-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
data.js
55 lines (52 loc) · 1.82 KB
/
data.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const tf = require('@tensorflow/tfjs-node');
/**
* Load a local csv file and prepare the data for training. Data source:
* https://archive.ics.uci.edu/ml/datasets/Abalone
*
* @param {string} csvPath The path to csv file.
* @returns {tf.data.Dataset} The loaded and prepared Dataset.
*/
async function createDataset(csvPath) {
const dataset = tf.data.csv(
csvPath, {hasHeader: true, columnConfigs: {'rings': {isLabel: true}}});
const numOfColumns = (await dataset.columnNames()).length - 1;
// Convert features and labels.
return {
dataset: dataset.map(row => {
const rawFeatures = row['xs'];
const rawLabel = row['ys'];
const convertedFeatures = Object.keys(rawFeatures).map(key => {
switch (rawFeatures[key]) {
case 'F':
return 0;
case 'M':
return 1;
case 'I':
return 2;
default:
return Number(rawFeatures[key]);
}
});
const convertedLabel = [rawLabel['rings']];
return {xs: convertedFeatures, ys: convertedLabel};
}),
numOfColumns: numOfColumns
};
}
module.exports = createDataset;