\adefi[name=edge]{Kanten}{Kante}
displays the string Kanten
and indicates that the
base form is Kante
. It is linked to the symbol edge
.
\adefii[name=empty-graph]{leere Graph}{leerer}{Graph}
displays the string leere Graph
and indicates that the base form is leerer Graph
.
Longer base forms can be build with \adefiii
and \adefiv
.
[name=...]
can be omitted, if the name is the base form with dashes (-
) instead of spaces.
For example, \adefii{index of summation}{summation}{index}
is an abbreviation for
\adefii[name=summation-index]{index of summation}{summation}{index}
.
\defi[name=node]{vertex}
is an abbreviation for \adefi[name=node]{vertex}{vertex}
.
\defii[name=eigenvector]{characteristic}{vector}
is an abbreviation for \adefii[name=eigenvector]{characteristic vector}{characteristic}{vector}
.
Same for defiii
and defiv
.
[name=...]
can be omitted in the same way as for \adefi
s.
\Defi[name=node]{vertex}
is an abbreviation for \adefi[name=node]{Vertex}{vertex}
,
i.e. the first letter in the displayed string gets capitalized.
\defis[name=edge]{line}
is an abbreviation for \adefi[name=edge]{lines}{line}
,
i.e. an s
gets appended to the displayed string.
Defis
capitalizes the first letter and appends an s
.
For all Defi
, defis
and Defis
, the [name=...]
parameter is optional
and the ii
, iii
and iv
forms exist as well.
\mtrefi[category?arrow]{Morphismus}
references the symbol arrow
in module category
and displays it as the string Morphismus
.
Similarly, \mtrefii[cgroup?commutative-group]{Abelian}{group}
references the symbol commutative-group
in the module cgroup
and displays it as Abelian group
.
Same for mtrefiii
and mtrefiv
.
\trefi[metric-space]{metric}
is an abbreviation for \mtrefi[metric-space?metric]{metric}
.
If the module name is not specified, it is assumed to be the current module.
Similarly, \trefii[vector-space]{vector}{addition}
is an abbreviation
for \mtrefii[vector-space?vector-addition]{vector}{addition}
.
Same for mtrefiii
and mtrefiv
.
Trefi
, trefis
, Trefis
etc. behave analogous to Defi
, defis
, Defis
, etc.
atrefi
etc. are deprecated and shouldn't be used anymore!
\symi{homogeneity}
introduces the symbol homogeneity
.
\symii{affine}{space}
introduces the symbol affine-space
.
Same for symiii
and symiv
.
If the \symdef
command has the optional parameter name=...
,
it introduces a new symbol with a the specified name.
Note that a symbol may be introduced multiple times this way.
\symi*
is the same as \symi
.
modsig
: signature module. It's the only type of module that may contain symi
s.
mhmodnl
: language module. There must be a signature module with the same name.
All symbols introduced with a defi
variant in a language module must be
introduced in the signature module.
module
: mono-lingual module. Here, the defi
variants introduce new symbols themselves.
modnl
: same as mhmodnl
but with different parameters (it uses the load
parameter, see discussion in imports section).
\gimport[smglom/numthy]{kroneckerdelta}
imports all symbols from the kroneckerdelta
module
in the smglom/numthy
repository.
If the repository is not specified, it is assumed to be the current repository.
gimport
s can only be used in signature modules and mono-lingual modules.
\importmhmodule[mhrepos=MiKoMH/CompLog,dir=pl1/en]{pl1-syntax}
imports all symbols from from the pl1-syntax
module in the directory pl1/en
in the repository
MiKoMH/CompLog
.
As always, the optional parameters are optional.
guse
essentially does the same thing (and has the same arguments as) gimport
. However, the imported symbols are 'exported',
i.e. if module A has a guse
to B and module C imports module A, then module C won't import the symbols from B.
usemhmodule
essentially does the same thing (and has the same arguments as) importmhmodule
.
However, the symbols are again not exported.
importmodule
and usemodule
do the same as importmhmodule
and usemhmodule
except that they use the
load
parameter instead.
For example \importmhmodule[mhrepos=foo,dir=bar]{baz}
does the same as \importmodule[load=/path/to/MathHub/<foo>/source/<bar>]{baz}
.
The are rarely (if ever) used.
\begin{gstructure}{mul}{monoid}
\tassign{op}{multiplication}
\tassign{unit}{one}
\end{gstructure}
- If a language file lacks a
\defi
for an introduced symbol (unless the symbol was introduced with the parameternoverb
)