-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
answer_70.py
60 lines (45 loc) · 1.31 KB
/
answer_70.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import cv2
import numpy as np
import matplotlib.pyplot as plt
# BGR -> HSV
def BGR2HSV(_img):
img = _img.copy() / 255.
hsv = np.zeros_like(img, dtype=np.float32)
# get max and min
max_v = np.max(img, axis=2).copy()
min_v = np.min(img, axis=2).copy()
min_arg = np.argmin(img, axis=2)
# H
hsv[..., 0][np.where(max_v == min_v)]= 0
## if min == B
ind = np.where(min_arg == 0)
hsv[..., 0][ind] = 60 * (img[..., 1][ind] - img[..., 2][ind]) / (max_v[ind] - min_v[ind]) + 60
## if min == R
ind = np.where(min_arg == 2)
hsv[..., 0][ind] = 60 * (img[..., 0][ind] - img[..., 1][ind]) / (max_v[ind] - min_v[ind]) + 180
## if min == G
ind = np.where(min_arg == 1)
hsv[..., 0][ind] = 60 * (img[..., 2][ind] - img[..., 0][ind]) / (max_v[ind] - min_v[ind]) + 300
# S
hsv[..., 1] = max_v.copy() - min_v.copy()
# V
hsv[..., 2] = max_v.copy()
return hsv
# make mask
def get_mask(hsv):
mask = np.zeros_like(hsv[..., 0])
#mask[np.where((hsv > 180) & (hsv[0] < 260))] = 255
mask[np.logical_and((hsv[..., 0] > 180), (hsv[..., 0] < 260))] = 255
return mask
# Read image
img = cv2.imread("imori.jpg").astype(np.float32)
# RGB > HSV
hsv = BGR2HSV(img)
# color tracking
mask = get_mask(hsv)
out = mask.astype(np.uint8)
# Save result
cv2.imwrite("out.png", out)
cv2.imshow("result", out)
cv2.waitKey(0)
cv2.destroyAllWindows()