Skip to content

Latest commit

 

History

History
587 lines (511 loc) · 31.3 KB

README.md

File metadata and controls

587 lines (511 loc) · 31.3 KB

FlagAI

FlagPerf是什么

Lint Code Base

FlagPerf是智源研究院联合AI硬件厂商共建的一体化AI硬件评测引擎,旨在建立以产业实践为导向的指标体系,评测AI硬件在软件栈组合(模型+框架+编译器)下的实际能力。

📣 FlagPerf评测亮点

cooperation

  1. 构建多维度评测指标体系,不止关注“耗时”:

    FlagPerf 指标体系除了衡量“芯片能否支持特定模型训练”的功能正确性指标之外,还包含更多维度的性能指标、资源使用指标以及生态适配能力指标等。

    指标详细介绍见 这篇文章

  2. 支持多样例场景及任务,覆盖大模型训练推理场景

    FlagPerf 已经涵盖计算机视觉、自然语言处理、语音、多模态等领域的**30余个经典模型,80余个训练样例,**支持评测AI硬件的训练和推理能力,以及大模型场景的推理任务评测。

  3. 支持多训练框架及推理引擎,灵活连接AI硬件与软件生态

    在训练任务场景中,除了支持 PyTorch、TensorFlow,FlagPerf 还在积极与 PaddlePaddle、MindSpore 研发团队密切配合。作为国产训练框架的领军者,百度 Paddle团队、华为昇思MindSpore 团队正在将 Llama、GPT3 等明星模型集成至 FlagPerf 测试样例集。

    在推理任务场景中,FlagPerf 适配了多家芯片厂商和训练框架研发团队的推理加速引擎,以更灵活地连接AI硬件与软件生态,拓宽评测的边界和效率,如英伟达TensorRT、昆仑芯XTCL(XPU Tensor Compilation Library)、天数智芯IxRT(Iluvatar CoreX RunTime)、PyTorch TorchInductor。

  4. 支持多测试环境,综合考察单卡、单机、多机性能

    为全面评估国产AI芯片多样性、可扩展性、实际应用模拟情况,FlagPerf 设定了单卡、单机(通常是8卡)、多机三个测试环境,为不同的测试环境匹配了不同测试样例场景和任务。

    注:当前FlagPerf在保证测试环境除芯片外其他条件一致的情况下,进行芯片本身的离线批处理评测,暂不支持集群和客户端的性能评估。

  5. 严格审核参评代码,关注“结果公平”,更关注“过程公正”

    测试由智源研究院与众多芯片厂商联合展开。总体原则是确保客观、公平地评估芯片的通用性能,限制厂商开展有针对性的定制优化。在确定测试模型之后,首先由芯片厂商进行模型适配,这个过程中只允许厂商进行分布式通信、批数据量(batch size)等和硬件执行强相关的方面的代码修改,以确保模型能够在芯片上高效运行。其次由智源研究院依托基准测试平台FlagPerf对芯片能力开展测试,并确保测试过程顺利,芯片性能和稳定性得到最佳发挥。同时,所有测试代码均已开源,测试过程、数据可复现。

🎯 未来智源及众多AI硬件、框架团队还将共同拓展FlagPerf的评测场景,如开展集群性能的整体评估,以更全面的评估国产软硬件的性能。

News

  • [31 Oct 2023]支持Torch-Aquila 7B预训练,#299
  • [27 Oct 2023]支持Torch-llama2 7B预训练,#289
  • [7 Oct 2023]支持Paddle-GPT3 预训练,#233
  • [27 Sep 2023]发布v1.0版本,支持20余个经典模型,50余个训练样例,支持多家芯片厂商的训练或推理评测 #v1.0
  • [3 Aug 2023]支持推理框架, 支持常见基础模型的离线批推理评测 #136
  • [8 Feb 2023]支持Tensorflow框架#7
  • [6 Feb 2023]昆仑芯作为合作厂商进入共建生态 #6
  • [Dec 2022]天数智芯、百度PaddlePaddle作为最早一批厂商参与初版共建开发

支持列表

训练列表:

模型名称 模型类型 英伟达 昆仑芯 天数智芯 摩尔线程
aquila2_7b NLP flagscale(megatron) N/A N/A N/A
bert NLP paddle, pytorch paddle, pytorch paddle, pytorch N/A
bert_hf NLP pytorch N/A N/A pytorch
bigtransfer CV pytorch pytorch pytorch N/A
cpm LLM pytorch pytorch pytorch N/A
detr CV pytorch pytorch N/A N/A
distilbert NLP pytorch pytorch N/A N/A
efficientnet CV pytorch pytorch pytorch N/A
faster_rcnn CV pytorch pytorch pytorch N/A
glm LLM pytorch pytorch pytorch N/A
gpt2 LLM pytorch pytorch N/A N/A
gpt3_13B LLM paddle N/A N/A N/A
gpt3_6.7B LLM paddle N/A N/A N/A
llama1_13B LLM paddle N/A N/A N/A
llama1_7B LLM paddle N/A N/A N/A
llama2_7b LLM deepspeed deepspeed deepspeed deepspeed
llama2_7b_finetune LLM pytorch N/A N/A N/A
longformer NLP pytorch pytorch N/A N/A
mask_rcnn CV pytorch pytorch pytorch N/A
mobilenetv2 CV pytorch pytorch pytorch N/A
resnet50 CV pytorch, tensorflow2 pytorch pytorch pytorch
retinanet CV pytorch pytorch pytorch N/A
swin_transformer CV pytorch pytorch pytorch N/A
t5_small NLP pytorch pytorch N/A N/A
tacotron2 Audio pytorch pytorch pytorch N/A
transformer NLP pytorch pytorch pytorch N/A
transformer_xl NLP pytorch pytorch N/A N/A
vit CV pytorch pytorch pytorch N/A
wav2vec2 Audio pytorch pytorch N/A N/A
WaveGlow Audio pytorch N/A N/A N/A

推理列表:

模型名称 模型类型 英伟达 昆仑芯 天数智芯 腾讯九霄
resnet50 CV f32/f16 f32/f16 f16 f16
BertLarge NLP f32/f16 W32A16 Incoming N/A
VisionTransformer CV f32/f16 W32A16 N/A N/A
Yolov5_large CV f32/f16 f32 f16 N/A
Stable Diffusion v1.4 MultiModal f32/f16 f32 N/A N/A
SwinTransformer CV f32/f16 W32A16 N/A N/A
Llama2-7B-mmlu NLP f32/f16 N/A N/A N/A
Aquila-7B-mmlu NLP fp16 N/A N/A N/A
SegmentAnything MultiModal fp16 W32A16 N/A N/A

如何使用FlagPerf进行AI硬件评测

基础环境确认

  1. 安装docker,python
  2. 确保硬件驱动、网络、硬件虚拟化等服务器基础配置齐全
    1. 确保可连中国大陆可访问网站,速率正常
    2. 确保可在容器内找到硬件
    3. 确保各服务器间root帐号的ssh信任关系和sudo免密
    4. 确保monitor相关工具已安装:包括cpu(sysstat)、内存(free)、功耗(ipmitool)、系统信息(加速卡状态查看命令)。例如ubuntu系统中,使用apt install [sysstat/ipmitool]安装

训练启动说明

  1. 下载FlagPerf并部署
# 先各服务器间root帐号的ssh信任关系和sudo免密配置
git clone https://github.com/FlagOpen/FlagPerf.git
cd FlagPerf/training/
pip3 install -r requirements.txt
  1. 修改机器配置文件
cd Flagperf/training/
vim run_benchmarks/config/cluster_conf.py

集群配置文件主要包括集群主机列表和SSH端口,修改HOSTSSSH_PORT为机器实际地址

'''Cluster configs'''
#Hosts to run the benchmark. Each item is an IP address or a hostname.
HOSTS = ["10.1.2.3", "10.1.2.4", "10.1.2.5", "10.1.2.6"]
#ssh connection port
SSH_PORT = "22"
  1. 修改模型配置文件
cd Flagperf/training/
vim run_benchmarks/config/test_conf.py

必改项:

VENDOR = "nvidia" #选择本次运行的硬件
FLAGPERF_PATH="" # FlagPerf项目路径,如"/home/FlagPerf/training"
CASES={} # 本次运行的测例,按照对应模型readme准备好数据,修改模型对应的地址
#如运行"bert:pytorch_1.8:A100:1:8:1": "/raid/home_datasets_ckpt/bert/train/",需要把:后面的路径替换为本地路径
  1. 启动测试
python3 ./run_benchmarks/run.py
sudo python3 ./run_benchmarks/run.py
  1. 查看日志
cd result/run2023XXXX/运行模型/
# ls
round1
# ls round1/
10.1.2.2_noderank0
# cd 10.1.2.2_noderank0/
# ls
cpu_monitor.log     pwr_monitor.log  rank2.out.log  rank5.out.log  start_pytorch_task.log
mem_monitor.log     rank0.out.log    rank3.out.log  rank6.out.log
nvidia_monitor.log  rank1.out.log    rank4.out.log  rank7.out.log


# tail -n 6 rank0.out.log
[PerfLog] {"event": "STEP_END", "value": {"loss": 2.679504871368408, "embedding_average": 0.916015625, "epoch": 1, "end_training": true, "global_steps": 3397, "num_trained_samples": 869632, "learning_rate": 0.000175375, "seq/s": 822.455385237589}, "metadata": {"file": "/workspace/flagperf/training/benchmarks/cpm/pytorch/run_pretraining.py", "lineno": 127, "time_ms": 1669034171032, "rank": 0}}
[PerfLog] {"event": "EVALUATE", "metadata": {"file": "/workspace/flagperf/training/benchmarks/cpm/pytorch/run_pretraining.py", "lineno": 127, "time_ms": 1669034171032, "rank": 0}}
[PerfLog] {"event": "EPOCH_END", "metadata": {"file": "/workspace/flagperf/training/benchmarks/cpm/pytorch/run_pretraining.py", "lineno": 127, "time_ms": 1669034171159, "rank": 0}}
[PerfLog] {"event": "TRAIN_END", "metadata": {"file": "/workspace/flagperf/training/benchmarks/cpm/pytorch/run_pretraining.py", "lineno": 136, "time_ms": 1669034171159, "rank": 0}}
[PerfLog] {"event": "FINISHED", "value": {"e2e_time": 1661.6114165782928, "training_sequences_per_second": 579.0933420700227, "converged": true, "final_loss": 3.066718101501465, "final_mlm_accuracy": 0.920166015625, "raw_train_time": 1501.713, "init_time": 148.937}, "metadata": {"file": "/workspace/flagperf/training/benchmarks/cpm/pytorch/run_pretraining.py", "lineno": 158, "time_ms": 1669034171646, "rank": 0}}

推理启动说明

  1. 下载FlagPerf并部署
# 先各服务器间root帐号的ssh信任关系和sudo免密配置
git clone https://github.com/FlagOpen/FlagPerf.git
cd FlagPerf/inference/
pip3 install -r requirements.txt
  1. 修改机器配置文件
cd Flagperf/inference/
vim configs/host.yaml

集群配置文件主要包括集群主机列表和SSH端口,修改HOSTSSSH_PORT为机器实际地址

#必须修改项
FLAGPERF_PATH: "/home/FlagPerf/inference" #FlagPerf inference 路径
HOSTS: ["127.0.0.1"] # 机器地址
VENDOR = "nvidia" #测试机器对象,nvidia/kunlunxin/iluvatar
CASES:  #待测case,记得修改数据地址
    "resnet50:pytorch_1.13": "/raid/dataset/ImageNet/imagenet/val"
  1. 用户需要根据评测对象,配置configs//configuration.yaml,如不修改可用默认配置
batch_size: 256
# 1 item(like 1 sequence, 1 image) flops
# Attention! For transformer decoder like bert, 1 token cause 2*param flops, so we need 2*length*params like 2*512*0.33B here
# format: a_1*a*2*...*a_nea_0,like 2*512*0.33e9(bert) or 4.12e9(resnet50)
flops: 4.12e9
fp16: true
compiler: tensorrt
num_workers: 8
log_freq: 30
repeat: 5
# skip validation(will also skip create_model, export onnx). Assert exist_onnx_path != null
no_validation: false
# set a real onnx_path to use exist, or set it to anything but null to avoid export onnx manually(like torch-tensorrt)
exist_onnx_path: null
# set a exist path of engine file like resnet50.trt/resnet50.plan/resnet50.engine
exist_compiler_path: null

必改项:

VENDOR = "nvidia" #选择本次运行的硬件
FLAGPERF_PATH="" # FlagPerf项目路径,如"/home/FlagPerf/training"
CASES={} # 本次运行的测例,按照对应模型readme准备好数据,修改模型对应的地址
#如运行"bert:pytorch_1.8:A100:1:8:1": "/raid/home_datasets_ckpt/bert/train/",需要把:后面的路径替换为本地路径
  1. 启动测试
sudo python inference/run.py

参与共建FlagPerf

开发者教程:更多操作教程见 docs-zh

为了更直观的展示厂商参与共建的实际工作量,下面给出6个已经合并进FlagPerf,面向不同特征厂商的Pull Request。

  1. 模型训练适配适配

    • 第一次参与训练适配工作的内容较多。除了适配模型case外,还需要适配厂商的dockerfile、monitor等,如#246
    • 后续参与训练适配工作量较小:
      • 如厂商以cuda兼容路线设计软硬件,典型适配case #170
      • 如厂商不兼容cuda,则需要额外修改后端通信方案等等,典型适配case #288。当case较复杂时,可能需要重写部分计算方式、半精度接口等,如#158
  2. 模型推理适配

  • 第一次参与推理适配的工作内容较多。除了适配case外,还包括厂商的dockerfile、编译器实现方式、monitor等,如 #256
  • 后续参与推理适配时,通常不需要适配工作量、仅需运行软件完成测试。如 #227

FlagPerf合作伙伴

cooperation

许可证

本项目基于Apache 2.0 license。
本项目的代码来源于不同的代码仓库,关于各模型测试Case的情况,请参考各模型测试Case目录的文档。

联系我们

如有疑问,可以发送邮件至[email protected],或在issue中说明情况