-
Notifications
You must be signed in to change notification settings - Fork 59
/
rlhf_ppo.py
67 lines (54 loc) · 2.48 KB
/
rlhf_ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Copyright 2023 The Alpaca Team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import transformers
from accelerate import DistributedDataParallelKwargs
from alpaca_farm import accelerate_patch, data_utils, logging
from alpaca_farm.rl.ppo_trainer import PPOTrainer, make_models, make_tokenizer
from alpaca_farm.rl.ppo_utils import DataArguments, TrainingArguments
logger = logging.get_logger(__name__)
def main():
os.environ["TOKENIZERS_PARALLELISM"] = "false"
parser = transformers.HfArgumentParser((DataArguments, TrainingArguments))
data_args, training_args = parser.parse_args_into_dataclasses()
accelerator = accelerate_patch.MyAccelerator(
gradient_accumulation_steps=training_args.gradient_accumulation_steps,
log_with=["wandb"],
even_batches=True, # Make sure the batch size on each device is the same.
split_batches=False, # Don't break a batch into smaller chunks.
step_scheduler_with_optimizer=False, # Untie optimizer and scheduler step.
# Value model might not use all parameters (e.g., lm-head) in the forward pass.
kwargs_handlers=[DistributedDataParallelKwargs(find_unused_parameters=True)],
)
accelerator.init_trackers(
training_args.wandb_project,
init_kwargs={"wandb": {"name": training_args.run_name}},
config=training_args.__dict__,
)
logger.warning(accelerator.state, main_process_only=False) # Each process log their own state.
tokenizer: transformers.PreTrainedTokenizer = make_tokenizer(args=training_args)
model_module: dict = make_models(tokenizer=tokenizer, args=training_args, accelerator=accelerator)
data_module: dict = data_utils.make_rl_data_module(
tokenizer=tokenizer, data_args=data_args, training_args=training_args
)
trainer = PPOTrainer(
args=training_args,
accelerator=accelerator,
**data_module,
**model_module,
tokenizer=tokenizer,
)
trainer.train()
if __name__ == "__main__":
main()