forked from yxfish13/HyperQO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Hinter.py
201 lines (180 loc) · 10.4 KB
/
Hinter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from ImportantConfig import Config
from math import e
from PGUtils import pgrunner
import torch
from KNN import KNN
import time
def formatFloat(t):
try:
return " ".join(["{:.4f}".format(x) for x in t])
except:
return " ".join(["{:.4f}".format(x) for x in [t]])
config = Config()
class Timer:
def __init__(self,):
from time import time
self.timer = time
self.startTime = {}
def reset(self,s):
self.startTime[s] = self.timer()
def record(self,s):
return self.timer()-self.startTime[s]
timer = Timer()
class Hinter:
def __init__(self,model,sql2vec,value_extractor,mcts_searcher=None):
self.model = model #Net.TreeNet
self.sql2vec = sql2vec#
self.value_extractor = value_extractor
self.pg_planningtime_list = []
self.pg_runningtime_list = [] #default pg running time
self.mcts_time_list = []#time for mcts
self.hinter_planningtime_list = [] #chosen hinter running time,include the timeout
self.MHPE_time_list = []
self.hinter_runtime_list = []
self.chosen_plan = []#eg((leading ,pg))
self.hinter_time_list = []#final plan((eg [(leading,),(leading,pg),...]))
self.knn = KNN(10)
self.mcts_searcher = mcts_searcher
self.hinter_times = 0
def findBestHint(self,plan_json_PG,alias,sql_vec,sql):
alias_id = [self.sql2vec.aliasname2id[a] for a in alias]
timer.reset('mcts_time_list')
id_joins_with_predicate = [(self.sql2vec.aliasname2id[p[0]],self.sql2vec.aliasname2id[p[1]]) for p in self.sql2vec.join_list_with_predicate]
id_joins = [(self.sql2vec.aliasname2id[p[0]],self.sql2vec.aliasname2id[p[1]]) for p in self.sql2vec.join_list]
leading_length = config.leading_length
if leading_length==-1:
leading_length = len(alias)
if leading_length>len(alias):
leading_length = len(alias)
join_list_with_predicate = self.mcts_searcher.findCanHints(40,len(alias),sql_vec,id_joins,id_joins_with_predicate,alias_id,depth=leading_length)
self.mcts_time_list.append(timer.record('mcts_time_list'))
leading_list = []
plan_jsons = []
leadings_utility_list = []
for join in join_list_with_predicate:
leading_list.append('/*+Leading('+" ".join([self.sql2vec.id2aliasname[x] for x in join[0][:leading_length]])+')*/')
leadings_utility_list.append(join[1])
##To do: parallel planning
plan_jsons.append(pgrunner.getCostPlanJson(leading_list[-1]+sql))
plan_jsons.extend([plan_json_PG])
timer.reset('MHPE_time_list')
plan_times = self.predictWithUncertaintyBatch(plan_jsons=plan_jsons,sql_vec = sql_vec)
self.MHPE_time_list.append(timer.record('MHPE_time_list'))
chosen_leading_pair = sorted(zip(plan_times[:config.max_hint_num],leading_list,leadings_utility_list),key = lambda x:x[0][0]+self.knn.kNeightboursSample(x[0]))[0]
return chosen_leading_pair
def hinterRun(self,sql):
self.hinter_times += 1
plan_json_PG = pgrunner.getCostPlanJson(sql)
self.samples_plan_with_time = []
mask = (torch.rand(1,config.head_num,device = config.device)<0.9).long()
if config.cost_test_for_debug:
self.pg_runningtime_list.append(pgrunner.getCost(sql)[0])
self.pg_planningtime_list.append(pgrunner.getCostPlanJson(sql)['Planning Time'])
else:
self.pg_runningtime_list.append(pgrunner.getAnalysePlanJson(sql)['Plan']['Actual Total Time'])
self.pg_planningtime_list.append(pgrunner.getAnalysePlanJson(sql)['Planning Time'])
sql_vec,alias = self.sql2vec.to_vec(sql)
plan_jsons = [plan_json_PG]
plan_times = self.predictWithUncertaintyBatch(plan_jsons=plan_jsons,sql_vec = sql_vec)
algorithm_idx = 0
chosen_leading_pair = self.findBestHint(plan_json_PG=plan_json_PG,alias=alias,sql_vec = sql_vec,sql=sql)
knn_plan = abs(self.knn.kNeightboursSample(plan_times[0]))
if chosen_leading_pair[0][0]<plan_times[algorithm_idx][0] and abs(knn_plan)<config.threshold and self.value_extractor.decode(plan_times[0][0])>100:
from math import e
max_time_out = min(int(self.value_extractor.decode(chosen_leading_pair[0][0])*3),config.max_time_out)
if config.cost_test_for_debug:
leading_time_flag = pgrunner.getCost(sql = chosen_leading_pair[1]+sql)
self.hinter_runtime_list.append(leading_time_flag[0])
##To do: parallel planning
self.hinter_planningtime_list.append(pgrunner.getCostPlanJson(sql = chosen_leading_pair[1]+sql)['Planning Time'])
else:
plan_json = pgrunner.getAnalysePlanJson(sql = chosen_leading_pair[1]+sql)
leading_time_flag = (plan_json['Plan']['Actual Total Time'],plan_json['timeout'])
self.hinter_runtime_list.append(leading_time_flag[0])
##To do: parallel planning
self.hinter_planningtime_list.append(plan_json['Planning Time'])
self.knn.insertAValue((chosen_leading_pair[0],self.value_extractor.encode(leading_time_flag[0])-chosen_leading_pair[0][0]))
if config.cost_test_for_debug:
self.samples_plan_with_time.append([pgrunner.getCostPlanJson(sql = chosen_leading_pair[1]+sql,timeout=max_time_out),leading_time_flag[0],mask])
else:
self.samples_plan_with_time.append([pgrunner.getCostPlanJson(sql = chosen_leading_pair[1]+sql,timeout=max_time_out),leading_time_flag[0],mask])
if leading_time_flag[1]:
if config.cost_test_for_debug:
pg_time_flag = pgrunner.getCost(sql=sql)
else:
pg_time_flag = pgrunner.getLatency(sql=sql,timeout = 300*1000)
self.knn.insertAValue((plan_times[0],self.value_extractor.encode(pg_time_flag[0])-plan_times[0][0]))
if self.samples_plan_with_time[0][1]>pg_time_flag[0]*1.8:
self.samples_plan_with_time[0][1] = pg_time_flag[0]*1.8
self.samples_plan_with_time.append([plan_json_PG,pg_time_flag[0],mask])
else:
self.samples_plan_with_time[0] = [plan_json_PG,pg_time_flag[0],mask]
self.hinter_time_list.append([max_time_out,pgrunner.getLatency(sql=sql,timeout = 300*1000)[0]])
self.chosen_plan.append([chosen_leading_pair[1],'PG'])
else:
self.hinter_time_list.append([leading_time_flag[0]])
self.chosen_plan.append([chosen_leading_pair[1]])
else:
if config.cost_test_for_debug:
pg_time_flag = pgrunner.getCost(sql=sql)
self.hinter_runtime_list.append(pg_time_flag[0])
##To do: parallel planning
self.hinter_planningtime_list.append(pgrunner.getCostPlanJson(sql)['Planning Time'])
else:
pg_time_flag = pgrunner.getLatency(sql=sql,timeout = 300*1000)
self.hinter_runtime_list.append(pg_time_flag[0])
##To do: parallel planning
self.hinter_planningtime_list.append(pgrunner.getAnalysePlanJson(sql = sql)['Planning Time'])
self.knn.insertAValue((plan_times[0],self.value_extractor.encode(pg_time_flag[0])-plan_times[0][0]))
self.samples_plan_with_time.append([plan_json_PG,pg_time_flag[0],mask])
self.hinter_time_list.append([pg_time_flag[0]])
self.chosen_plan.append(['PG'])
## To do: parallel the training process
##
for sample in self.samples_plan_with_time:
target_value = self.value_extractor.encode(sample[1])
self.model.train(plan_json = sample[0],sql_vec = sql_vec,target_value=target_value,mask = mask,is_train = True)
self.mcts_searcher.train(tree_feature = self.model.tree_builder.plan_to_feature_tree(sample[0]),sql_vec = sql_vec,target_value = sample[1],alias_set=alias)
if self.hinter_times<1000 or self.hinter_times%10==0:
loss= self.model.optimize()[0]
loss1 = self.mcts_searcher.optimize()
if self.hinter_times<1000:
loss= self.model.optimize()[0]
loss1 = self.mcts_searcher.optimize()
if loss>3:
loss= self.model.optimize()[0]
loss1 = self.mcts_searcher.optimize()
if loss>3:
loss= self.model.optimize()[0]
loss1 = self.mcts_searcher.optimize()
assert len(set([len(self.hinter_runtime_list),len(self.pg_runningtime_list),len(self.mcts_time_list),len(self.hinter_planningtime_list),len(self.MHPE_time_list),len(self.hinter_runtime_list),len(self.chosen_plan),len(self.hinter_time_list)]))==1
return self.pg_planningtime_list[-1],self.pg_runningtime_list[-1],self.mcts_time_list[-1],self.hinter_planningtime_list[-1],self.MHPE_time_list[-1],self.hinter_runtime_list[-1],self.chosen_plan[-1],self.hinter_time_list[-1]
def predictWithUncertaintyBatch(self,plan_jsons,sql_vec):
sql_feature = self.model.value_network.sql_feature(sql_vec)
import torchfold
fold = torchfold.Fold(cuda=True)
res = []
multi_list = []
for plan_json in plan_jsons:
tree_feature = self.model.tree_builder.plan_to_feature_tree(plan_json)
multi_value = self.model.plan_to_value_fold(tree_feature=tree_feature,sql_feature = sql_feature,fold=fold)
multi_list.append(multi_value)
multi_value = fold.apply(self.model.value_network,[multi_list])[0]
mean,variance = self.model.mean_and_variance(multi_value=multi_value[:,:config.head_num])
v2 = torch.exp(multi_value[:,config.head_num]*config.var_weight).data.reshape(-1)
if isinstance(mean,float):
mean_item = [mean]
else:
mean_item = [x.item()for x in mean]
if isinstance(variance,float):
variance_item = [variance]
else:
variance_item = [x.item()for x in variance]
# variance_item = [x.item() for x in variance]
if isinstance(v2,float):
v2_item = [v2]
else:
v2_item = [x.item()for x in v2]
# v2_item = [x.item() for x in v2]
res = list(zip(mean_item,variance_item,v2_item))
return res