACCCCAAAIIIIAAArEQIOCNhTptIoAAAggggAACCCCAAAIIIIAAAggggAACHggQ8HqASBUIIIAAAggggAACCCCAAAIIIIAAAggggEAsBAh4Y6FOmwgggAACCCCAAAIIIIAAAggggAACCCCAgAcCBLweIFIFAggggAACCCCAAAIIIIAAAggggAACCCAQCwEC3lio0yYCCCCAAAIIIIAAAggggAACCCCAAAIIIOCBAAGvB4hUgQACCCCAAAIIIIAAAggggAACCCCAAAIIxEKAgDcW6rSJAAIIIIAAAggggAACCCCAAAIIIIAAAgh4IEDA6wEiVSCAAAIIIIAAAggggAACCCCAAAIIIIAAArEQIOCNhTptIoAAAggggAACCCCAAAIIIIAAAggggAACHggQ8HqASBUIIIAAAggggAACCCCAAAIIIIAAAggggEAsBAh4Y6FOmwgggAACCCCAAAIIIIAAAggggAACCCCAgAcCBLweIFIFAggggAACCCCAAAIIIIAAAggggAACCCAQCwEC3lio0yYCCCCAAAIIIIAAAggggAACCCCAAAIIIOCBAAGvB4hUgQACCCCAAAIIIIAAAggggAACCCCAAAIIxEKAgDcW6rSJAAIIIIAAAggggAACCCCAAAIIIIAAAgh4IEDA6wEiVSCAAAIIIIAAAggggAACCCCAAAIIIIAAArEQIOCNhTptIoAAAggggAACCCCAAAIIIIAAAggggAACHggQ8HqASBUIIIAAAggggAACCCCAAAIIIIAAAggggEAsBAh4Y6FOmwgggAACCCCAAAIIIIAAAggggAACCCCAgAcCBLweIFIFAggggAACCCCAAAIIIIAAAggggAACCCAQCwEC3lio0yYCCCCAAAIIIIAAAggggAACCCCAAAIIIOCBAAGvB4hUgQACCCCAAAIIIIAAAggggAACCCCAAAIIxEKAgDcW6rSJAAIIIIAAAggggAACCCCAAAIIIIAAAgh4IEDA6wEiVSCAAAIIIIAAAggggAACCCCAAAIIIIAAArEQIOCNhTptIoAAAggggAACCCCAAAIIIIAAAggggAACHggQ8HqASBUIIIAAAggggAACCCCAAAIIIIAAAggggEAsBP4PEDnN3qu3FrEAAAAASUVORK5CYII=", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "AI-generated follow-up questions:\n", + "\n", + "* - What are the total sales for each customer in the Asia region?\n", + "* - How many orders does each customer in the Americas region have?\n", + "* - Who are the top 5 customers with the highest total sales?\n", + "* - What is the total revenue for each customer in the Europe region?\n", + "* - Can you provide a breakdown of the number of customers in each country?\n", + "* - Which customers in the United States have the highest total sales?\n", + "* - What are the total sales for each customer in the Asia region?\n", + "* - What are the top 10 customers with the highest returned parts gross value in Africa?\n", + "* - What are the top 3 customers with the highest total sales overall?\n", + "* - Can you provide a list of the first 10 customers in the database?\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "vn.ask(\"Who are the top 2 biggest customers in each region?\")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Run as a Web App\n", + "If you would like to use this functionality in a web app, you can deploy the Vanna Streamlit app and use your own secrets. See [this repo](https://github.com/vanna-ai/vanna-streamlit)." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.2" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/workflow.md b/workflow.md new file mode 100644 index 000000000..af69ca5bd --- /dev/null +++ b/workflow.md @@ -0,0 +1,19 @@ +# What's the Workflow? +```mermaid +flowchart TD + DB[(Known Correct Question-SQL)] + Try[Try to Use DDL/Documentation] + SQL(SQL) + Check{Is the SQL correct?} + Generate[fa:fa-circle-question Use Examples to Generate] + DB --> Find + Question[fa:fa-circle-question Question] --> Find{fa:fa-magnifying-glass Do we have similar questions?} + Find -- Yes --> Generate + Find -- No --> Try + Generate --> SQL + Try --> SQL + SQL --> Check + Check -- Yes --> DB + Check -- No --> Analyst[fa:fa-glasses Analyst Writes the SQL] + Analyst -- Adds --> DB +``` \ No newline at end of file