diff --git a/exovetter/utils.py b/exovetter/utils.py
index f5a3115..9fe33d1 100644
--- a/exovetter/utils.py
+++ b/exovetter/utils.py
@@ -2,13 +2,12 @@
import sys
import warnings
-import vetters as vet
import numpy as np
__all__ = ['sine', 'estimate_scatter', 'mark_transit_cadences', 'median_detrend',
'plateau', 'set_median_flux_to_zero', 'set_median_flux_to_one', 'sigmaClip',
- 'get_mast_tce', 'WqedLSF', 'compute_phases', 'first_epoch', 'run_all']
+ 'get_mast_tce', 'WqedLSF', 'compute_phases', 'first_epoch']
def sine(x, order, period=1):
"""Sine function for SWEET vetter."""
@@ -654,144 +653,3 @@ def first_epoch(epoch, period, lc):
first_epoch = epoch + N*period
return first_epoch
-
-def run_all(tces, lcs, vetters=[vet.VizTransits(), vet.ModShift(), vet.Lpp(), vet.OddEven(), vet.TransitPhaseCoverage(), vet.Sweet(), vet.LeoTransitEvents()], plot=False, verbose=False, plot_dir=None):
- # TODO Add centroid, maybe rething plotting in general since plotting uses vetter.plot which essentially doubles runtime,
- # probably should run initially with vet.run(plot=True) and not store them unless run_all plot=True
- """Runs vetters and packs results into a dataframe.
-
- Parameters
- ----------
- tces: list of tce objects to vet on
-
- lc: list of lightkurve objects to vet on
-
- vetters : list
- List of vetter classes to run
-
- plot : bool
- Toggle diagnostic plots
-
- plot_dir : str
- path to store plots in, defaults to current working directory
-
- verbose : bool
- Toggle timing info and other print statements
-
- Returns
- ------------
- results : dataframe
- Pandas dataframe of all the numerical results from the vetters
-
- """
-
- results_dicts = [] # initialize a list to pack results from each tce into
- tce_names = []
- run_start = py_time.time()
-
- if plot_dir is None:
- plot_dir = os.getcwd()
-
- if plot or verbose:
- for tce in tces:
- if 'target' not in tce.keys():
- print("ERROR: Please supply a 'target' key to all input tces to use the plot or verbose parameters")
- return
-
- for tce, lc in zip(tces, lcs):
- if verbose:
- print('Vetting', tce['target'], ':')
-
- tce_names.append(tce['target'])
- results_list = [] # initialize a list to pack result dictionaries into
-
- # run each vetter, if plotting is true fill the figures into a list to save later
- plot_figures = []
- for vetter in vetters:
- time_start = py_time.time()
- vetter_results = vetter.run(tce, lc)
-
- if plot:
- if vetter.__class__.__name__ != 'VizTransits' and vetter.__class__.__name__ != 'LeoTransitEvents':
- # viz_transits generates 2 figures so it's handled later, LeoTransitEvents just doesn't have a plot
- vetter.plot()
- vetter_plot = plt.gcf()
- vetter_plot.suptitle(tce['target']+' '+vetter.__class__.__name__)
- vetter_plot.tight_layout()
- plt.close()
- plot_figures.append(vetter_plot)
-
- if verbose:
- time_end = py_time.time()
- print(vetter.__class__.__name__, 'finished in', time_end - time_start, 's.')
-
- results_list.append(vetter_results)
-
- if verbose: # add some whitespace for readability
- print()
-
- if plot: # save a pdf of each figure made for that vetter
- diagnostic_plot = PdfPages(plot_dir+tce['target']+'.pdf') # initialize a pdf to save each figure into
-
- # plot the lightcurve with epochs oeverplotted
- time, flux, time_offset_str = lightkurve_utils.unpack_lk_version(lc, "flux") # noqa: E50
- period = tce["period"].to_value(u.day)
- dur = tce["duration"].to_value(u.day)
-
- time_offset_q = getattr(exo_const, time_offset_str)
- epoch = tce.get_epoch(time_offset_q).to_value(u.day)
- intransit = utils.mark_transit_cadences(time, period, epoch, dur, num_durations=3, flags=None)
-
- fig, ax1 = plt.subplots(nrows=1, ncols=1, figsize=(9,5))
- ax1.plot(time, flux, lw=0.4);
- ax1.axvline(x=epoch, lw='0.6', color='r', label='epoch');
- ax1.fill_between(time, 0,1, where=intransit, transform=ax1.get_xaxis_transform(), color='r', alpha=0.15, label='in transit')
-
- ax1.set_ylabel('Flux')
- ax1.set_xlabel('Time '+time_offset_str)
- if 'target' in tce:
- ax1.set_title(tce['target']);
-
- ax1.legend();
- lightcurve_plot = plt.gcf()
- plt.close()
- diagnostic_plot.savefig(lightcurve_plot)
-
- # run viz_transits plots
- transit = VizTransits(transit_plot=True, folded_plot=False).run(tce, lc)
- transit_plot = plt.gcf()
- transit_plot.suptitle(tce['target']+' Transits')
- transit_plot.tight_layout()
- plt.close()
- diagnostic_plot.savefig(transit_plot)
-
- folded = VizTransits(transit_plot=False, folded_plot=True).run(tce, lc)
- folded_plot = plt.gcf()
- folded_plot.suptitle(tce['target']+' Folded Transits')
- folded_plot.tight_layout()
- plt.close()
- diagnostic_plot.savefig(folded_plot)
-
- # Save each diagnostic plot ran on that tce/lc
- for plot in plot_figures:
- diagnostic_plot.savefig(plot)
-
- diagnostic_plot.close()
-
- # put all values from each results dictionary into a single dictionary
- results_dict = {k: v for d in results_list for k, v in d.items()}
-
- # delete dictionary entries that are huge arrays to save space
- if results_dict.get('plot_data'):
- del results_dict['plot_data']
-
- # add the dictionary to the final list
- results_dicts.append(results_dict)
-
- results_df = pd.DataFrame(results_dicts) # Put the values from each result dictionary into a dataframe
-
- results_df.insert(loc=0, column='tce', value=tce_names)
- if verbose:
- print('Execution time:', (py_time.time() - run_start), 's')
-
- return results_df
diff --git a/exovetter/vetters.py b/exovetter/vetters.py
index 6d0b354..dd58baf 100644
--- a/exovetter/vetters.py
+++ b/exovetter/vetters.py
@@ -26,7 +26,7 @@
__all__ = ['BaseVetter', 'ModShift', 'Lpp', 'OddEven',
'TransitPhaseCoverage', 'Sweet', 'Centroid',
- 'VizTransits', 'LeoTransitEvents']
+ 'VizTransits', 'LeoTransitEvents', 'run_all']
class BaseVetter(ABC):
"""Base class for vetters.
@@ -900,3 +900,144 @@ def run(self, tce, lightcurve, plot=False):
def plot(self):
pass
+
+def run_all(tces, lcs, vetters=[VizTransits(), ModShift(), Lpp(), OddEven(), TransitPhaseCoverage(), Sweet(), LeoTransitEvents()], plot=False, verbose=False, plot_dir=None):
+ # TODO Add centroid, maybe rething plotting in general since plotting uses vetter.plot which essentially doubles runtime,
+ # probably should run initially with vet.run(plot=True) and not store them unless run_all plot=True
+ """Runs vetters and packs results into a dataframe.
+
+ Parameters
+ ----------
+ tces: list of tce objects to vet on
+
+ lc: list of lightkurve objects to vet on
+
+ vetters : list
+ List of vetter classes to run
+
+ plot : bool
+ Toggle diagnostic plots
+
+ plot_dir : str
+ path to store plots in, defaults to current working directory
+
+ verbose : bool
+ Toggle timing info and other print statements
+
+ Returns
+ ------------
+ results : dataframe
+ Pandas dataframe of all the numerical results from the vetters
+
+ """
+
+ results_dicts = [] # initialize a list to pack results from each tce into
+ tce_names = []
+ run_start = py_time.time()
+
+ if plot_dir is None:
+ plot_dir = os.getcwd()
+
+ if plot or verbose:
+ for tce in tces:
+ if 'target' not in tce.keys():
+ print("ERROR: Please supply a 'target' key to all input tces to use the plot or verbose parameters")
+ return
+
+ for tce, lc in zip(tces, lcs):
+ if verbose:
+ print('Vetting', tce['target'], ':')
+
+ tce_names.append(tce['target'])
+ results_list = [] # initialize a list to pack result dictionaries into
+
+ # run each vetter, if plotting is true fill the figures into a list to save later
+ plot_figures = []
+ for vetter in vetters:
+ time_start = py_time.time()
+ vetter_results = vetter.run(tce, lc)
+
+ if plot:
+ if vetter.__class__.__name__ != 'VizTransits' and vetter.__class__.__name__ != 'LeoTransitEvents':
+ # viz_transits generates 2 figures so it's handled later, LeoTransitEvents just doesn't have a plot
+ vetter.plot()
+ vetter_plot = plt.gcf()
+ vetter_plot.suptitle(tce['target']+' '+vetter.__class__.__name__)
+ vetter_plot.tight_layout()
+ plt.close()
+ plot_figures.append(vetter_plot)
+
+ if verbose:
+ time_end = py_time.time()
+ print(vetter.__class__.__name__, 'finished in', time_end - time_start, 's.')
+
+ results_list.append(vetter_results)
+
+ if verbose: # add some whitespace for readability
+ print()
+
+ if plot: # save a pdf of each figure made for that vetter
+ diagnostic_plot = PdfPages(plot_dir+tce['target']+'.pdf') # initialize a pdf to save each figure into
+
+ # plot the lightcurve with epochs oeverplotted
+ time, flux, time_offset_str = lightkurve_utils.unpack_lk_version(lc, "flux") # noqa: E50
+ period = tce["period"].to_value(u.day)
+ dur = tce["duration"].to_value(u.day)
+
+ time_offset_q = getattr(exo_const, time_offset_str)
+ epoch = tce.get_epoch(time_offset_q).to_value(u.day)
+ intransit = utils.mark_transit_cadences(time, period, epoch, dur, num_durations=3, flags=None)
+
+ fig, ax1 = plt.subplots(nrows=1, ncols=1, figsize=(9,5))
+ ax1.plot(time, flux, lw=0.4);
+ ax1.axvline(x=epoch, lw='0.6', color='r', label='epoch');
+ ax1.fill_between(time, 0,1, where=intransit, transform=ax1.get_xaxis_transform(), color='r', alpha=0.15, label='in transit')
+
+ ax1.set_ylabel('Flux')
+ ax1.set_xlabel('Time '+time_offset_str)
+ if 'target' in tce:
+ ax1.set_title(tce['target']);
+
+ ax1.legend();
+ lightcurve_plot = plt.gcf()
+ plt.close()
+ diagnostic_plot.savefig(lightcurve_plot)
+
+ # run viz_transits plots
+ transit = VizTransits(transit_plot=True, folded_plot=False).run(tce, lc)
+ transit_plot = plt.gcf()
+ transit_plot.suptitle(tce['target']+' Transits')
+ transit_plot.tight_layout()
+ plt.close()
+ diagnostic_plot.savefig(transit_plot)
+
+ folded = VizTransits(transit_plot=False, folded_plot=True).run(tce, lc)
+ folded_plot = plt.gcf()
+ folded_plot.suptitle(tce['target']+' Folded Transits')
+ folded_plot.tight_layout()
+ plt.close()
+ diagnostic_plot.savefig(folded_plot)
+
+ # Save each diagnostic plot ran on that tce/lc
+ for plot in plot_figures:
+ diagnostic_plot.savefig(plot)
+
+ diagnostic_plot.close()
+
+ # put all values from each results dictionary into a single dictionary
+ results_dict = {k: v for d in results_list for k, v in d.items()}
+
+ # delete dictionary entries that are huge arrays to save space
+ if results_dict.get('plot_data'):
+ del results_dict['plot_data']
+
+ # add the dictionary to the final list
+ results_dicts.append(results_dict)
+
+ results_df = pd.DataFrame(results_dicts) # Put the values from each result dictionary into a dataframe
+
+ results_df.insert(loc=0, column='tce', value=tce_names)
+ if verbose:
+ print('Execution time:', (py_time.time() - run_start), 's')
+
+ return results_df
\ No newline at end of file
diff --git a/tutorial_notebooks/run_all.ipynb b/tutorial_notebooks/run_all.ipynb
index 85ae7db..8b0ce43 100644
--- a/tutorial_notebooks/run_all.ipynb
+++ b/tutorial_notebooks/run_all.ipynb
@@ -21,9 +21,7 @@
"from exovetter import utils\n",
"import lightkurve as lk\n",
"import numpy as np\n",
- "import os\n",
- "%load_ext autoreload\n",
- "%autoreload 2"
+ "import os"
]
},
{
@@ -37,7 +35,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 2,
"id": "5905c663",
"metadata": {},
"outputs": [
@@ -88,7 +86,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 3,
"id": "e2646650-6f17-4729-897b-149733434550",
"metadata": {},
"outputs": [
@@ -103,7 +101,7 @@
"data": {
"text/html": [
"
TessLightCurve length=1085 LABEL="TIC 50365310" SECTOR=7 AUTHOR=SPOC FLUX_ORIGIN=pdcsap_flux\n",
- "
\n",
+ "\n",
"time | flux | flux_err | timecorr | cadenceno | centroid_col | centroid_row | sap_flux | sap_flux_err | sap_bkg | sap_bkg_err | pdcsap_flux | pdcsap_flux_err | quality | psf_centr1 | psf_centr1_err | psf_centr2 | psf_centr2_err | mom_centr1 | mom_centr1_err | mom_centr2 | mom_centr2_err | pos_corr1 | pos_corr2 |
\n",
" | | | d | | pix | pix | electron / s | electron / s | electron / s | electron / s | electron / s | electron / s | | pix | pix | pix | pix | pix | pix | pix | pix | pix | pix |
\n",
"Time | float64 | float64 | float32 | int32 | float64 | float64 | float32 | float32 | float32 | float32 | float32 | float32 | int32 | float64 | float32 | float64 | float32 | float64 | float32 | float64 | float32 | float32 | float32 |
\n",
@@ -180,7 +178,7 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 4,
"id": "bad044e4-dbc7-442d-9152-d769d2dcfbfc",
"metadata": {},
"outputs": [
@@ -419,13 +417,13 @@
"[5 rows x 40 columns]"
]
},
- "execution_count": 8,
+ "execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "results = utils.run_all(tces, lcs)\n",
+ "results = vet.run_all(tces, lcs)\n",
"results"
]
},
@@ -439,7 +437,7 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 5,
"id": "f34c1b73-15bd-4fe7-81bc-47d1261fc0ce",
"metadata": {},
"outputs": [
@@ -506,7 +504,7 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 6,
"id": "36885532-5795-439a-b418-8c36f29f6ed4",
"metadata": {},
"outputs": [
@@ -515,12 +513,12 @@
"output_type": "stream",
"text": [
"Vetting TOI_1000.01 :\n",
- "VizTransits finished in 0.0026009082794189453 s.\n",
- "ModShift finished in 0.0019757747650146484 s.\n",
- "Lpp finished in 0.11938214302062988 s.\n",
- "OddEven finished in 0.0006961822509765625 s.\n",
- "TransitPhaseCoverage finished in 0.0002238750457763672 s.\n",
- "Sweet finished in 0.0022652149200439453 s.\n"
+ "VizTransits finished in 0.0033979415893554688 s.\n",
+ "ModShift finished in 0.0020651817321777344 s.\n",
+ "Lpp finished in 0.12156391143798828 s.\n",
+ "OddEven finished in 0.0007009506225585938 s.\n",
+ "TransitPhaseCoverage finished in 0.00023508071899414062 s.\n",
+ "Sweet finished in 0.002227783203125 s.\n"
]
},
{
@@ -537,15 +535,15 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "LeoTransitEvents finished in 0.09229278564453125 s.\n",
+ "LeoTransitEvents finished in 0.09868192672729492 s.\n",
"\n",
"Vetting TOI_1001.01 :\n",
- "VizTransits finished in 0.0017790794372558594 s.\n",
- "ModShift finished in 0.0015358924865722656 s.\n",
- "Lpp finished in 0.12367486953735352 s.\n",
- "OddEven finished in 0.0008358955383300781 s.\n",
- "TransitPhaseCoverage finished in 0.00024127960205078125 s.\n",
- "Sweet finished in 0.0023260116577148438 s.\n"
+ "VizTransits finished in 0.0031621456146240234 s.\n",
+ "ModShift finished in 0.0020949840545654297 s.\n",
+ "Lpp finished in 0.11873173713684082 s.\n",
+ "OddEven finished in 0.0009989738464355469 s.\n",
+ "TransitPhaseCoverage finished in 0.000247955322265625 s.\n",
+ "Sweet finished in 0.0025022029876708984 s.\n"
]
},
{
@@ -562,15 +560,15 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "LeoTransitEvents finished in 0.09924602508544922 s.\n",
+ "LeoTransitEvents finished in 0.10347580909729004 s.\n",
"\n",
"Vetting TOI_1004.01 :\n",
- "VizTransits finished in 0.0021109580993652344 s.\n",
- "ModShift finished in 0.0017731189727783203 s.\n",
- "Lpp finished in 0.17325520515441895 s.\n",
- "OddEven finished in 0.0008318424224853516 s.\n",
- "TransitPhaseCoverage finished in 0.00026297569274902344 s.\n",
- "Sweet finished in 0.0033299922943115234 s.\n"
+ "VizTransits finished in 0.0022132396697998047 s.\n",
+ "ModShift finished in 0.0019309520721435547 s.\n",
+ "Lpp finished in 0.1642301082611084 s.\n",
+ "OddEven finished in 0.0007297992706298828 s.\n",
+ "TransitPhaseCoverage finished in 0.00024771690368652344 s.\n",
+ "Sweet finished in 0.0029959678649902344 s.\n"
]
},
{
@@ -587,15 +585,15 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "LeoTransitEvents finished in 0.2060708999633789 s.\n",
+ "LeoTransitEvents finished in 0.1989738941192627 s.\n",
"\n",
"Vetting TOI_1007.01 :\n",
- "VizTransits finished in 0.0016508102416992188 s.\n",
- "ModShift finished in 0.002147197723388672 s.\n",
- "Lpp finished in 0.1242671012878418 s.\n",
- "OddEven finished in 0.0006961822509765625 s.\n",
- "TransitPhaseCoverage finished in 0.0002219676971435547 s.\n",
- "Sweet finished in 0.002146005630493164 s.\n"
+ "VizTransits finished in 0.001790761947631836 s.\n",
+ "ModShift finished in 0.001528024673461914 s.\n",
+ "Lpp finished in 0.12382984161376953 s.\n",
+ "OddEven finished in 0.0006921291351318359 s.\n",
+ "TransitPhaseCoverage finished in 0.00022602081298828125 s.\n",
+ "Sweet finished in 0.002209901809692383 s.\n"
]
},
{
@@ -612,18 +610,18 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "LeoTransitEvents finished in 0.09681200981140137 s.\n",
+ "LeoTransitEvents finished in 0.09269189834594727 s.\n",
"\n",
"Vetting TOI_1011.01 :\n",
- "VizTransits finished in 0.0021882057189941406 s.\n",
- "ModShift finished in 0.0017290115356445312 s.\n",
- "Lpp finished in 0.1316239833831787 s.\n",
- "OddEven finished in 0.0008869171142578125 s.\n",
- "TransitPhaseCoverage finished in 0.000270843505859375 s.\n",
- "Sweet finished in 0.0029489994049072266 s.\n",
- "LeoTransitEvents finished in 0.10241985321044922 s.\n",
+ "VizTransits finished in 0.004579067230224609 s.\n",
+ "ModShift finished in 0.0024979114532470703 s.\n",
+ "Lpp finished in 0.11461210250854492 s.\n",
+ "OddEven finished in 0.001191854476928711 s.\n",
+ "TransitPhaseCoverage finished in 0.0004417896270751953 s.\n",
+ "Sweet finished in 0.0025200843811035156 s.\n",
+ "LeoTransitEvents finished in 0.10301089286804199 s.\n",
"\n",
- "Execution time: 1.3098130226135254 s\n"
+ "Execution time: 1.2864856719970703 s\n"
]
},
{
@@ -845,13 +843,13 @@
"[5 rows x 40 columns]"
]
},
- "execution_count": 10,
+ "execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "utils.run_all(tces, lcs, verbose=True)"
+ "vet.run_all(tces, lcs, verbose=True)"
]
},
{
@@ -864,7 +862,7 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 7,
"id": "e2f768e4-daf6-4c81-981d-c95122fb68ae",
"metadata": {},
"outputs": [
@@ -873,12 +871,12 @@
"output_type": "stream",
"text": [
"Vetting TOI_1000.01 :\n",
- "VizTransits finished in 0.0023818016052246094 s.\n",
- "ModShift finished in 0.20995092391967773 s.\n",
- "Lpp finished in 0.2312309741973877 s.\n",
- "OddEven finished in 0.06843924522399902 s.\n",
- "TransitPhaseCoverage finished in 0.032601118087768555 s.\n",
- "Sweet finished in 0.07028007507324219 s.\n"
+ "VizTransits finished in 0.003843069076538086 s.\n",
+ "ModShift finished in 0.22887396812438965 s.\n",
+ "Lpp finished in 0.22654104232788086 s.\n",
+ "OddEven finished in 0.07564377784729004 s.\n",
+ "TransitPhaseCoverage finished in 0.03296995162963867 s.\n",
+ "Sweet finished in 0.0754239559173584 s.\n"
]
},
{
@@ -895,17 +893,15 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "LeoTransitEvents finished in 0.10457897186279297 s.\n",
+ "LeoTransitEvents finished in 0.10062885284423828 s.\n",
"\n",
"Vetting TOI_1001.01 :\n",
- "VizTransits finished in 0.00249481201171875 s.\n",
- "ModShift finished in 0.08408093452453613 s.\n",
- "Lpp finished in 0.25842905044555664 s.\n",
- "OddEven finished in 0.0720529556274414 s.\n",
- "TransitPhaseCoverage finished in 0.040396928787231445 s.\n",
- "Sweet finished in 0.09176993370056152 s.\n",
- "LeoTransitEvents finished in 0.10706806182861328 s.\n",
- "\n"
+ "VizTransits finished in 0.002048015594482422 s.\n",
+ "ModShift finished in 0.07797884941101074 s.\n",
+ "Lpp finished in 0.24198412895202637 s.\n",
+ "OddEven finished in 0.0640571117401123 s.\n",
+ "TransitPhaseCoverage finished in 0.035349130630493164 s.\n",
+ "Sweet finished in 0.08143305778503418 s.\n"
]
},
{
@@ -922,13 +918,15 @@
"name": "stdout",
"output_type": "stream",
"text": [
+ "LeoTransitEvents finished in 0.10015416145324707 s.\n",
+ "\n",
"Vetting TOI_1004.01 :\n",
- "VizTransits finished in 0.0025000572204589844 s.\n",
- "ModShift finished in 0.07913088798522949 s.\n",
- "Lpp finished in 0.2831149101257324 s.\n",
- "OddEven finished in 0.0731649398803711 s.\n",
- "TransitPhaseCoverage finished in 0.034700870513916016 s.\n",
- "Sweet finished in 0.09195399284362793 s.\n"
+ "VizTransits finished in 0.0022280216217041016 s.\n",
+ "ModShift finished in 0.07458901405334473 s.\n",
+ "Lpp finished in 0.2812201976776123 s.\n",
+ "OddEven finished in 0.0686037540435791 s.\n",
+ "TransitPhaseCoverage finished in 0.031362056732177734 s.\n",
+ "Sweet finished in 0.08179998397827148 s.\n"
]
},
{
@@ -945,15 +943,15 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "LeoTransitEvents finished in 0.2190110683441162 s.\n",
+ "LeoTransitEvents finished in 0.2036757469177246 s.\n",
"\n",
"Vetting TOI_1007.01 :\n",
- "VizTransits finished in 0.0019881725311279297 s.\n",
- "ModShift finished in 0.08329105377197266 s.\n",
- "Lpp finished in 0.2544231414794922 s.\n",
- "OddEven finished in 0.07157588005065918 s.\n",
- "TransitPhaseCoverage finished in 0.03624987602233887 s.\n",
- "Sweet finished in 0.08405303955078125 s.\n"
+ "VizTransits finished in 0.0015697479248046875 s.\n",
+ "ModShift finished in 0.08336281776428223 s.\n",
+ "Lpp finished in 0.24611878395080566 s.\n",
+ "OddEven finished in 0.06262087821960449 s.\n",
+ "TransitPhaseCoverage finished in 0.031687021255493164 s.\n",
+ "Sweet finished in 0.07726097106933594 s.\n"
]
},
{
@@ -970,15 +968,15 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "LeoTransitEvents finished in 0.09392428398132324 s.\n",
+ "LeoTransitEvents finished in 0.09960699081420898 s.\n",
"\n",
"Vetting TOI_1011.01 :\n",
- "VizTransits finished in 0.0024030208587646484 s.\n",
- "ModShift finished in 0.0794069766998291 s.\n",
- "Lpp finished in 0.24875187873840332 s.\n",
- "OddEven finished in 0.07429099082946777 s.\n",
- "TransitPhaseCoverage finished in 0.03765296936035156 s.\n",
- "Sweet finished in 0.08509302139282227 s.\n"
+ "VizTransits finished in 0.0026531219482421875 s.\n",
+ "ModShift finished in 0.06942915916442871 s.\n",
+ "Lpp finished in 0.22440290451049805 s.\n",
+ "OddEven finished in 0.06994199752807617 s.\n",
+ "TransitPhaseCoverage finished in 0.03462505340576172 s.\n",
+ "Sweet finished in 0.07561588287353516 s.\n"
]
},
{
@@ -995,9 +993,9 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "LeoTransitEvents finished in 0.0972909927368164 s.\n",
+ "LeoTransitEvents finished in 0.1004798412322998 s.\n",
"\n",
- "Execution time: 7.906814813613892 s\n"
+ "Execution time: 7.523571252822876 s\n"
]
},
{
@@ -1209,14 +1207,14 @@
"[5 rows x 40 columns]"
]
},
- "execution_count": 11,
+ "execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"plot_dir = os.getcwd() + '/run_all_plots/'\n",
- "utils.run_all(tces, lcs, plot=True, plot_dir=plot_dir, verbose=True)"
+ "vet.run_all(tces, lcs, plot=True, plot_dir=plot_dir, verbose=True)"
]
},
{
@@ -1229,7 +1227,7 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 8,
"id": "c9d822ab-16dc-4296-88e6-ef3be34efa3f",
"metadata": {},
"outputs": [
@@ -1238,31 +1236,31 @@
"output_type": "stream",
"text": [
"Vetting TOI_1000.01 :\n",
- "ModShift finished in 0.0028450489044189453 s.\n",
- "OddEven finished in 0.0007598400115966797 s.\n",
- "Sweet finished in 0.0027332305908203125 s.\n",
+ "ModShift finished in 0.004275321960449219 s.\n",
+ "OddEven finished in 0.0007128715515136719 s.\n",
+ "Sweet finished in 0.0023560523986816406 s.\n",
"\n",
"Vetting TOI_1001.01 :\n",
- "ModShift finished in 0.0018889904022216797 s.\n",
- "OddEven finished in 0.0007419586181640625 s.\n",
- "Sweet finished in 0.002672910690307617 s.\n",
+ "ModShift finished in 0.0018801689147949219 s.\n",
+ "OddEven finished in 0.0007581710815429688 s.\n",
+ "Sweet finished in 0.0030488967895507812 s.\n",
"\n",
"Vetting TOI_1004.01 :\n",
- "ModShift finished in 0.002496004104614258 s.\n",
- "OddEven finished in 0.0007910728454589844 s.\n",
- "Sweet finished in 0.0038080215454101562 s.\n",
+ "ModShift finished in 0.0038678646087646484 s.\n",
+ "OddEven finished in 0.0008869171142578125 s.\n",
+ "Sweet finished in 0.004680156707763672 s.\n",
"\n",
"Vetting TOI_1007.01 :\n",
- "ModShift finished in 0.0017549991607666016 s.\n",
- "OddEven finished in 0.0006771087646484375 s.\n",
- "Sweet finished in 0.002209901809692383 s.\n",
+ "ModShift finished in 0.002006053924560547 s.\n",
+ "OddEven finished in 0.0006930828094482422 s.\n",
+ "Sweet finished in 0.0022268295288085938 s.\n",
"\n",
"Vetting TOI_1011.01 :\n",
- "ModShift finished in 0.0016150474548339844 s.\n",
- "OddEven finished in 0.0006268024444580078 s.\n",
- "Sweet finished in 0.002237081527709961 s.\n",
+ "ModShift finished in 0.0017788410186767578 s.\n",
+ "OddEven finished in 0.0006690025329589844 s.\n",
+ "Sweet finished in 0.0023241043090820312 s.\n",
"\n",
- "Execution time: 0.02939009666442871 s\n"
+ "Execution time: 0.034240007400512695 s\n"
]
},
{
@@ -1479,13 +1477,13 @@
"4 [[1.2134464387025161e-05, 4.865065235028228e-0... "
]
},
- "execution_count": 12,
+ "execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "utils.run_all(tces, lcs, vetters=[vet.ModShift(), vet.OddEven(dur_frac=0.9), vet.Sweet()], verbose=True)\n"
+ "vet.run_all(tces, lcs, vetters=[vet.ModShift(), vet.OddEven(dur_frac=0.9), vet.Sweet()], verbose=True)\n"
]
}
],
diff --git a/tutorial_notebooks/run_all_plots/TOI_1000.01.pdf b/tutorial_notebooks/run_all_plots/TOI_1000.01.pdf
index f1b707a..6fa8cd5 100644
Binary files a/tutorial_notebooks/run_all_plots/TOI_1000.01.pdf and b/tutorial_notebooks/run_all_plots/TOI_1000.01.pdf differ
diff --git a/tutorial_notebooks/run_all_plots/TOI_1001.01.pdf b/tutorial_notebooks/run_all_plots/TOI_1001.01.pdf
index 4d142a0..8d0437a 100644
Binary files a/tutorial_notebooks/run_all_plots/TOI_1001.01.pdf and b/tutorial_notebooks/run_all_plots/TOI_1001.01.pdf differ
diff --git a/tutorial_notebooks/run_all_plots/TOI_1004.01.pdf b/tutorial_notebooks/run_all_plots/TOI_1004.01.pdf
index bd66b51..d3b495f 100644
Binary files a/tutorial_notebooks/run_all_plots/TOI_1004.01.pdf and b/tutorial_notebooks/run_all_plots/TOI_1004.01.pdf differ
diff --git a/tutorial_notebooks/run_all_plots/TOI_1007.01.pdf b/tutorial_notebooks/run_all_plots/TOI_1007.01.pdf
index 3560360..00764ec 100644
Binary files a/tutorial_notebooks/run_all_plots/TOI_1007.01.pdf and b/tutorial_notebooks/run_all_plots/TOI_1007.01.pdf differ
diff --git a/tutorial_notebooks/run_all_plots/TOI_1011.01.pdf b/tutorial_notebooks/run_all_plots/TOI_1011.01.pdf
index 3807b61..48385d6 100644
Binary files a/tutorial_notebooks/run_all_plots/TOI_1011.01.pdf and b/tutorial_notebooks/run_all_plots/TOI_1011.01.pdf differ