Releases: valentingol/gan-facies-modeling
Releases · valentingol/gan-facies-modeling
v2.5.1
- 🗃️ Add full datasets e7c9ae2
- 🚀 Allow usage of Windows (in particular dealing with absence of JAX) d29aac9
- 🔧 pixel_classes_cond is empty list by default 33819a2
v2.5.0
- ✨ Add post-processing (notebook and functions) a780b0e 14ac94f
- ✨ Add pixel_classes config parameter b33f580 4f12f47
- 🚀
metrics.evaluate
returns now generated data and corresponding indicators 5043a8b
v2.4.0
- 📝 Add configuration summary 6fed0e4
- 🚀 Increase the number of normalization iteration to 2 281301d
v2.3.2
- 🐛 Pad one_hot_data if sample has not all the classes in sample_pixels_2d_np 6ad33ac
- 📝 Add example images from Rongier, 2016 and Stanford deltas f25a407
v2.3.1
- 🚀 Cast to bool in one-hot function to save memory 64a4ef4
- ✨ Add asymetric attention 3028bd6
- ✨ Add conditional visualizer 767f9a5
v2.2.0
- 🏗️ Move files and folders of the lib in gan_facies folder 11b06ea
- 🏗️ Update architecture of tests 2cccc6c
- 🚚 Move
github_actions
in root 9b5417a
v2.1.1
- 🚀 Allow symmetric attention structure in generator and discriminator e122be0
- ✨ Add number of parameters at the beginning of the training 0c278b7
- ✨ Add MACs computation during evaluation 9ece448
v2.1.0
- ✨ Add probability map for conditional models 621e85c 5cd554c
- 🤡 Mock some libs to make more unitary tests d3a5c6b
v2.0.2
- ✨ Add more customization in SelfAttention 00e7123
- 🤡 Mock some 3rd party code in tests 00901f2 2dce95e
- ✨ Add separate function in
utils/metrics/tools.py
to get reference indicators for metric computation 790c320
v2.0.1
- ✨ Add conditional accuracy 77f4acc
- ✨ Add feature to increase the size of the sampled pixel (uniform class) for conditional models 191b877
- 📈 Add white grid in sampled image grids to separate the images 45df6f8