-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
translation.ts
564 lines (494 loc) · 16.2 KB
/
translation.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* Train a simple LSTM model for character-level language translation.
* This is based on the Tensorflow.js example at:
* https://github.com/tensorflow/tfjs-examples/blob/master/translation/python/translation.py
*
* The training data can be downloaded with a command like the following example:
* wget http://www.manythings.org/anki/fra-eng.zip
*
* Original author: Huan LI <[email protected]>
* 2019, https://github.com/huan
*/
import fs from 'fs';
import path from 'path';
import {ArgumentParser} from 'argparse';
import readline from 'readline';
import mkdirp from 'mkdirp';
const {zip} = require('zip-array');
const invertKv = require('invert-kv');
import * as tf from '@tensorflow/tfjs';
let args = {} as any;
async function readData (dataFile: string) {
// Vectorize the data.
const inputTexts: string[] = [];
const targetTexts: string[] = [];
const inputCharacters = new Set<string>();
const targetCharacters = new Set<string>();
const fileStream = fs.createReadStream(dataFile);
const rl = readline.createInterface({
input: fileStream,
output: process.stdout,
terminal: false,
});
let lineNumber = 0;
rl.on('line', line => {
if (++lineNumber > args.num_samples) {
rl.close();
return;
}
let [inputText, targetText] = line.split('\t');
// We use "tab" as the "start sequence" character for the targets, and "\n"
// as "end sequence" character.
targetText = '\t' + targetText + '\n';
inputTexts.push(inputText);
targetTexts.push(targetText);
for (const char of inputText) {
if (!inputCharacters.has(char)) {
inputCharacters.add(char);
}
}
for (const char of targetText) {
if (!targetCharacters.has(char)) {
targetCharacters.add(char);
}
}
})
await new Promise(r => rl.on('close', r));
const inputCharacterList = [...inputCharacters].sort();
const targetCharacterList = [...targetCharacters].sort();
const numEncoderTokens = inputCharacterList.length;
const numDecoderTokens = targetCharacterList.length;
// Math.max() does not work with very large arrays because of the stack limitation
const maxEncoderSeqLength = inputTexts.map(text => text.length)
.reduceRight((prev, curr) => curr > prev ? curr : prev, 0);
const maxDecoderSeqLength = targetTexts.map(text => text.length)
.reduceRight((prev, curr) => curr > prev ? curr : prev, 0);
console.log('Number of samples:', inputTexts.length);
console.log('Number of unique input tokens:', numEncoderTokens);
console.log('Number of unique output tokens:', numDecoderTokens);
console.log('Max sequence length for inputs:', maxEncoderSeqLength);
console.log('Max sequence length for outputs:', maxDecoderSeqLength);
const inputTokenIndex = inputCharacterList.reduce(
(prev, curr, idx) => (prev[curr] = idx, prev),
{} as {[char: string]: number},
);
const targetTokenIndex = targetCharacterList.reduce(
(prev, curr, idx) => (prev[curr] = idx, prev),
{} as {[char: string]: number},
);
// Save the token indices to file.
const metadataJsonPath = path.join(
args.artifacts_dir,
'metadata.json',
);
if (!fs.existsSync(path.dirname(metadataJsonPath))) {
mkdirp.sync(path.dirname(metadataJsonPath));
}
const metadata = {
'input_token_index': inputTokenIndex,
'target_token_index': targetTokenIndex,
'max_encoder_seq_length': maxEncoderSeqLength,
'max_decoder_seq_length': maxDecoderSeqLength,
};
fs.writeFileSync(metadataJsonPath, JSON.stringify(metadata));
console.log('Saved metadata at: ', metadataJsonPath);
const encoderInputDataBuf = tf.buffer<tf.Rank.R3>([
inputTexts.length,
maxEncoderSeqLength,
numEncoderTokens,
]);
const decoderInputDataBuf = tf.buffer<tf.Rank.R3>([
inputTexts.length,
maxDecoderSeqLength,
numDecoderTokens,
]);
const decoderTargetDataBuf = tf.buffer<tf.Rank.R3>([
inputTexts.length,
maxDecoderSeqLength,
numDecoderTokens,
]);
for (
const [i, [inputText, targetText]]
of (zip(inputTexts, targetTexts).entries() as IterableIterator<[number, [string, string]]>)
) {
for (const [t, char] of inputText.split('').entries()) {
// encoder_input_data[i, t, input_token_index[char]] = 1.
encoderInputDataBuf.set(1, i, t, inputTokenIndex[char]);
}
for (const [t, char] of targetText.split('').entries()) {
// decoder_target_data is ahead of decoder_input_data by one timestep
decoderInputDataBuf.set(1, i, t, targetTokenIndex[char]);
if (t > 0) {
// decoder_target_data will be ahead by one timestep
// and will not include the start character.
decoderTargetDataBuf.set(1, i, t - 1, targetTokenIndex[char]);
}
}
}
const encoderInputData = encoderInputDataBuf.toTensor();
const decoderInputData = decoderInputDataBuf.toTensor();
const decoderTargetData = decoderTargetDataBuf.toTensor();
return {
inputTexts,
maxEncoderSeqLength,
maxDecoderSeqLength,
numEncoderTokens,
numDecoderTokens,
inputTokenIndex,
targetTokenIndex,
encoderInputData,
decoderInputData,
decoderTargetData,
};
}
/**
Create a Keras model for the seq2seq translation.
Args:
num_encoder_tokens: Total number of distinct tokens in the inputs
to the encoder.
num_decoder_tokens: Total number of distinct tokens in the outputs
to/from the decoder
latent_dim: Number of latent dimensions in the LSTMs.
Returns:
encoder_inputs: Instance of `keras.Input`, symbolic tensor as input to
the encoder LSTM.
encoder_states: Instance of `keras.Input`, symbolic tensor for output
states (h and c) from the encoder LSTM.
decoder_inputs: Instance of `keras.Input`, symbolic tensor as input to
the decoder LSTM.
decoder_lstm: `keras.Layer` instance, the decoder LSTM.
decoder_dense: `keras.Layer` instance, the Dense layer in the decoder.
model: `keras.Model` instance, the entire translation model that can be
used in training.
*/
function seq2seqModel (
numEncoderTokens: number,
numDecoderTokens: number,
latentDim: number,
) {
// Define an input sequence and process it.
const encoderInputs = tf.layers.input({
shape: [null, numEncoderTokens] as number[],
name: 'encoderInputs',
});
const encoder = tf.layers.lstm({
units: latentDim,
returnState: true,
name: 'encoderLstm',
});
const [, stateH, stateC] = encoder.apply(encoderInputs) as tf.SymbolicTensor[];
// We discard `encoder_outputs` and only keep the states.
const encoderStates = [stateH, stateC];
// Set up the decoder, using `encoder_states` as initial state.
const decoderInputs = tf.layers.input({
shape: [null, numDecoderTokens] as number[],
name: 'decoderInputs',
});
// We set up our decoder to return full output sequences,
// and to return internal states as well. We don't use the
// return states in the training model, but we will use them in inference.
const decoderLstm = tf.layers.lstm({
units: args.latent_dim,
returnSequences: true,
returnState: true,
name: 'decoderLstm',
});
const [decoderOutputs, ] = decoderLstm.apply(
[decoderInputs, ...encoderStates],
) as tf.Tensor[];
const decoderDense = tf.layers.dense({
units: numDecoderTokens,
activation: 'softmax',
name: 'decoderDense',
});
const decoderDenseOutputs = decoderDense.apply(decoderOutputs) as tf.SymbolicTensor;
// Define the model that will turn
// `encoder_input_data` & `decoder_input_data` into `decoder_target_data`
const model = tf.model({
inputs: [encoderInputs, decoderInputs],
outputs: decoderDenseOutputs,
name: 'seq2seqModel',
});
return {
encoderInputs,
encoderStates,
decoderInputs,
decoderLstm,
decoderDense,
model,
};
}
/**
Decode (i.e., translate) an encoded sentence.
Args:
input_seq: A `numpy.ndarray` of shape
`(1, max_encoder_seq_length, num_encoder_tokens)`.
encoder_model: A `keras.Model` instance for the encoder.
decoder_model: A `keras.Model` instance for the decoder.
num_decoder_tokens: Number of unique tokens for the decoder.
target_begin_index: An `int`: the index for the beginning token of the
decoder.
reverse_target_char_index: A lookup table for the target characters, i.e.,
a map from `int` index to target character.
max_decoder_seq_length: Maximum allowed sequence length output by the
decoder.
Returns:
The result of the decoding (i.e., translation) as a string.
"""
*/
async function decodeSequence (
inputSeq: tf.Tensor,
encoderModel: tf.LayersModel,
decoderModel: tf.LayersModel,
numDecoderTokens: number,
targetBeginIndex: number,
reverseTargetCharIndex: {[indice: number]: string},
maxDecoderSeqLength: number,
) {
// Encode the input as state vectors.
let statesValue = encoderModel.predict(inputSeq) as tf.Tensor[];
// Generate empty target sequence of length 1.
let targetSeq = tf.buffer<tf.Rank.R3>([
1,
1,
numDecoderTokens,
]);
// Populate the first character of target sequence with the start character.
targetSeq.set(1, 0, 0, targetBeginIndex);
// Sampling loop for a batch of sequences
// (to simplify, here we assume a batch of size 1).
let stopCondition = false;
let decodedSentence = '';
while (!stopCondition) {
const [outputTokens, h, c] = decoderModel.predict(
[targetSeq.toTensor(), ...statesValue]
) as [
tf.Tensor<tf.Rank.R3>,
tf.Tensor<tf.Rank.R2>,
tf.Tensor<tf.Rank.R2>,
];
// Sample a token
const sampledTokenIndex =
await outputTokens.squeeze().argMax(-1).array() as number;
const sampledChar = reverseTargetCharIndex[sampledTokenIndex];
decodedSentence += sampledChar;
// Exit condition: either hit max length
// or find stop character.
if (sampledChar === '\n' ||
decodedSentence.length > maxDecoderSeqLength) {
stopCondition = true;
}
// Update the target sequence (of length 1).
targetSeq = tf.buffer<tf.Rank.R3>([1, 1, numDecoderTokens], 'float32');
targetSeq.set(1, 0, 0, sampledTokenIndex);
// Update states
statesValue = [h, c];
}
return decodedSentence;
}
async function main () {
let tfn;
if (args.gpu) {
console.log('Using GPU');
tfn = require('@tensorflow/tfjs-node-gpu');
} else {
console.log('Using CPU');
tfn = require('@tensorflow/tfjs-node');
}
const {
inputTexts,
maxDecoderSeqLength,
numEncoderTokens,
numDecoderTokens,
targetTokenIndex,
encoderInputData,
decoderInputData,
decoderTargetData,
} = await readData(args.data_path);
const {
encoderInputs,
encoderStates,
decoderInputs,
decoderLstm,
decoderDense,
model,
} = seq2seqModel(numEncoderTokens, numDecoderTokens, args.latent_dim);
// Run training.
model.compile({
optimizer: 'rmsprop',
loss: 'categoricalCrossentropy',
});
model.summary();
if (args.logDir != null) {
console.log(
`To view logs in tensorboard, do:\n` +
` tensorboard --logdir ${args.logDir}\n`);
}
await model.fit(
[encoderInputData, decoderInputData], decoderTargetData, {
batchSize: args.batch_size,
epochs: args.epochs,
validationSplit: 0.2,
callbacks: args.logDir == null ? null :
tfn.node.tensorBoard(args.logDir, {
updateFreq: args.logUpdateFreq
})
}
);
await model.save(`file://${args.artifacts_dir}`);
// tfjs.converters.save_keras_model(model, FLAGS.artifacts_dir)
// Next: inference mode (sampling).
// Here's the drill:
// 1) encode input and retrieve initial decoder state
// 2) run one step of decoder with this initial state
// and a "start of sequence" token as target.
// Output will be the next target token
// 3) Repeat with the current target token and current states
// Define sampling models
const encoderModel = tf.model({
inputs: encoderInputs,
outputs: encoderStates,
name: 'encoderModel',
});
const decoderStateInputH = tf.layers.input({
shape: [args.latent_dim],
name: 'decoderStateInputHidden',
});
const decoderStateInputC = tf.layers.input({
shape: args.latent_dim,
name: 'decoderStateInputCell',
});
const decoderStatesInputs = [decoderStateInputH, decoderStateInputC];
let [decoderOutputs, stateH, stateC] = decoderLstm.apply(
[decoderInputs, ...decoderStatesInputs]
) as tf.SymbolicTensor[];
const decoderStates = [stateH, stateC];
decoderOutputs = decoderDense.apply(decoderOutputs) as tf.SymbolicTensor;
const decoderModel = tf.model({
inputs: [decoderInputs, ...decoderStatesInputs],
outputs: [decoderOutputs, ...decoderStates],
name: 'decoderModel',
});
// Reverse-lookup token index to decode sequences back to
// something readable.
const reverseTargetCharIndex =
invertKv(targetTokenIndex) as {[indice: number]: string};
const targetBeginIndex = targetTokenIndex['\t'];
for (let seqIndex = 0; seqIndex < args.num_test_sentences; seqIndex++) {
// Take one sequence (part of the training set)
// for trying out decoding.
const inputSeq = encoderInputData.slice(seqIndex, 1);
// Get expected output
const targetSeqVoc =
decoderTargetData.slice(seqIndex, 1).squeeze([0]) as tf.Tensor2D;
const targetSeqTensor = targetSeqVoc.argMax(-1) as tf.Tensor1D;
const targetSeqList = await targetSeqTensor.array();
// One-hot to index
const targetSeq =
targetSeqList.map(indice => reverseTargetCharIndex[indice]);
// Array to string
const targetSeqStr = targetSeq.join('').replace('\n', '');
const decodedSentence = await decodeSequence(
inputSeq, encoderModel, decoderModel, numDecoderTokens,
targetBeginIndex, reverseTargetCharIndex, maxDecoderSeqLength,
);
console.log('-');
console.log('Input sentence:', inputTexts[seqIndex]);
console.log('Target sentence:', targetSeqStr);
console.log('Decoded sentence:', decodedSentence);
}
}
const parser = new ArgumentParser({
version: '0.0.1',
addHelp: true,
description: 'Keras seq2seq translation model training and serialization',
});
parser.addArgument(
['data_path'],
{
type: 'string',
help: 'Path to the training data, e.g., ~/ml-data/fra-eng/fra.txt',
},
);
parser.addArgument(
'--batch_size',
{
type: 'int',
defaultValue: 64,
help: 'Training batch size.'
}
);
parser.addArgument(
'--epochs',
{
type: 'int',
defaultValue: 200,
help: 'Number of training epochs.',
},
);
parser.addArgument(
'--latent_dim',
{
type: 'int',
defaultValue: 256,
help: 'Latent dimensionality of the encoding space.',
},
);
parser.addArgument(
'--num_samples',
{
type: 'int',
defaultValue: 10000,
help: 'Number of samples to train on.',
}
);
parser.addArgument(
'--num_test_sentences',
{
type: 'int',
defaultValue: 100,
help: 'Number of example sentences to test at the end of the training.',
},
);
parser.addArgument(
'--artifacts_dir',
{
type: 'string',
defaultValue: '/tmp/translation.keras',
help: 'Local path for saving the TensorFlow.js artifacts.',
},
);
parser.addArgument('--logDir', {
type: 'string',
help: 'Optional tensorboard log directory, to which the loss values ' +
'will be logged during model training.'
});
parser.addArgument('--logUpdateFreq', {
type: 'string',
defaultValue: 'batch',
optionStrings: ['batch', 'epoch'],
help: 'Frequency at which the loss values will be logged to ' +
'tensorboard.'
});
parser.addArgument('--gpu', {
action: 'storeTrue',
help: 'Use tfjs-node-gpu to train the model. Requires CUDA/CuDNN.'
});
[args,] = parser.parseKnownArgs();
main();