We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
When i try to run the lstm_ae i get the following error:
IndexError Traceback (most recent call last) [c:\Users\sdblo\Mijn](file:///C:/Users/sdblo/Mijn) Drive\PhD\Publicaties\graph_node_autoencoder\sequitur_example.py in line 56 [31](file:///c%3A/Users/sdblo/Mijn%20Drive/PhD/Publicaties/graph_node_autoencoder/sequitur_example.py?line=30) # torch.use_deterministic_algorithms(True) [32](file:///c%3A/Users/sdblo/Mijn%20Drive/PhD/Publicaties/graph_node_autoencoder/sequitur_example.py?line=31) [33](file:///c%3A/Users/sdblo/Mijn%20Drive/PhD/Publicaties/graph_node_autoencoder/sequitur_example.py?line=32) # train_data, test_data = train_test_split(data, test_size=0.1, shuffle=False, random_state=42) (...) [53](file:///c%3A/Users/sdblo/Mijn%20Drive/PhD/Publicaties/graph_node_autoencoder/sequitur_example.py?line=52) [54](file:///c%3A/Users/sdblo/Mijn%20Drive/PhD/Publicaties/graph_node_autoencoder/sequitur_example.py?line=53) # train_set = torch.tensor(train_data, dtype=torch.float32) [55](file:///c%3A/Users/sdblo/Mijn%20Drive/PhD/Publicaties/graph_node_autoencoder/sequitur_example.py?line=54) train_set = [torch.randn(10, 5, 5) for _ in range(100)] ---> [56](file:///c%3A/Users/sdblo/Mijn%20Drive/PhD/Publicaties/graph_node_autoencoder/sequitur_example.py?line=55) encoder, decoder, _, _ = quick_train(LSTM_AE, train_set, encoding_dim=64, verbose=True, epochs=500, ) File [c:\Users\sdblo\miniconda3\envs\tsl\lib\site-packages\sequitur\quick_train.py:76](file:///C:/Users/sdblo/miniconda3/envs/tsl/lib/site-packages/sequitur/quick_train.py:76), in quick_train(model, train_set, encoding_dim, verbose, lr, epochs, denoise, **kwargs) [74](file:///c%3A/Users/sdblo/miniconda3/envs/tsl/lib/site-packages/sequitur/quick_train.py?line=73) def quick_train(model, train_set, encoding_dim, verbose=False, lr=1e-3, [75](file:///c%3A/Users/sdblo/miniconda3/envs/tsl/lib/site-packages/sequitur/quick_train.py?line=74) epochs=50, denoise=False, **kwargs): ---> [76](file:///c%3A/Users/sdblo/miniconda3/envs/tsl/lib/site-packages/sequitur/quick_train.py?line=75) model = instantiate_model(model, train_set, encoding_dim, **kwargs) [77](file:///c%3A/Users/sdblo/miniconda3/envs/tsl/lib/site-packages/sequitur/quick_train.py?line=76) losses = train_model(model, train_set, verbose, lr, epochs, denoise) [78](file:///c%3A/Users/sdblo/miniconda3/envs/tsl/lib/site-packages/sequitur/quick_train.py?line=77) encodings = get_encodings(model, train_set) File [c:\Users\sdblo\miniconda3\envs\tsl\lib\site-packages\sequitur\quick_train.py:16](file:///C:/Users/sdblo/miniconda3/envs/tsl/lib/site-packages/sequitur/quick_train.py:16), in instantiate_model(model, train_set, encoding_dim, **kwargs) [14](file:///c%3A/Users/sdblo/miniconda3/envs/tsl/lib/site-packages/sequitur/quick_train.py?line=13) def instantiate_model(model, train_set, encoding_dim, **kwargs): [15](file:///c%3A/Users/sdblo/miniconda3/envs/tsl/lib/site-packages/sequitur/quick_train.py?line=14) if model.__name__ in ("LINEAR_AE", "LSTM_AE"): ---> [16](file:///c%3A/Users/sdblo/miniconda3/envs/tsl/lib/site-packages/sequitur/quick_train.py?line=15) return model(train_set[-1].shape[-1], encoding_dim, **kwargs) [17](file:///c%3A/Users/sdblo/miniconda3/envs/tsl/lib/site-packages/sequitur/quick_train.py?line=16) elif model.__name__ == "CONV_LSTM_AE": [18](file:///c%3A/Users/sdblo/miniconda3/envs/tsl/lib/site-packages/sequitur/quick_train.py?line=17) if len(train_set[-1].shape) == 3: # 2D elements File [c:\Users\sdblo\miniconda3\envs\tsl\lib\site-packages\sequitur\models\lstm_ae.py:87](file:///C:/Users/sdblo/miniconda3/envs/tsl/lib/site-packages/sequitur/models/lstm_ae.py:87), in LSTM_AE.__init__(self, input_dim, encoding_dim, h_dims, h_activ, out_activ) [83](file:///c%3A/Users/sdblo/miniconda3/envs/tsl/lib/site-packages/sequitur/models/lstm_ae.py?line=82) super(LSTM_AE, self).__init__() [85](file:///c%3A/Users/sdblo/miniconda3/envs/tsl/lib/site-packages/sequitur/models/lstm_ae.py?line=84) self.encoder = Encoder(input_dim, encoding_dim, h_dims, h_activ, [86](file:///c%3A/Users/sdblo/miniconda3/envs/tsl/lib/site-packages/sequitur/models/lstm_ae.py?line=85) out_activ) ---> [87](file:///c%3A/Users/sdblo/miniconda3/envs/tsl/lib/site-packages/sequitur/models/lstm_ae.py?line=86) self.decoder = Decoder(encoding_dim, input_dim, h_dims[::-1], [88](file:///c%3A/Users/sdblo/miniconda3/envs/tsl/lib/site-packages/sequitur/models/lstm_ae.py?line=87) h_activ) File [c:\Users\sdblo\miniconda3\envs\tsl\lib\site-packages\sequitur\models\lstm_ae.py:46](file:///C:/Users/sdblo/miniconda3/envs/tsl/lib/site-packages/sequitur/models/lstm_ae.py:46), in Decoder.__init__(self, input_dim, out_dim, h_dims, h_activ) [43](file:///c%3A/Users/sdblo/miniconda3/envs/tsl/lib/site-packages/sequitur/models/lstm_ae.py?line=42) def __init__(self, input_dim, out_dim, h_dims, h_activ): [44](file:///c%3A/Users/sdblo/miniconda3/envs/tsl/lib/site-packages/sequitur/models/lstm_ae.py?line=43) super(Decoder, self).__init__() ---> [46](file:///c%3A/Users/sdblo/miniconda3/envs/tsl/lib/site-packages/sequitur/models/lstm_ae.py?line=45) layer_dims = [input_dim] + h_dims + [h_dims[-1]] [47](file:///c%3A/Users/sdblo/miniconda3/envs/tsl/lib/site-packages/sequitur/models/lstm_ae.py?line=46) self.num_layers = len(layer_dims) - 1 [48](file:///c%3A/Users/sdblo/miniconda3/envs/tsl/lib/site-packages/sequitur/models/lstm_ae.py?line=47) self.layers = nn.ModuleList() IndexError: list index out of range
The text was updated successfully, but these errors were encountered:
same error here.
Sorry, something went wrong.
No branches or pull requests
When i try to run the lstm_ae i get the following error:
The text was updated successfully, but these errors were encountered: