-
Notifications
You must be signed in to change notification settings - Fork 223
/
validate.py
214 lines (176 loc) · 7.88 KB
/
validate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# Original work Copyright 2018 The Google AI Language Team Authors.
# Modified work Copyright 2019 Rowan Zellers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from lm.modeling import model_fn_builder, GroverConfig
import tensorflow as tf
from lm.dataloader import input_fn_builder
import numpy as np
import tempfile
import h5py
from google.cloud import storage
flags = tf.flags
FLAGS = flags.FLAGS
## Required parameters
flags.DEFINE_string(
"config_file", 'configs/base.json',
"The config json file corresponding to the pre-trained news model. "
"This specifies the model architecture.")
flags.DEFINE_string(
"input_file", None,
"Input TF example files (can be a glob or comma separated).")
flags.DEFINE_string(
"output_dir", None,
"The output directory where the model checkpoints will be written.")
flags.DEFINE_string(
"validation_name", 'preds.h5',
"Name to use")
## Other parameters
flags.DEFINE_string(
"init_checkpoint", None,
"Initial checkpoint (usually from a pre-trained model).")
flags.DEFINE_integer(
"max_seq_length", 1024,
"The maximum total input sequence length after WordPiece tokenization. "
"Sequences longer than this will be truncated, and sequences shorter "
"than this will be padded. Must match data generation.")
flags.DEFINE_integer("iterations_per_loop", 1000,
"How many steps to make in each estimator call.")
flags.DEFINE_integer("batch_size", 32, "Batch size used for eval")
flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.")
flags.DEFINE_string(
"tpu_name", None,
"The Cloud TPU to use for training. This should be either the name "
"used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
"url.")
flags.DEFINE_string(
"tpu_zone", None,
"[Optional] GCE zone where the Cloud TPU is located in. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
flags.DEFINE_string(
"gcp_project", None,
"[Optional] Project name for the Cloud TPU-enabled project. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.")
flags.DEFINE_integer(
"num_tpu_cores", 8,
"Only used if `use_tpu` is True. Total number of TPU cores to use.")
# This is a handy little utility so that we can save the perplexities to TPU
class gcloudwriter():
def __init__(self, gcloud_name):
assert gcloud_name.startswith('gs://')
self.gcloud_name = gcloud_name
bucket_name, blob_name = gcloud_name.split('gs://')[1].split('/', 1)
bucket = storage.Client().get_bucket(bucket_name)
self.blob = bucket.blob(blob_name)
def __enter__(self):
self.tempfile = tempfile.NamedTemporaryFile()
return self.tempfile
def __exit__(self, *args):
self.tempfile.flush()
print("UPLOADING TO {}".format(self.gcloud_name), flush=True)
self.blob.upload_from_filename(self.tempfile.name)
self.tempfile.close()
def ind_where(array: np.ndarray, target, return_first_match=True, default_value=-1):
"""
:param array: Single dimension array
:param target: target to search for
:param return_first_match: If true, return the first index that matches, otherwise, return the last one
:param default_value: Index to return if there was no match
:return: index of the first match, or -1 if nothing
"""
assert array.ndim == 1
matching_inds = np.where(array == target)[0]
if len(matching_inds) > 0:
if return_first_match:
return int(matching_inds[0])
else:
return int(matching_inds[-1])
return default_value
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
news_config = GroverConfig.from_json_file(FLAGS.config_file)
tf.gfile.MakeDirs(FLAGS.output_dir)
input_files = []
for input_pattern in FLAGS.input_file.split(","):
input_files.extend(tf.gfile.Glob(input_pattern))
tf.logging.info("*** Input Files ***")
for input_file in input_files:
tf.logging.info(" %s" % input_file)
tpu_cluster_resolver = None
if FLAGS.use_tpu and FLAGS.tpu_name:
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
run_config = tf.contrib.tpu.RunConfig(
cluster=tpu_cluster_resolver,
master=FLAGS.master,
model_dir=FLAGS.output_dir,
save_checkpoints_steps=FLAGS.iterations_per_loop,
keep_checkpoint_max=None,
tpu_config=tf.contrib.tpu.TPUConfig(
iterations_per_loop=FLAGS.iterations_per_loop,
num_shards=FLAGS.num_tpu_cores,
per_host_input_for_training=is_per_host))
model_fn = model_fn_builder(news_config,
init_checkpoint=FLAGS.init_checkpoint,
learning_rate=1e-4,
num_train_steps=0,
num_warmup_steps=0,
use_tpu=FLAGS.use_tpu,
)
# If TPU is not available, this will fall back to normal Estimator on CPU
# or GPU.
estimator = tf.contrib.tpu.TPUEstimator(
use_tpu=FLAGS.use_tpu,
model_fn=model_fn,
config=run_config,
train_batch_size=FLAGS.batch_size,
eval_batch_size=FLAGS.batch_size,
predict_batch_size=FLAGS.batch_size,
params={'model_dir': FLAGS.output_dir}
)
eval_input_fn = input_fn_builder(
input_files=input_files,
seq_length=FLAGS.max_seq_length,
evaluate_for_fixed_number_of_steps=False,
num_cpu_threads=1,
is_training=False)
result = [x for x in estimator.predict(input_fn=eval_input_fn, yield_single_examples=True)]
cats = sorted(result[0].keys())
result_stack = {cat: np.stack([x[cat] for x in result]) for cat in cats}
with gcloudwriter(os.path.join(FLAGS.output_dir, FLAGS.validation_name)) as tempfile_name:
with h5py.File(tempfile_name, 'w') as h5:
for cat, data in result_stack.items():
dtype2use = np.float16 if cat.endswith(('logprobs', 'top_p_required')) else np.uint16
h5.create_dataset(cat, data=data.astype(dtype2use))
h5.create_dataset('model', data=FLAGS.config_file)
h5.create_dataset('ckpt', data=FLAGS.init_checkpoint)
h5.create_dataset('input_file', data=FLAGS.input_file)
# This gives the perplexity of the entire article. if you want to replicate the results of the paper you
# might need to do something different to extract the ppl of just the body in particular.
ppl_ex = []
for logprobs_i, ids_i in zip(result_stack['gt_logprobs'], result_stack['labels']):
# Omit the first token. Keep in mind input_ids is shifted by 1
start_ind = ind_where(ids_i, target=50265, default_value=0)
end_ind = ind_where(ids_i, target=50266, default_value=ids_i.shape[0] - 1)
ppl_ex.append(logprobs_i[start_ind:end_ind])
ppl_ex = np.concatenate(ppl_ex, 0)
print("Article perplexity is {:.3f}".format(np.exp(-np.mean(ppl_ex))), flush=True)
if __name__ == "__main__":
flags.mark_flag_as_required("input_file")
flags.mark_flag_as_required("output_dir")
tf.app.run()