-
Notifications
You must be signed in to change notification settings - Fork 114
/
run.py
225 lines (187 loc) · 8.95 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
__author__ = 'yunbo'
import os
import shutil
import argparse
import numpy as np
import math
from core.data_provider import datasets_factory
from core.models.model_factory import Model
from core.utils import preprocess
import core.trainer as trainer
# -----------------------------------------------------------------------------
parser = argparse.ArgumentParser(description='PyTorch video prediction model - PredRNN')
# training/test
parser.add_argument('--is_training', type=int, default=1)
parser.add_argument('--device', type=str, default='cpu:0')
# data
parser.add_argument('--dataset_name', type=str, default='mnist')
parser.add_argument('--train_data_paths', type=str, default='data/moving-mnist-example/moving-mnist-train.npz')
parser.add_argument('--valid_data_paths', type=str, default='data/moving-mnist-example/moving-mnist-valid.npz')
parser.add_argument('--save_dir', type=str, default='checkpoints/mnist_predrnn')
parser.add_argument('--gen_frm_dir', type=str, default='results/mnist_predrnn')
parser.add_argument('--input_length', type=int, default=10)
parser.add_argument('--total_length', type=int, default=20)
parser.add_argument('--img_width', type=int, default=64)
parser.add_argument('--img_channel', type=int, default=1)
# model
parser.add_argument('--model_name', type=str, default='predrnn')
parser.add_argument('--pretrained_model', type=str, default='')
parser.add_argument('--num_hidden', type=str, default='64,64,64,64')
parser.add_argument('--filter_size', type=int, default=5)
parser.add_argument('--stride', type=int, default=1)
parser.add_argument('--patch_size', type=int, default=4)
parser.add_argument('--layer_norm', type=int, default=1)
parser.add_argument('--decouple_beta', type=float, default=0.1)
# reverse scheduled sampling
parser.add_argument('--reverse_scheduled_sampling', type=int, default=0)
parser.add_argument('--r_sampling_step_1', type=float, default=25000)
parser.add_argument('--r_sampling_step_2', type=int, default=50000)
parser.add_argument('--r_exp_alpha', type=int, default=5000)
# scheduled sampling
parser.add_argument('--scheduled_sampling', type=int, default=1)
parser.add_argument('--sampling_stop_iter', type=int, default=50000)
parser.add_argument('--sampling_start_value', type=float, default=1.0)
parser.add_argument('--sampling_changing_rate', type=float, default=0.00002)
# optimization
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--reverse_input', type=int, default=1)
parser.add_argument('--batch_size', type=int, default=8)
parser.add_argument('--max_iterations', type=int, default=80000)
parser.add_argument('--display_interval', type=int, default=100)
parser.add_argument('--test_interval', type=int, default=5000)
parser.add_argument('--snapshot_interval', type=int, default=5000)
parser.add_argument('--num_save_samples', type=int, default=10)
parser.add_argument('--n_gpu', type=int, default=1)
# visualization of memory decoupling
parser.add_argument('--visual', type=int, default=0)
parser.add_argument('--visual_path', type=str, default='./decoupling_visual')
# action-based predrnn
parser.add_argument('--injection_action', type=str, default='concat')
parser.add_argument('--conv_on_input', type=int, default=0, help='conv on input')
parser.add_argument('--res_on_conv', type=int, default=0, help='res on conv')
parser.add_argument('--num_action_ch', type=int, default=4, help='num action ch')
args = parser.parse_args()
print(args)
def reserve_schedule_sampling_exp(itr):
if itr < args.r_sampling_step_1:
r_eta = 0.5
elif itr < args.r_sampling_step_2:
r_eta = 1.0 - 0.5 * math.exp(-float(itr - args.r_sampling_step_1) / args.r_exp_alpha)
else:
r_eta = 1.0
if itr < args.r_sampling_step_1:
eta = 0.5
elif itr < args.r_sampling_step_2:
eta = 0.5 - (0.5 / (args.r_sampling_step_2 - args.r_sampling_step_1)) * (itr - args.r_sampling_step_1)
else:
eta = 0.0
r_random_flip = np.random.random_sample(
(args.batch_size, args.input_length - 1))
r_true_token = (r_random_flip < r_eta)
random_flip = np.random.random_sample(
(args.batch_size, args.total_length - args.input_length - 1))
true_token = (random_flip < eta)
ones = np.ones((args.img_width // args.patch_size,
args.img_width // args.patch_size,
args.patch_size ** 2 * args.img_channel))
zeros = np.zeros((args.img_width // args.patch_size,
args.img_width // args.patch_size,
args.patch_size ** 2 * args.img_channel))
real_input_flag = []
for i in range(args.batch_size):
for j in range(args.total_length - 2):
if j < args.input_length - 1:
if r_true_token[i, j]:
real_input_flag.append(ones)
else:
real_input_flag.append(zeros)
else:
if true_token[i, j - (args.input_length - 1)]:
real_input_flag.append(ones)
else:
real_input_flag.append(zeros)
real_input_flag = np.array(real_input_flag)
real_input_flag = np.reshape(real_input_flag,
(args.batch_size,
args.total_length - 2,
args.img_width // args.patch_size,
args.img_width // args.patch_size,
args.patch_size ** 2 * args.img_channel))
return real_input_flag
def schedule_sampling(eta, itr):
zeros = np.zeros((args.batch_size,
args.total_length - args.input_length - 1,
args.img_width // args.patch_size,
args.img_width // args.patch_size,
args.patch_size ** 2 * args.img_channel))
if not args.scheduled_sampling:
return 0.0, zeros
if itr < args.sampling_stop_iter:
eta -= args.sampling_changing_rate
else:
eta = 0.0
random_flip = np.random.random_sample(
(args.batch_size, args.total_length - args.input_length - 1))
true_token = (random_flip < eta)
ones = np.ones((args.img_width // args.patch_size,
args.img_width // args.patch_size,
args.patch_size ** 2 * args.img_channel))
zeros = np.zeros((args.img_width // args.patch_size,
args.img_width // args.patch_size,
args.patch_size ** 2 * args.img_channel))
real_input_flag = []
for i in range(args.batch_size):
for j in range(args.total_length - args.input_length - 1):
if true_token[i, j]:
real_input_flag.append(ones)
else:
real_input_flag.append(zeros)
real_input_flag = np.array(real_input_flag)
real_input_flag = np.reshape(real_input_flag,
(args.batch_size,
args.total_length - args.input_length - 1,
args.img_width // args.patch_size,
args.img_width // args.patch_size,
args.patch_size ** 2 * args.img_channel))
return eta, real_input_flag
def train_wrapper(model):
if args.pretrained_model:
model.load(args.pretrained_model)
# load data
train_input_handle, test_input_handle = datasets_factory.data_provider(
args.dataset_name, args.train_data_paths, args.valid_data_paths, args.batch_size, args.img_width,
seq_length=args.total_length, injection_action=args.injection_action, is_training=True)
eta = args.sampling_start_value
for itr in range(1, args.max_iterations + 1):
if train_input_handle.no_batch_left():
train_input_handle.begin(do_shuffle=True)
ims = train_input_handle.get_batch()
ims = preprocess.reshape_patch(ims, args.patch_size)
if args.reverse_scheduled_sampling == 1:
real_input_flag = reserve_schedule_sampling_exp(itr)
else:
eta, real_input_flag = schedule_sampling(eta, itr)
trainer.train(model, ims, real_input_flag, args, itr)
if itr % args.snapshot_interval == 0:
model.save(itr)
if itr % args.test_interval == 0:
trainer.test(model, test_input_handle, args, itr)
train_input_handle.next()
def test_wrapper(model):
model.load(args.pretrained_model)
test_input_handle = datasets_factory.data_provider(
args.dataset_name, args.train_data_paths, args.valid_data_paths, args.batch_size, args.img_width,
seq_length=args.total_length, injection_action=args.injection_action, is_training=False)
trainer.test(model, test_input_handle, args, 'test_result')
if os.path.exists(args.save_dir):
shutil.rmtree(args.save_dir)
os.makedirs(args.save_dir)
if os.path.exists(args.gen_frm_dir):
shutil.rmtree(args.gen_frm_dir)
os.makedirs(args.gen_frm_dir)
print('Initializing models')
model = Model(args)
if args.is_training:
train_wrapper(model)
else:
test_wrapper(model)