-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
model_test.js
66 lines (58 loc) · 2.17 KB
/
model_test.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const tf = require('@tensorflow/tfjs-node');
const shelljs = require('shelljs');
const tmp = require('tmp');
const fs = require('fs');
const createModel = require('./model');
let tempDir;
describe('Model', () => {
beforeEach(() => {
tempDir = tmp.dirSync();
});
afterEach(() => {
if (fs.existsSync(tempDir)) {
shelljs.rm('-rf', tempDir);
}
});
it('Created model can train', async () => {
const inputLength = 6;
const outputLength = 1;
const model = createModel([inputLength]);
expect(model.inputs.length).toEqual(1);
expect(model.inputs[0].shape).toEqual([null, inputLength]);
expect(model.outputs.length).toEqual(1);
expect(model.outputs[0].shape).toEqual([null, outputLength]);
const numExamples = 3;
const inputFeature = tf.ones([numExamples, inputLength]);
const inputLabel = tf.ones([numExamples, outputLength]);
const history = await model.fit(inputFeature, inputLabel, {epochs: 2});
expect(history.history.loss.length).toEqual(2);
});
it('Model save-load roundtrip', async () => {
const inputLength = 6;
const model = createModel([inputLength]);
const numExamples = 3;
const feature = tf.ones([numExamples, inputLength]);
const y = model.predict(feature);
await model.save(`file://${tempDir.name}`);
const modelPrime =
await tf.loadLayersModel(`file://${tempDir.name}/model.json`);
const yPrime = modelPrime.predict([feature]);
tf.test_util.expectArraysClose(yPrime, y);
});
});