Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Dos plot problem with QE #152

Open
SubeenLim opened this issue Jun 22, 2024 · 3 comments
Open

Dos plot problem with QE #152

SubeenLim opened this issue Jun 22, 2024 · 3 comments

Comments

@SubeenLim
Copy link

For developer,
Using the example file , I tried to calculate the input files and fe.k.pdos_atm files came out in my QE env.

data_dir = pyprocar.download_example(save_dir='',
material='Fe',
code='qe',
spin_calc_type='non-spin-polarized',
calc_type='dos')

But when I calculated MoP bulk system, both mop.k.pdos_atm and mop.k.pdos_tot were not generated.
So I'm having trouble plotting the density of states.
Here is my input file.
##scf.in
&CONTROL
calculation = 'scf',
prefix = 'MoP',
restart_mode='from_scratch',
pseudo_dir='/home/usr/Dojo_NC',
outdir = './out',
/
&SYSTEM
ibrav = 0
nat = 2
ntyp = 2
nbnd = 30
ecutrho = 320.0,
ecutwfc = 80.0,
occupations='smearing',
smearing='marzari-vanderbilt',
degauss=0.05,
/
&electrons
conv_thr = 1.0d-10
mixing_beta = 0.7
/
CELL_PARAMETERS (angstrom)
3.241806939 0.000000000 0.000000000
-1.620903420 2.807487125 0.000000000
0.000000000 0.000000000 3.197958480
ATOMIC_SPECIES
Mo 95.94 Mo.upf
P 30.97 P.upf
ATOMIC_POSITIONS (crystal)
Mo 0.6666667 0.3333333 0.0000000
P 0.0000000 0.0000000 0.5000000

K_POINTS automatic
16 16 16 0 0 0
###nscf.in
&CONTROL
calculation = 'nscf',
prefix = 'MoP',
restart_mode='from_scratch',
pseudo_dir='/home/usr/Dojo_NC',
outdir = './out',
/
&SYSTEM
ibrav = 0
nat = 2
ntyp = 2
nbnd = 30
ecutrho = 320.0,
ecutwfc = 80.0,
occupations='smearing',
smearing='marzari-vanderbilt',
degauss=0.05,
/
&electrons
conv_thr = 1.0d-10
mixing_beta = 0.7
/
CELL_PARAMETERS (angstrom)
3.241806939 0.000000000 0.000000000
-1.620903420 2.807487125 0.000000000
0.000000000 0.000000000 3.197958480
ATOMIC_SPECIES
Mo 95.94 Mo.upf
P 30.97 P.upf
ATOMIC_POSITIONS (crystal)
Mo 0.6666667 0.3333333 0.0000000
P 0.0000000 0.0000000 0.5000000

K_POINTS automatic
16 16 16 0 0 0

##pdos.in
&projwfc
outdir='./out',
prefix='MoP',
ngauss=0, degauss=0.036748
DeltaE=0.01
lsym=.false.
!kresolveddos=.true.
filpdos='mop.k'
filproj='mopproj.k'
/

I would appreciate it if you could provide a solution.

@lllangWV
Copy link
Member

Hey SubeenLim,

From first glance everything looks correct to me. I have a few questions:

What is your version of quantum espresso?

Did you run the calculations in the order below scf->nscf->projwfc?

Here is an example of my submission script

#PBS -N pyprocar_qe
#PBS -q comm_small_day
#PBS -l walltime=24:00:00
#PBS -l nodes=1:ppn=20

source ~/.bashrc

cd $PBS_O_WORKDIR

mpirun -np 20 pw.x  <scf.in> scf.out
mpirun -np 20 pw.x  <nscf.in> nscf.out
mpirun -np 20 projwfc.x  <pdos.in> pdos.out

Logan Lang

@SubeenLim
Copy link
Author

Thank you for your reply,

My MoP structure was relaxed using the vc-relax(full relaxation).
When I run projwfc, using the relaxed structure, "Error in routine d_matrix (3):167 D_S (l=3) for this symmetry operation is not orthogonal" error code comes out.
So adding 'lsym = .false.' to pdos.in, I can solve the above error code.
But when I use 'lysm = .false., both mop.k.pdos_atm and mop.k.pdos_tot were not generated.

When I calculated the not relaxed structure, "Error in routine d_matrix (3):167 D_S (l=3) for this symmetry operation is not orthogonal" erroe code did not happen. So I add 'lsym = .true.' And both mop.k.pdos_atm and mop.k.pdos_tot were generated well.
I think considering symmetry are significant when running relaxtion.

I have another question.
What is the unit of DOS on the y-axis in the plain dos plot?

@lllangWV
Copy link
Member

When I run projwfc, using the relaxed structure, "Error in routine d_matrix (3):167 D_S (l=3) for this symmetry operation is not orthogonal" error code comes out.

So I did some reading on this error, another QE user had the same issue and the issue turned out to be a problem with a symmetrization of hexagonal systems when ibrav=0. When this is equal to 0, QE has to find the all the symmetry operation itself and sometimes it fails to do so. I would recommend enforcing symmetry in the scf.in and the nscf.in by setting ibrav=4 (Hexagonal symmetry) and defining A and C. I provide the documentation for this below.

What is the unit of DOS on the y-axis in the plain dos plot?

The units are states/eV

<html>
<body>
<!--StartFragment-->
ibravINTEGERStatus:REQUIRED  Bravais-lattice index. Optional only if space_group is set.   If ibrav /= 0, specify EITHER [ celldm(1)-celldm(6) ]   OR [ A, B, C, cosAB, cosAC, cosBC ]   but NOT both. The lattice parameter "alat" is set to   alat = celldm(1) (in a.u.) or alat = A (in Angstrom);   see below for the other parameters.   For ibrav=0 specify the lattice vectors in CELL_PARAMETERS,   optionally the lattice parameter alat = celldm(1) (in a.u.)   or = A (in Angstrom). If not specified, the lattice parameter is   taken from CELL_PARAMETERS   IMPORTANT NOTICE 1:   with ibrav=0 lattice vectors must be given with a sufficiently large   number of digits and with the correct symmetry, or else symmetry   detection may fail and strange problems may arise in symmetrization.   IMPORTANT NOTICE 2:   do not use celldm(1) or A as a.u. to Ang conversion factor,   use the true lattice parameters or nothing,   specify units in CELL_PARAMETERS and ATOMIC_POSITIONS  ibrav      structure                   celldm(2)-celldm(6)                                      or: b,c,cosbc,cosac,cosab   0          free       crystal axis provided in input: see card CELL_PARAMETERS    1          cubic P (sc)       v1 = a(1,0,0),  v2 = a(0,1,0),  v3 = a(0,0,1)    2          cubic F (fcc)       v1 = (a/2)(-1,0,1),  v2 = (a/2)(0,1,1), v3 = (a/2)(-1,1,0)    3          cubic I (bcc)       v1 = (a/2)(1,1,1),  v2 = (a/2)(-1,1,1),  v3 = (a/2)(-1,-1,1)  -3          cubic I (bcc), more symmetric axis:       v1 = (a/2)(-1,1,1), v2 = (a/2)(1,-1,1),  v3 = (a/2)(1,1,-1)    4          Hexagonal and Trigonal P        celldm(3)=c/a       v1 = a(1,0,0),  v2 = a(-1/2,sqrt(3)/2,0),  v3 = a(0,0,c/a)    5          Trigonal R, 3fold axis c        celldm(4)=cos(gamma)       The crystallographic vectors form a three-fold star around       the z-axis, the primitive cell is a simple rhombohedron:       v1 = a(tx,-ty,tz),   v2 = a(0,2ty,tz),   v3 = a(-tx,-ty,tz)       where c=cos(gamma) is the cosine of the angle gamma between       any pair of crystallographic vectors, tx, ty, tz are:         tx=sqrt((1-c)/2), ty=sqrt((1-c)/6), tz=sqrt((1+2c)/3)  -5          Trigonal R, 3fold axis <111>    celldm(4)=cos(gamma)       The crystallographic vectors form a three-fold star around       <111>. Defining a' = a/sqrt(3) :       v1 = a' (u,v,v),   v2 = a' (v,u,v),   v3 = a' (v,v,u)       where u and v are defined as         u = tz - 2*sqrt(2)*ty,  v = tz + sqrt(2)*ty       and tx, ty, tz as for case ibrav=5       Note: if you prefer x,y,z as axis in the cubic limit,             set  u = tz + 2*sqrt(2)*ty,  v = tz - sqrt(2)*ty             See also the note in Modules/latgen.f90    6          Tetragonal P (st)               celldm(3)=c/a       v1 = a(1,0,0),  v2 = a(0,1,0),  v3 = a(0,0,c/a)    7          Tetragonal I (bct)              celldm(3)=c/a       v1=(a/2)(1,-1,c/a),  v2=(a/2)(1,1,c/a),  v3=(a/2)(-1,-1,c/a)    8          Orthorhombic P                  celldm(2)=b/a                                              celldm(3)=c/a       v1 = (a,0,0),  v2 = (0,b,0), v3 = (0,0,c)    9          Orthorhombic base-centered(bco) celldm(2)=b/a                                              celldm(3)=c/a       v1 = (a/2, b/2,0),  v2 = (-a/2,b/2,0),  v3 = (0,0,c)  -9          as 9, alternate description       v1 = (a/2,-b/2,0),  v2 = (a/2, b/2,0),  v3 = (0,0,c)  91          Orthorhombic one-face base-centered A-type                                              celldm(2)=b/a                                              celldm(3)=c/a       v1 = (a, 0, 0),  v2 = (0,b/2,-c/2),  v3 = (0,b/2,c/2)   10          Orthorhombic face-centered      celldm(2)=b/a                                              celldm(3)=c/a       v1 = (a/2,0,c/2),  v2 = (a/2,b/2,0),  v3 = (0,b/2,c/2)   11          Orthorhombic body-centered      celldm(2)=b/a                                              celldm(3)=c/a       v1=(a/2,b/2,c/2),  v2=(-a/2,b/2,c/2),  v3=(-a/2,-b/2,c/2)   12          Monoclinic P, unique axis c     celldm(2)=b/a                                              celldm(3)=c/a,                                              celldm(4)=cos(ab)       v1=(a,0,0), v2=(b*cos(gamma),b*sin(gamma),0),  v3 = (0,0,c)       where gamma is the angle between axis a and b. -12          Monoclinic P, unique axis b     celldm(2)=b/a                                              celldm(3)=c/a,                                              celldm(5)=cos(ac)       v1 = (a,0,0), v2 = (0,b,0), v3 = (c*cos(beta),0,c*sin(beta))       where beta is the angle between axis a and c   13          Monoclinic base-centered        celldm(2)=b/a              (unique axis c)                 celldm(3)=c/a,                                              celldm(4)=cos(gamma)       v1 = (  a/2,         0,          -c/2),       v2 = (b*cos(gamma), b*sin(gamma), 0  ),       v3 = (  a/2,         0,           c/2),       where gamma=angle between axis a and b projected on xy plane  -13          Monoclinic base-centered        celldm(2)=b/a              (unique axis b)                 celldm(3)=c/a,                                              celldm(5)=cos(beta)       v1 = (  a/2,       b/2,             0),       v2 = ( -a/2,       b/2,             0),       v3 = (c*cos(beta),   0,   c*sin(beta)),       where beta=angle between axis a and c projected on xz plane  IMPORTANT NOTICE: until QE v.6.4.1, axis for ibrav=-13 had a  different definition: v1(old) =-v2(now), v2(old) = v1(now)   14          Triclinic                       celldm(2)= b/a,                                              celldm(3)= c/a,                                              celldm(4)= cos(bc),                                              celldm(5)= cos(ac),                                              celldm(6)= cos(ab)       v1 = (a, 0, 0),       v2 = (b*cos(gamma), b*sin(gamma), 0)       v3 = (c*cos(beta),  c*(cos(alpha)-cos(beta)cos(gamma))/sin(gamma),            c*sqrt( 1 + 2*cos(alpha)cos(beta)cos(gamma)                      - cos(alpha)^2-cos(beta)^2-cos(gamma)^2 )/sin(gamma) )       where alpha is the angle between axis b and c              beta is the angle between axis a and c             gamma is the angle between axis a and b          [Back to Top]Either:celldm(i), i=1,6REALSee:ibravCrystallographic constants - see the ibrav variable. Specify either these OR A,B,C,cosAB,cosBC,cosAC NOT both. Only needed values (depending on "ibrav") must be specified alat = celldm(1) is the lattice parameter "a" (in BOHR) If ibrav==0, only celldm(1) is used if present; cell vectors are read from card CELL_PARAMETERS             [Back to Top]Or:A, B, C, cosAB, cosAC, cosBCREALSee:ibravTraditional crystallographic constants:    a,b,c in ANGSTROM   cosAB = cosine of the angle between axis a and b (gamma)   cosAC = cosine of the angle between axis a and c (beta)   cosBC = cosine of the angle between axis b and c (alpha)  The axis are chosen according to the value of ibrav. Specify either these OR celldm but NOT both. Only needed values (depending on ibrav) must be specified.  The lattice parameter alat = A (in ANGSTROM ).  If ibrav == 0, only A is used if present, and cell vectors are read from card CELL_PARAMETERS. | ibrav | INTEGER | Status: | REQUIRED | Bravais-lattice index. Optional only if space_group is set.   If ibrav /= 0, specify EITHER [ celldm(1)-celldm(6) ]   OR [ A, B, C, cosAB, cosAC, cosBC ]   but NOT both. The lattice parameter "alat" is set to   alat = celldm(1) (in a.u.) or alat = A (in Angstrom);   see below for the other parameters.   For ibrav=0 specify the lattice vectors in CELL_PARAMETERS,   optionally the lattice parameter alat = celldm(1) (in a.u.)   or = A (in Angstrom). If not specified, the lattice parameter is   taken from CELL_PARAMETERS   IMPORTANT NOTICE 1:   with ibrav=0 lattice vectors must be given with a sufficiently large   number of digits and with the correct symmetry, or else symmetry   detection may fail and strange problems may arise in symmetrization.   IMPORTANT NOTICE 2:   do not use celldm(1) or A as a.u. to Ang conversion factor,   use the true lattice parameters or nothing,   specify units in CELL_PARAMETERS and ATOMIC_POSITIONS  ibrav      structure                   celldm(2)-celldm(6)                                      or: b,c,cosbc,cosac,cosab   0          free       crystal axis provided in input: see card CELL_PARAMETERS    1          cubic P (sc)       v1 = a(1,0,0),  v2 = a(0,1,0),  v3 = a(0,0,1)    2          cubic F (fcc)       v1 = (a/2)(-1,0,1),  v2 = (a/2)(0,1,1), v3 = (a/2)(-1,1,0)    3          cubic I (bcc)       v1 = (a/2)(1,1,1),  v2 = (a/2)(-1,1,1),  v3 = (a/2)(-1,-1,1)  -3          cubic I (bcc), more symmetric axis:       v1 = (a/2)(-1,1,1), v2 = (a/2)(1,-1,1),  v3 = (a/2)(1,1,-1)    4          Hexagonal and Trigonal P        celldm(3)=c/a       v1 = a(1,0,0),  v2 = a(-1/2,sqrt(3)/2,0),  v3 = a(0,0,c/a)    5          Trigonal R, 3fold axis c        celldm(4)=cos(gamma)       The crystallographic vectors form a three-fold star around       the z-axis, the primitive cell is a simple rhombohedron:       v1 = a(tx,-ty,tz),   v2 = a(0,2ty,tz),   v3 = a(-tx,-ty,tz)       where c=cos(gamma) is the cosine of the angle gamma between       any pair of crystallographic vectors, tx, ty, tz are:         tx=sqrt((1-c)/2), ty=sqrt((1-c)/6), tz=sqrt((1+2c)/3)  -5          Trigonal R, 3fold axis <111>    celldm(4)=cos(gamma)       The crystallographic vectors form a three-fold star around       <111>. Defining a' = a/sqrt(3) :       v1 = a' (u,v,v),   v2 = a' (v,u,v),   v3 = a' (v,v,u)       where u and v are defined as         u = tz - 2*sqrt(2)*ty,  v = tz + sqrt(2)*ty       and tx, ty, tz as for case ibrav=5       Note: if you prefer x,y,z as axis in the cubic limit,             set  u = tz + 2*sqrt(2)*ty,  v = tz - sqrt(2)*ty             See also the note in Modules/latgen.f90    6          Tetragonal P (st)               celldm(3)=c/a       v1 = a(1,0,0),  v2 = a(0,1,0),  v3 = a(0,0,c/a)    7          Tetragonal I (bct)              celldm(3)=c/a       v1=(a/2)(1,-1,c/a),  v2=(a/2)(1,1,c/a),  v3=(a/2)(-1,-1,c/a)    8          Orthorhombic P                  celldm(2)=b/a                                              celldm(3)=c/a       v1 = (a,0,0),  v2 = (0,b,0), v3 = (0,0,c)    9          Orthorhombic base-centered(bco) celldm(2)=b/a                                              celldm(3)=c/a       v1 = (a/2, b/2,0),  v2 = (-a/2,b/2,0),  v3 = (0,0,c)  -9          as 9, alternate description       v1 = (a/2,-b/2,0),  v2 = (a/2, b/2,0),  v3 = (0,0,c)  91          Orthorhombic one-face base-centered A-type                                              celldm(2)=b/a                                              celldm(3)=c/a       v1 = (a, 0, 0),  v2 = (0,b/2,-c/2),  v3 = (0,b/2,c/2)   10          Orthorhombic face-centered      celldm(2)=b/a                                              celldm(3)=c/a       v1 = (a/2,0,c/2),  v2 = (a/2,b/2,0),  v3 = (0,b/2,c/2)   11          Orthorhombic body-centered      celldm(2)=b/a                                              celldm(3)=c/a       v1=(a/2,b/2,c/2),  v2=(-a/2,b/2,c/2),  v3=(-a/2,-b/2,c/2)   12          Monoclinic P, unique axis c     celldm(2)=b/a                                              celldm(3)=c/a,                                              celldm(4)=cos(ab)       v1=(a,0,0), v2=(b*cos(gamma),b*sin(gamma),0),  v3 = (0,0,c)       where gamma is the angle between axis a and b. -12          Monoclinic P, unique axis b     celldm(2)=b/a                                              celldm(3)=c/a,                                              celldm(5)=cos(ac)       v1 = (a,0,0), v2 = (0,b,0), v3 = (c*cos(beta),0,c*sin(beta))       where beta is the angle between axis a and c   13          Monoclinic base-centered        celldm(2)=b/a              (unique axis c)                 celldm(3)=c/a,                                              celldm(4)=cos(gamma)       v1 = (  a/2,         0,          -c/2),       v2 = (b*cos(gamma), b*sin(gamma), 0  ),       v3 = (  a/2,         0,           c/2),       where gamma=angle between axis a and b projected on xy plane  -13          Monoclinic base-centered        celldm(2)=b/a              (unique axis b)                 celldm(3)=c/a,                                              celldm(5)=cos(beta)       v1 = (  a/2,       b/2,             0),       v2 = ( -a/2,       b/2,             0),       v3 = (c*cos(beta),   0,   c*sin(beta)),       where beta=angle between axis a and c projected on xz plane  IMPORTANT NOTICE: until QE v.6.4.1, axis for ibrav=-13 had a  different definition: v1(old) =-v2(now), v2(old) = v1(now)   14          Triclinic                       celldm(2)= b/a,                                              celldm(3)= c/a,                                              celldm(4)= cos(bc),                                              celldm(5)= cos(ac),                                              celldm(6)= cos(ab)       v1 = (a, 0, 0),       v2 = (b*cos(gamma), b*sin(gamma), 0)       v3 = (c*cos(beta),  c*(cos(alpha)-cos(beta)cos(gamma))/sin(gamma),            c*sqrt( 1 + 2*cos(alpha)cos(beta)cos(gamma)                      - cos(alpha)^2-cos(beta)^2-cos(gamma)^2 )/sin(gamma) )       where alpha is the angle between axis b and c              beta is the angle between axis a and c             gamma is the angle between axis a and b | Either:celldm(i), i=1,6REALSee:ibravCrystallographic constants - see the ibrav variable. Specify either these OR A,B,C,cosAB,cosBC,cosAC NOT both. Only needed values (depending on "ibrav") must be specified alat = celldm(1) is the lattice parameter "a" (in BOHR) If ibrav==0, only celldm(1) is used if present; cell vectors are read from card CELL_PARAMETERS             [Back to Top]Or:A, B, C, cosAB, cosAC, cosBCREALSee:ibravTraditional crystallographic constants:    a,b,c in ANGSTROM   cosAB = cosine of the angle between axis a and b (gamma)   cosAC = cosine of the angle between axis a and c (beta)   cosBC = cosine of the angle between axis b and c (alpha)  The axis are chosen according to the value of ibrav. Specify either these OR celldm but NOT both. Only needed values (depending on ibrav) must be specified.  The lattice parameter alat = A (in ANGSTROM ).  If ibrav == 0, only A is used if present, and cell vectors are read from card CELL_PARAMETERS. | celldm(i), i=1,6 | REAL | See: | ibrav | Crystallographic constants - see the ibrav variable. Specify either these OR A,B,C,cosAB,cosBC,cosAC NOT both. Only needed values (depending on "ibrav") must be specified alat = celldm(1) is the lattice parameter "a" (in BOHR) If ibrav==0, only celldm(1) is used if present; cell vectors are read from card CELL_PARAMETERS | A, B, C, cosAB, cosAC, cosBC | REAL | See: | ibrav | Traditional crystallographic constants:    a,b,c in ANGSTROM   cosAB = cosine of the angle between axis a and b (gamma)   cosAC = cosine of the angle between axis a and c (beta)   cosBC = cosine of the angle between axis b and c (alpha)  The axis are chosen according to the value of ibrav. Specify either these OR celldm but NOT both. Only needed values (depending on ibrav) must be specified.  The lattice parameter alat = A (in ANGSTROM ).  If ibrav == 0, only A is used if present, and cell vectors are read from card CELL_PARAMETERS.
-- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | --
INTEGER
Status: | REQUIRED
Bravais-lattice index. Optional only if space_group is set.   If ibrav /= 0, specify EITHER [ celldm(1)-celldm(6) ]   OR [ A, B, C, cosAB, cosAC, cosBC ]   but NOT both. The lattice parameter "alat" is set to   alat = celldm(1) (in a.u.) or alat = A (in Angstrom);   see below for the other parameters.   For ibrav=0 specify the lattice vectors in CELL_PARAMETERS,   optionally the lattice parameter alat = celldm(1) (in a.u.)   or = A (in Angstrom). If not specified, the lattice parameter is   taken from CELL_PARAMETERS   IMPORTANT NOTICE 1:   with ibrav=0 lattice vectors must be given with a sufficiently large   number of digits and with the correct symmetry, or else symmetry   detection may fail and strange problems may arise in symmetrization.   IMPORTANT NOTICE 2:   do not use celldm(1) or A as a.u. to Ang conversion factor,   use the true lattice parameters or nothing,   specify units in CELL_PARAMETERS and ATOMIC_POSITIONS  ibrav      structure                   celldm(2)-celldm(6)                                      or: b,c,cosbc,cosac,cosab   0          free       crystal axis provided in input: see card CELL_PARAMETERS    1          cubic P (sc)       v1 = a(1,0,0),  v2 = a(0,1,0),  v3 = a(0,0,1)    2          cubic F (fcc)       v1 = (a/2)(-1,0,1),  v2 = (a/2)(0,1,1), v3 = (a/2)(-1,1,0)    3          cubic I (bcc)       v1 = (a/2)(1,1,1),  v2 = (a/2)(-1,1,1),  v3 = (a/2)(-1,-1,1)  -3          cubic I (bcc), more symmetric axis:       v1 = (a/2)(-1,1,1), v2 = (a/2)(1,-1,1),  v3 = (a/2)(1,1,-1)    4          Hexagonal and Trigonal P        celldm(3)=c/a       v1 = a(1,0,0),  v2 = a(-1/2,sqrt(3)/2,0),  v3 = a(0,0,c/a)    5          Trigonal R, 3fold axis c        celldm(4)=cos(gamma)       The crystallographic vectors form a three-fold star around       the z-axis, the primitive cell is a simple rhombohedron:       v1 = a(tx,-ty,tz),   v2 = a(0,2ty,tz),   v3 = a(-tx,-ty,tz)       where c=cos(gamma) is the cosine of the angle gamma between       any pair of crystallographic vectors, tx, ty, tz are:         tx=sqrt((1-c)/2), ty=sqrt((1-c)/6), tz=sqrt((1+2c)/3)  -5          Trigonal R, 3fold axis <111>    celldm(4)=cos(gamma)       The crystallographic vectors form a three-fold star around       <111>. Defining a' = a/sqrt(3) :       v1 = a' (u,v,v),   v2 = a' (v,u,v),   v3 = a' (v,v,u)       where u and v are defined as         u = tz - 2*sqrt(2)*ty,  v = tz + sqrt(2)*ty       and tx, ty, tz as for case ibrav=5       Note: if you prefer x,y,z as axis in the cubic limit,             set  u = tz + 2*sqrt(2)*ty,  v = tz - sqrt(2)*ty             See also the note in Modules/latgen.f90    6          Tetragonal P (st)               celldm(3)=c/a       v1 = a(1,0,0),  v2 = a(0,1,0),  v3 = a(0,0,c/a)    7          Tetragonal I (bct)              celldm(3)=c/a       v1=(a/2)(1,-1,c/a),  v2=(a/2)(1,1,c/a),  v3=(a/2)(-1,-1,c/a)    8          Orthorhombic P                  celldm(2)=b/a                                              celldm(3)=c/a       v1 = (a,0,0),  v2 = (0,b,0), v3 = (0,0,c)    9          Orthorhombic base-centered(bco) celldm(2)=b/a                                              celldm(3)=c/a       v1 = (a/2, b/2,0),  v2 = (-a/2,b/2,0),  v3 = (0,0,c)  -9          as 9, alternate description       v1 = (a/2,-b/2,0),  v2 = (a/2, b/2,0),  v3 = (0,0,c)  91          Orthorhombic one-face base-centered A-type                                              celldm(2)=b/a                                              celldm(3)=c/a       v1 = (a, 0, 0),  v2 = (0,b/2,-c/2),  v3 = (0,b/2,c/2)   10          Orthorhombic face-centered      celldm(2)=b/a                                              celldm(3)=c/a       v1 = (a/2,0,c/2),  v2 = (a/2,b/2,0),  v3 = (0,b/2,c/2)   11          Orthorhombic body-centered      celldm(2)=b/a                                              celldm(3)=c/a       v1=(a/2,b/2,c/2),  v2=(-a/2,b/2,c/2),  v3=(-a/2,-b/2,c/2)   12          Monoclinic P, unique axis c     celldm(2)=b/a                                              celldm(3)=c/a,                                              celldm(4)=cos(ab)       v1=(a,0,0), v2=(b*cos(gamma),b*sin(gamma),0),  v3 = (0,0,c)       where gamma is the angle between axis a and b. -12          Monoclinic P, unique axis b     celldm(2)=b/a                                              celldm(3)=c/a,                                              celldm(5)=cos(ac)       v1 = (a,0,0), v2 = (0,b,0), v3 = (c*cos(beta),0,c*sin(beta))       where beta is the angle between axis a and c   13          Monoclinic base-centered        celldm(2)=b/a              (unique axis c)                 celldm(3)=c/a,                                              celldm(4)=cos(gamma)       v1 = (  a/2,         0,          -c/2),       v2 = (b*cos(gamma), b*sin(gamma), 0  ),       v3 = (  a/2,         0,           c/2),       where gamma=angle between axis a and b projected on xy plane  -13          Monoclinic base-centered        celldm(2)=b/a              (unique axis b)                 celldm(3)=c/a,                                              celldm(5)=cos(beta)       v1 = (  a/2,       b/2,             0),       v2 = ( -a/2,       b/2,             0),       v3 = (c*cos(beta),   0,   c*sin(beta)),       where beta=angle between axis a and c projected on xz plane  IMPORTANT NOTICE: until QE v.6.4.1, axis for ibrav=-13 had a  different definition: v1(old) =-v2(now), v2(old) = v1(now)   14          Triclinic                       celldm(2)= b/a,                                              celldm(3)= c/a,                                              celldm(4)= cos(bc),                                              celldm(5)= cos(ac),                                              celldm(6)= cos(ab)       v1 = (a, 0, 0),       v2 = (b*cos(gamma), b*sin(gamma), 0)       v3 = (c*cos(beta),  c*(cos(alpha)-cos(beta)cos(gamma))/sin(gamma),            c*sqrt( 1 + 2*cos(alpha)cos(beta)cos(gamma)                      - cos(alpha)^2-cos(beta)^2-cos(gamma)^2 )/sin(gamma) )       where alpha is the angle between axis b and c              beta is the angle between axis a and c             gamma is the angle between axis a and b
Either:celldm(i), i=1,6REALSee:ibravCrystallographic constants - see the ibrav variable. Specify either these OR A,B,C,cosAB,cosBC,cosAC NOT both. Only needed values (depending on "ibrav") must be specified alat = celldm(1) is the lattice parameter "a" (in BOHR) If ibrav==0, only celldm(1) is used if present; cell vectors are read from card CELL_PARAMETERS             [Back to Top]Or:A, B, C, cosAB, cosAC, cosBCREALSee:ibravTraditional crystallographic constants:    a,b,c in ANGSTROM   cosAB = cosine of the angle between axis a and b (gamma)   cosAC = cosine of the angle between axis a and c (beta)   cosBC = cosine of the angle between axis b and c (alpha)  The axis are chosen according to the value of ibrav. Specify either these OR celldm but NOT both. Only needed values (depending on ibrav) must be specified.  The lattice parameter alat = A (in ANGSTROM ).  If ibrav == 0, only A is used if present, and cell vectors are read from card CELL_PARAMETERS. | REAL | See: | ibrav | Crystallographic constants - see the ibrav variable. Specify either these OR A,B,C,cosAB,cosBC,cosAC NOT both. Only needed values (depending on "ibrav") must be specified alat = celldm(1) is the lattice parameter "a" (in BOHR) If ibrav==0, only celldm(1) is used if present; cell vectors are read from card CELL_PARAMETERS | REAL | See: | ibrav | Traditional crystallographic constants:    a,b,c in ANGSTROM   cosAB = cosine of the angle between axis a and b (gamma)   cosAC = cosine of the angle between axis a and c (beta)   cosBC = cosine of the angle between axis b and c (alpha)  The axis are chosen according to the value of ibrav. Specify either these OR celldm but NOT both. Only needed values (depending on ibrav) must be specified.  The lattice parameter alat = A (in ANGSTROM ).  If ibrav == 0, only A is used if present, and cell vectors are read from card CELL_PARAMETERS.
REAL
See: | ibrav
Crystallographic constants - see the ibrav variable. Specify either these OR A,B,C,cosAB,cosBC,cosAC NOT both. Only needed values (depending on "ibrav") must be specified alat = celldm(1) is the lattice parameter "a" (in BOHR) If ibrav==0, only celldm(1) is used if present; cell vectors are read from card CELL_PARAMETERS
REAL
See: | ibrav
Traditional crystallographic constants:    a,b,c in ANGSTROM   cosAB = cosine of the angle between axis a and b (gamma)   cosAC = cosine of the angle between axis a and c (beta)   cosBC = cosine of the angle between axis b and c (alpha)  The axis are chosen according to the value of ibrav. Specify either these OR celldm but NOT both. Only needed values (depending on ibrav) must be specified.  The lattice parameter alat = A (in ANGSTROM ).  If ibrav == 0, only A is used if present, and cell vectors are read from card CELL_PARAMETERS.

<!--EndFragment-->
</body>
</html>
```ibrav	INTEGER
Status:	REQUIRED
  Bravais-lattice index. Optional only if space_group is set.
  If ibrav /= 0, specify EITHER [ [celldm](https://www.quantum-espresso.org/Doc/INPUT_PW.html#celldm)(1)-[celldm](https://www.quantum-espresso.org/Doc/INPUT_PW.html#celldm)(6) ]
  OR [ [A](https://www.quantum-espresso.org/Doc/INPUT_PW.html#A), [B](https://www.quantum-espresso.org/Doc/INPUT_PW.html#B), [C](https://www.quantum-espresso.org/Doc/INPUT_PW.html#C), [cosAB](https://www.quantum-espresso.org/Doc/INPUT_PW.html#cosAB), [cosAC](https://www.quantum-espresso.org/Doc/INPUT_PW.html#cosAC), [cosBC](https://www.quantum-espresso.org/Doc/INPUT_PW.html#cosBC) ]
  but NOT both. The lattice parameter "alat" is set to
  alat = celldm(1) (in a.u.) or alat = A (in Angstrom);
  see below for the other parameters.
  For ibrav=0 specify the lattice vectors in [CELL_PARAMETERS](https://www.quantum-espresso.org/Doc/INPUT_PW.html#CELL_PARAMETERS),
  optionally the lattice parameter alat = celldm(1) (in a.u.)
  or = A (in Angstrom). If not specified, the lattice parameter is
  taken from [CELL_PARAMETERS](https://www.quantum-espresso.org/Doc/INPUT_PW.html#CELL_PARAMETERS)
  IMPORTANT NOTICE 1:
  with ibrav=0 lattice vectors must be given with a sufficiently large
  number of digits and with the correct symmetry, or else symmetry
  detection may fail and strange problems may arise in symmetrization.
  IMPORTANT NOTICE 2:
  do not use celldm(1) or A as a.u. to Ang conversion factor,
  use the true lattice parameters or nothing,
  specify units in [CELL_PARAMETERS](https://www.quantum-espresso.org/Doc/INPUT_PW.html#CELL_PARAMETERS) and [ATOMIC_POSITIONS](https://www.quantum-espresso.org/Doc/INPUT_PW.html#ATOMIC_POSITIONS)

ibrav      structure                   celldm(2)-celldm(6)
                                     or: b,c,cosbc,cosac,cosab
  0          free
      crystal axis provided in input: see card [CELL_PARAMETERS](https://www.quantum-espresso.org/Doc/INPUT_PW.html#CELL_PARAMETERS)

  1          cubic P (sc)
      v1 = a(1,0,0),  v2 = a(0,1,0),  v3 = a(0,0,1)

  2          cubic F (fcc)
      v1 = (a/2)(-1,0,1),  v2 = (a/2)(0,1,1), v3 = (a/2)(-1,1,0)

  3          cubic I (bcc)
      v1 = (a/2)(1,1,1),  v2 = (a/2)(-1,1,1),  v3 = (a/2)(-1,-1,1)
 -3          cubic I (bcc), more symmetric axis:
      v1 = (a/2)(-1,1,1), v2 = (a/2)(1,-1,1),  v3 = (a/2)(1,1,-1)

  4          Hexagonal and Trigonal P        celldm(3)=c/a
      v1 = a(1,0,0),  v2 = a(-1/2,sqrt(3)/2,0),  v3 = a(0,0,c/a)

  5          Trigonal R, 3fold axis c        celldm(4)=cos(gamma)
      The crystallographic vectors form a three-fold star around
      the z-axis, the primitive cell is a simple rhombohedron:
      v1 = a(tx,-ty,tz),   v2 = a(0,2ty,tz),   v3 = a(-tx,-ty,tz)
      where c=cos(gamma) is the cosine of the angle gamma between
      any pair of crystallographic vectors, tx, ty, tz are:
        tx=sqrt((1-c)/2), ty=sqrt((1-c)/6), tz=sqrt((1+2c)/3)
 -5          Trigonal R, 3fold axis <111>    celldm(4)=cos(gamma)
      The crystallographic vectors form a three-fold star around
      <111>. Defining a' = a/sqrt(3) :
      v1 = a' (u,v,v),   v2 = a' (v,u,v),   v3 = a' (v,v,u)
      where u and v are defined as
        u = tz - 2*sqrt(2)*ty,  v = tz + sqrt(2)*ty
      and tx, ty, tz as for case ibrav=5
      Note: if you prefer x,y,z as axis in the cubic limit,
            set  u = tz + 2*sqrt(2)*ty,  v = tz - sqrt(2)*ty
            See also the note in Modules/latgen.f90

  6          Tetragonal P (st)               celldm(3)=c/a
      v1 = a(1,0,0),  v2 = a(0,1,0),  v3 = a(0,0,c/a)

  7          Tetragonal I (bct)              celldm(3)=c/a
      v1=(a/2)(1,-1,c/a),  v2=(a/2)(1,1,c/a),  v3=(a/2)(-1,-1,c/a)

  8          Orthorhombic P                  celldm(2)=b/a
                                             celldm(3)=c/a
      v1 = (a,0,0),  v2 = (0,b,0), v3 = (0,0,c)

  9          Orthorhombic base-centered(bco) celldm(2)=b/a
                                             celldm(3)=c/a
      v1 = (a/2, b/2,0),  v2 = (-a/2,b/2,0),  v3 = (0,0,c)
 -9          as 9, alternate description
      v1 = (a/2,-b/2,0),  v2 = (a/2, b/2,0),  v3 = (0,0,c)
 91          Orthorhombic one-face base-centered A-type
                                             celldm(2)=b/a
                                             celldm(3)=c/a
      v1 = (a, 0, 0),  v2 = (0,b/2,-c/2),  v3 = (0,b/2,c/2)

 10          Orthorhombic face-centered      celldm(2)=b/a
                                             celldm(3)=c/a
      v1 = (a/2,0,c/2),  v2 = (a/2,b/2,0),  v3 = (0,b/2,c/2)

 11          Orthorhombic body-centered      celldm(2)=b/a
                                             celldm(3)=c/a
      v1=(a/2,b/2,c/2),  v2=(-a/2,b/2,c/2),  v3=(-a/2,-b/2,c/2)

 12          Monoclinic P, unique axis c     celldm(2)=b/a
                                             celldm(3)=c/a,
                                             celldm(4)=cos(ab)
      v1=(a,0,0), v2=(b*cos(gamma),b*sin(gamma),0),  v3 = (0,0,c)
      where gamma is the angle between axis a and b.
-12          Monoclinic P, unique axis b     celldm(2)=b/a
                                             celldm(3)=c/a,
                                             celldm(5)=cos(ac)
      v1 = (a,0,0), v2 = (0,b,0), v3 = (c*cos(beta),0,c*sin(beta))
      where beta is the angle between axis a and c

 13          Monoclinic base-centered        celldm(2)=b/a
             (unique axis c)                 celldm(3)=c/a,
                                             celldm(4)=cos(gamma)
      v1 = (  a/2,         0,          -c/2),
      v2 = (b*cos(gamma), b*sin(gamma), 0  ),
      v3 = (  a/2,         0,           c/2),
      where gamma=angle between axis a and b projected on xy plane

-13          Monoclinic base-centered        celldm(2)=b/a
             (unique axis b)                 celldm(3)=c/a,
                                             celldm(5)=cos(beta)
      v1 = (  a/2,       b/2,             0),
      v2 = ( -a/2,       b/2,             0),
      v3 = (c*cos(beta),   0,   c*sin(beta)),
      where beta=angle between axis a and c projected on xz plane
 IMPORTANT NOTICE: until QE v.6.4.1, axis for ibrav=-13 had a
 different definition: v1(old) =-v2(now), v2(old) = v1(now)

 14          Triclinic                       celldm(2)= b/a,
                                             celldm(3)= c/a,
                                             celldm(4)= cos(bc),
                                             celldm(5)= cos(ac),
                                             celldm(6)= cos(ab)
      v1 = (a, 0, 0),
      v2 = (b*cos(gamma), b*sin(gamma), 0)
      v3 = (c*cos(beta),  c*(cos(alpha)-cos(beta)cos(gamma))/sin(gamma),
           c*sqrt( 1 + 2*cos(alpha)cos(beta)cos(gamma)
                     - cos(alpha)^2-cos(beta)^2-cos(gamma)^2 )/sin(gamma) )
      where alpha is the angle between axis b and c
             beta is the angle between axis a and c
            gamma is the angle between axis a and b
         
[[Back to Top](https://www.quantum-espresso.org/Doc/INPUT_PW.html#__top__)]
Either:

celldm(i), i=1,6	REAL
See:	[ibrav](https://www.quantum-espresso.org/Doc/INPUT_PW.html#ibrav)
Crystallographic constants - see the [ibrav](https://www.quantum-espresso.org/Doc/INPUT_PW.html#ibrav) variable.
Specify either these OR [A](https://www.quantum-espresso.org/Doc/INPUT_PW.html#A),[B](https://www.quantum-espresso.org/Doc/INPUT_PW.html#B),[C](https://www.quantum-espresso.org/Doc/INPUT_PW.html#C),[cosAB](https://www.quantum-espresso.org/Doc/INPUT_PW.html#cosAB),[cosBC](https://www.quantum-espresso.org/Doc/INPUT_PW.html#cosBC),[cosAC](https://www.quantum-espresso.org/Doc/INPUT_PW.html#cosAC) NOT both.
Only needed values (depending on "ibrav") must be specified
alat = [celldm](https://www.quantum-espresso.org/Doc/INPUT_PW.html#celldm)(1) is the lattice parameter "a" (in BOHR)
If [ibrav](https://www.quantum-espresso.org/Doc/INPUT_PW.html#ibrav)==0, only [celldm](https://www.quantum-espresso.org/Doc/INPUT_PW.html#celldm)(1) is used if present;
cell vectors are read from card [CELL_PARAMETERS](https://www.quantum-espresso.org/Doc/INPUT_PW.html#CELL_PARAMETERS)
            
[[Back to Top](https://www.quantum-espresso.org/Doc/INPUT_PW.html#__top__)]
Or:

A, B, C, cosAB, cosAC, cosBC	REAL
See:	[ibrav](https://www.quantum-espresso.org/Doc/INPUT_PW.html#ibrav)
Traditional crystallographic constants:

  a,b,c in ANGSTROM
  cosAB = cosine of the angle between axis a and b (gamma)
  cosAC = cosine of the angle between axis a and c (beta)
  cosBC = cosine of the angle between axis b and c (alpha)

The axis are chosen according to the value of [ibrav](https://www.quantum-espresso.org/Doc/INPUT_PW.html#ibrav).
Specify either these OR [celldm](https://www.quantum-espresso.org/Doc/INPUT_PW.html#celldm) but NOT both.
Only needed values (depending on [ibrav](https://www.quantum-espresso.org/Doc/INPUT_PW.html#ibrav)) must be specified.

The lattice parameter alat = A (in ANGSTROM ).

If [ibrav](https://www.quantum-espresso.org/Doc/INPUT_PW.html#ibrav) == 0, only A is used if present, and
cell vectors are read from card [CELL_PARAMETERS](https://www.quantum-espresso.org/Doc/INPUT_PW.html#CELL_PARAMETERS).

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants