forked from shubhomoydas/ad_examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
75 lines (66 loc) · 2.42 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#!/usr/bin/env python
import os
from distutils.core import setup
version = '0.0.1'
package_name = 'ad-examples'
# collect all the test dataset paths
def package_files(directory, relative_parent=""):
paths = []
for filename in os.listdir(directory):
filepath = os.path.join(directory, filename)
relative_path = os.path.join(relative_parent, filename)
if os.path.isfile(filepath):
if not str(filename).startswith("."): # ignore .DS_Store
paths.append(relative_path)
else:
paths.extend(package_files(filepath, relative_path))
return paths
package_data = {'ad_examples.datasets': package_files("ad_examples/datasets")}
setup(
name=package_name,
version=version,
description='Active Anomaly Detection and Simple Anomaly Detection Examples',
long_description="""
A collection of anomaly detection methods (iid/point-based, graph and time series)
including active learning for anomaly detection/discovery, bayesian rule-mining,
description for diversity/explanation/interpretability.
""",
author='Shubhomoy Das',
author_email='[email protected]',
url='https://github.com/shubhomoydas/ad_examples',
license='MIT',
package_dir = {'ad_examples': 'ad_examples'},
packages=['ad_examples',
'ad_examples.aad',
'ad_examples.ad',
'ad_examples.bayesian_ruleset',
'ad_examples.classifier',
'ad_examples.common',
'ad_examples.datasets',
'ad_examples.dnn',
'ad_examples.glad',
'ad_examples.graph',
'ad_examples.loda',
'ad_examples.percept',
'ad_examples.timeseries'],
package_data=package_data,
include_package_data=True,
install_requires=[
'cvxopt>=1.1.9',
'matplotlib>=2.1.0',
'numpy>=1.14.0',
'pandas>=0.22.0',
'ranking',
'scipy>=1.0.0',
'statsmodels>=0.9.0',
'scikit-learn>=0.19.1',
# 'tensorflow>=1.6.0', # *NOT* required for AAD. Required for GLAD and a few other stuff such as timeseries
],
classifiers=[
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 2',
'Programming Language :: Python :: 2.7',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.6',
],
)