Skip to content
forked from stovecat/CGS

Runnable codes of the paper "Counterfactual Generative Smoothing forImbalanced Natural Language Classification" (CIKM2021 short)

Notifications You must be signed in to change notification settings

thnkinbtfly/CGS

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Counterfactual Generative Smoothing for Imbalanced Natural Language Classification

This repository contains code for the paper "Counterfactual Generative Smoothing forImbalanced Natural Language Classification" by Hojae Han, Seungtaek Choi, Myeongho Jeong, Jin-woo Park, and Seung-won Hwang.

Setup

$ pip install -r requirements.txt

Pre-training Cond-BART (ours: varying mask ratio)

Pre-processing

$ ./run_data_generation_gmodel.sh
$ cd revised_libs/fairseq
$ ./data_processing.sh

Example 1) Pre-train on SNIPS-step

$ fairseq-train SNIPS-step-GEN-bin --checkpoint-suffix _SNIPS_step_our --dataset SNIPS --data_setting step --restore-file /workspace/Imbalanced/nlp/data/model/bart.large/model.pt --max-tokens 512 --task denoising --layernorm-embedding --share-all-embeddings --share-decoder-input-output-embed --reset-optimizer --reset-dataloader --reset-meters --required-batch-size-multiple 1 --arch bart_large --criterion label_smoothed_cross_entropy --label-smoothing 0.1 --dropout 0.1 --attention-dropout 0.1 --weight-decay 0.01 --optimizer adam --adam-betas "(0.9, 0.999)" --adam-eps 1e-08 --clip-norm 0.1 --lr-scheduler polynomial_decay --lr 5e-05 --total-num-update 20000 --warmup-updates 500 --update-freq 4 --skip-invalid-size-inputs-valid-test --replace-length 1 --find-unused-parameters --rotate 0.0 --sample-break-mode 'eos' --min_mask 0.2 --max_mask 1.0 --mask-random 0.0 --mask-length 'word' --poisson-lambda 0.0 --valid-subset 'valid' --memory-efficient-fp16 --save-interval 20 --max-epoch 100;

Data generation

Example 1) Augment SNIPS-longtail with CGS_d:

$ python translation.py --gpu --device 0 --dataset SNIPS --data_setting step --cmodel our --gmodel our --imbalanced_ratio 100 --source_selection cluster --use_token_importance --random_seed 7777

Training Text Classification

$ ./train_text_classification.sh [dataset] [data_setting] [cmodel] [gmodel]

or

$ run train.py [with custom arguments]

Example 1) Train on TREC-longtail augmented by CGS_d:

$ ./train_text_classification.sh TREC longtail our our

Example 2) Train on TREC-step augmented by CSS_f:

$ python train.py --num_of_epoch 50 --gpu --device 0 --TMix True --dataset TREC --data_setting step --train_bert --imbalanced_ratio 100 --random_seed 7777

Example 3) Train on ATIS augmented by Cond-BART:

$ python train.py --num_of_epoch 100 --gpu --device 0 --dataset $dataset --data_setting ATIS --data_augment --train_bert  --gmodel bart --imbalanced_ratio 100 --random_seed 7777

Example 4) Train on SNIPS-step augmented by LAMBADA:

$ ./train_text_classification.sh SNIPS step standard lambada

Example 5) Train on TREC-step without augmentation:

$ python train.py --num_of_epoch 100 --gpu --device 0 --dataset TREC --data_setting step --train_bert --imbalanced_ratio 100 --random_seed 7777

Citation

@inproceedings{han2021counterfactual,
  title={Counterfactual Generative Smoothing for Imbalanced Natural Language Classification},
  author={Han, Hojae and Choi, Seungtaek and Jeong, Myeongho and Park, Jin-woo and Hwang, Seung-won},
  booktitle={Proceedings of the 30th ACM International Conference on Information \& Knowledge Management},
  year={2021}
}

About

Runnable codes of the paper "Counterfactual Generative Smoothing forImbalanced Natural Language Classification" (CIKM2021 short)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.6%
  • Shell 0.4%