-
Notifications
You must be signed in to change notification settings - Fork 2
/
03. Time Complexity. TapeEquilibrium.swift
59 lines (47 loc) · 1.84 KB
/
03. Time Complexity. TapeEquilibrium.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import Foundation
import Glibc
// Solution @ Sergey Leschev, Belarusian State University
// 03. Time Complexity. TapeEquilibrium.
// A non-empty array A consisting of N integers is given. Array A represents numbers on a tape.
// Any integer P, such that 0 < P < N, splits this tape into two non-empty parts: A[0], A[1], ..., A[P − 1] and A[P], A[P + 1], ..., A[N − 1].
// The difference between the two parts is the value of: |(A[0] + A[1] + ... + A[P − 1]) − (A[P] + A[P + 1] + ... + A[N − 1])|
// In other words, it is the absolute difference between the sum of the first part and the sum of the second part.
// For example, consider array A such that:
// A[0] = 3
// A[1] = 1
// A[2] = 2
// A[3] = 4
// A[4] = 3
// We can split this tape in four places:
// P = 1, difference = |3 − 10| = 7
// P = 2, difference = |4 − 9| = 5
// P = 3, difference = |6 − 7| = 1
// P = 4, difference = |10 − 3| = 7
// Write a function:
// class Solution { public int solution(int[] A); }
// that, given a non-empty array A of N integers, returns the minimal difference that can be achieved.
// For example, given:
// A[0] = 3
// A[1] = 1
// A[2] = 2
// A[3] = 4
// A[4] = 3
// the function should return 1, as explained above.
// Write an efficient algorithm for the following assumptions:
// N is an integer within the range [2..100,000];
// each element of array A is an integer within the range [−1,000..1,000].
public func solution(_ A: inout [Int]) -> Int {
var minDif = Int.max
var leftSum = A.first!
var rightSum = A.reduce(0, +) - leftSum
var index = 0
for item in A {
if index == 0 { index = 1; continue }
let dif = leftSum - rightSum
minDif = min(abs(minDif), abs(dif))
leftSum += item
rightSum -= item
index += 1
}
return minDif
}