-
Notifications
You must be signed in to change notification settings - Fork 6
/
test.py
194 lines (138 loc) · 6.73 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import argparse
import subprocess
from tqdm import tqdm
import numpy as np
import torch
from torch.utils.data import DataLoader
import os
import torch.nn as nn
from utils.dataset_utils import DenoiseTestDataset, DerainDehazeDataset
from utils.val_utils import AverageMeter, compute_psnr_ssim
from utils.image_io import save_image_tensor
from net.HAIR import HAIR
import lightning.pytorch as pl
import torch.nn.functional as F
class HAIRModel(pl.LightningModule):
def __init__(self):
super().__init__()
self.net = HAIR()
self.loss_fn = nn.L1Loss()
def forward(self,x):
return self.net(x)
def training_step(self, batch, batch_idx):
# training_step defines the train loop.
# it is independent of forward
([clean_name, de_id], degrad_patch, clean_patch) = batch
restored = self.net(degrad_patch)
loss = self.loss_fn(restored,clean_patch)
# Logging to TensorBoard (if installed) by default
self.log("train_loss", loss)
return loss
def lr_scheduler_step(self,scheduler,metric):
scheduler.step(self.current_epoch)
lr = scheduler.get_lr()
def configure_optimizers(self):
optimizer = optim.AdamW(self.parameters(), lr=2e-4)
scheduler = LinearWarmupCosineAnnealingLR(optimizer=optimizer,warmup_epochs=15,max_epochs=150)
return [optimizer],[scheduler]
def test_Denoise(net, dataset, sigma=15):
output_path = testopt.output_path + 'denoise/' + str(sigma) + '/'
subprocess.check_output(['mkdir', '-p', output_path])
dataset.set_sigma(sigma)
testloader = DataLoader(dataset, batch_size=1, pin_memory=True, shuffle=False, num_workers=0)
psnr = AverageMeter()
ssim = AverageMeter()
with torch.no_grad():
for ([clean_name], degrad_patch, clean_patch) in tqdm(testloader):
degrad_patch, clean_patch = degrad_patch.cuda(), clean_patch.cuda()
restored = net(degrad_patch)
temp_psnr, temp_ssim, N = compute_psnr_ssim(restored, clean_patch)
psnr.update(temp_psnr, N)
ssim.update(temp_ssim, N)
save_image_tensor(restored, output_path + clean_name[0] + '.png')
print("Denoise sigma=%d: psnr: %.2f, ssim: %.4f" % (sigma, psnr.avg, ssim.avg))
def test_Derain_Dehaze(net, dataset, task="derain"):
output_path = testopt.output_path + task + '/'
subprocess.check_output(['mkdir', '-p', output_path])
dataset.set_dataset(task)
testloader = DataLoader(dataset, batch_size=1, pin_memory=True, shuffle=False, num_workers=0)
psnr = AverageMeter()
ssim = AverageMeter()
with torch.no_grad():
for ([degraded_name], degrad_patch, clean_patch) in tqdm(testloader):
degrad_patch, clean_patch = degrad_patch.cuda(), clean_patch.cuda()
restored = net(degrad_patch)
temp_psnr, temp_ssim, N = compute_psnr_ssim(restored, clean_patch)
psnr.update(temp_psnr, N)
ssim.update(temp_ssim, N)
save_image_tensor(restored, output_path + degraded_name[0] + '.png')
print("PSNR: %.2f, SSIM: %.4f" % (psnr.avg, ssim.avg))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Input Parameters
parser.add_argument('--cuda', type=int, default=0)
parser.add_argument('--mode', type=int, default=0,
help='0 for denoise, 1 for derain, 2 for dehaze, 3 for all-in-one')
parser.add_argument('--denoise_path', type=str, default="test/denoise/", help='save path of test noisy images')
parser.add_argument('--derain_path', type=str, default="../data/", help='save path of test raining images')
parser.add_argument('--dehaze_path', type=str, default="test/dehaze/", help='save path of test hazy images')
parser.add_argument('--output_path', type=str, default="output/", help='output save path')
parser.add_argument('--ckpt_name', type=str, default="model.ckpt", help='checkpoint save path')
testopt = parser.parse_args()
np.random.seed(0)
torch.manual_seed(0)
torch.cuda.set_device(testopt.cuda)
ckpt_path = "ckpt/" + testopt.ckpt_name
denoise_splits = ["bsd68/"]
derain_splits = ["Rain100L/"]
denoise_tests = []
derain_tests = []
# base_path = testopt.denoise_path
# for i in denoise_splits:
# testopt.denoise_path = os.path.join(base_path,i)
# denoise_testset = DenoiseTestDataset(testopt)
# denoise_tests.append(denoise_testset)
print("CKPT name : {}".format(ckpt_path))
net = HAIRModel().cuda()
net.load_state_dict(torch.load("hair3d.ckpt")['state_dict'])
net.eval()
if testopt.mode == 0:
for testset,name in zip(denoise_tests,denoise_splits) :
print('Start {} testing Sigma=15...'.format(name))
test_Denoise(net, testset, sigma=15)
print('Start {} testing Sigma=25...'.format(name))
test_Denoise(net, testset, sigma=25)
print('Start {} testing Sigma=50...'.format(name))
test_Denoise(net, testset, sigma=50)
elif testopt.mode == 1:
print('Start testing rain streak removal...')
derain_base_path = testopt.derain_path
for name in derain_splits:
print('Start testing {} rain streak removal...'.format(name))
testopt.derain_path = os.path.join(derain_base_path,name)
derain_set = DerainDehazeDataset(testopt,addnoise=False,sigma=15)
test_Derain_Dehaze(net, derain_set, task="derain")
elif testopt.mode == 2:
print('Start testing SOTS...')
derain_base_path = testopt.derain_path
name = derain_splits[0]
testopt.derain_path = os.path.join(derain_base_path,name)
derain_set = DerainDehazeDataset(testopt,addnoise=False,sigma=15)
test_Derain_Dehaze(net, derain_set, task="SOTS_outdoor")
elif testopt.mode == 3:
for testset,name in zip(denoise_tests,denoise_splits) :
print('Start {} testing Sigma=15...'.format(name))
test_Denoise(net, testset, sigma=15)
print('Start {} testing Sigma=25...'.format(name))
test_Denoise(net, testset, sigma=25)
print('Start {} testing Sigma=50...'.format(name))
test_Denoise(net, testset, sigma=50)
derain_base_path = testopt.derain_path
print(derain_splits)
for name in derain_splits:
print('Start testing {} rain streak removal...'.format(name))
testopt.derain_path = os.path.join(derain_base_path,name)
derain_set = DerainDehazeDataset(testopt,addnoise=False,sigma=15)
test_Derain_Dehaze(net, derain_set, task="derain")
print('Start testing SOTS...')
test_Derain_Dehaze(net, derain_set, task="dehaze")