forked from cp2k/cp2k
-
Notifications
You must be signed in to change notification settings - Fork 0
/
atom_pseudo.F
406 lines (356 loc) · 19.2 KB
/
atom_pseudo.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
!--------------------------------------------------------------------------------------------------!
! CP2K: A general program to perform molecular dynamics simulations !
! Copyright (C) 2000 - 2019 CP2K developers group !
!--------------------------------------------------------------------------------------------------!
! **************************************************************************************************
MODULE atom_pseudo
USE atom_electronic_structure, ONLY: calculate_atom
USE atom_fit, ONLY: atom_fit_pseudo
USE atom_operators, ONLY: atom_int_release,&
atom_int_setup,&
atom_ppint_release,&
atom_ppint_setup,&
atom_relint_release,&
atom_relint_setup
USE atom_output, ONLY: atom_print_basis,&
atom_print_info,&
atom_print_method,&
atom_print_potential
USE atom_types, ONLY: &
atom_basis_type, atom_integrals, atom_optimization_type, atom_orbitals, atom_p_type, &
atom_potential_type, atom_state, create_atom_orbs, create_atom_type, init_atom_basis, &
init_atom_potential, lmat, read_atom_opt_section, release_atom_basis, &
release_atom_potential, release_atom_type, set_atom
USE atom_utils, ONLY: atom_consistent_method,&
atom_set_occupation,&
get_maxl_occ,&
get_maxn_occ
USE cp_log_handling, ONLY: cp_get_default_logger,&
cp_logger_type
USE cp_output_handling, ONLY: cp_print_key_finished_output,&
cp_print_key_unit_nr
USE input_constants, ONLY: do_analytic,&
poly_conf
USE input_section_types, ONLY: section_vals_get,&
section_vals_get_subs_vals,&
section_vals_type,&
section_vals_val_get
USE kinds, ONLY: default_string_length,&
dp
USE periodic_table, ONLY: nelem,&
ptable
USE physcon, ONLY: bohr
#include "./base/base_uses.f90"
IMPLICIT NONE
PRIVATE
PUBLIC :: atom_pseudo_opt
CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'atom_pseudo'
! **************************************************************************************************
CONTAINS
! **************************************************************************************************
! **************************************************************************************************
!> \brief ...
!> \param atom_section ...
! **************************************************************************************************
SUBROUTINE atom_pseudo_opt(atom_section)
TYPE(section_vals_type), POINTER :: atom_section
CHARACTER(len=*), PARAMETER :: routineN = 'atom_pseudo_opt', &
routineP = moduleN//':'//routineN
CHARACTER(LEN=2) :: elem
CHARACTER(LEN=default_string_length), &
DIMENSION(:), POINTER :: tmpstringlist
INTEGER :: ads, do_eric, do_erie, handle, i, im, &
in, iw, k, l, maxl, mb, method, mo, &
n_meth, n_rep, reltyp, zcore, zval, zz
INTEGER, DIMENSION(0:lmat) :: maxn
INTEGER, DIMENSION(:), POINTER :: cn
LOGICAL :: eri_c, eri_e, pp_calc
REAL(KIND=dp) :: ne, nm
REAL(KIND=dp), DIMENSION(0:lmat, 10) :: pocc
TYPE(atom_basis_type), POINTER :: ae_basis, pp_basis
TYPE(atom_integrals), POINTER :: ae_int, pp_int
TYPE(atom_optimization_type) :: optimization
TYPE(atom_orbitals), POINTER :: orbitals
TYPE(atom_p_type), DIMENSION(:, :), POINTER :: atom_info, atom_refs
TYPE(atom_potential_type), POINTER :: ae_pot, p_pot
TYPE(atom_state), POINTER :: state, statepp
TYPE(cp_logger_type), POINTER :: logger
TYPE(section_vals_type), POINTER :: basis_section, method_section, &
opt_section, potential_section, &
powell_section, xc_section
CALL timeset(routineN, handle)
! What atom do we calculate
CALL section_vals_val_get(atom_section, "ATOMIC_NUMBER", i_val=zval)
CALL section_vals_val_get(atom_section, "ELEMENT", c_val=elem)
zz = 0
DO i = 1, nelem
IF (ptable(i)%symbol == elem) THEN
zz = i
EXIT
END IF
END DO
IF (zz /= 1) zval = zz
! read and set up information on the basis sets
ALLOCATE (ae_basis, pp_basis)
basis_section => section_vals_get_subs_vals(atom_section, "AE_BASIS")
NULLIFY (ae_basis%grid)
CALL init_atom_basis(ae_basis, basis_section, zval, "AA")
NULLIFY (pp_basis%grid)
basis_section => section_vals_get_subs_vals(atom_section, "PP_BASIS")
CALL init_atom_basis(pp_basis, basis_section, zval, "AP")
! print general and basis set information
logger => cp_get_default_logger()
iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%PROGRAM_BANNER", extension=".log")
IF (iw > 0) CALL atom_print_info(zval, "Atomic Energy Calculation", iw)
CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%PROGRAM_BANNER")
iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%BASIS_SET", extension=".log")
IF (iw > 0) THEN
CALL atom_print_basis(ae_basis, iw, " All Electron Basis")
CALL atom_print_basis(pp_basis, iw, " Pseudopotential Basis")
END IF
CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%BASIS_SET")
! read and setup information on the pseudopotential
NULLIFY (potential_section)
potential_section => section_vals_get_subs_vals(atom_section, "POTENTIAL")
ALLOCATE (ae_pot, p_pot)
CALL init_atom_potential(p_pot, potential_section, zval)
CALL init_atom_potential(ae_pot, potential_section, -1)
IF (.NOT. p_pot%confinement .AND. .NOT. ae_pot%confinement) THEN
!set default confinement potential
p_pot%confinement = .TRUE.
p_pot%conf_type = poly_conf
p_pot%scon = 2.0_dp
p_pot%acon = 0.5_dp
! this seems to be the default in the old code
p_pot%rcon = (2._dp*ptable(zval)%covalent_radius*bohr)**2
ae_pot%confinement = .TRUE.
ae_pot%conf_type = poly_conf
ae_pot%scon = 2.0_dp
ae_pot%acon = 0.5_dp
! this seems to be the default in the old code
ae_pot%rcon = (2._dp*ptable(zval)%covalent_radius*bohr)**2
END IF
! if the ERI's are calculated analytically, we have to precalculate them
eri_c = .FALSE.
CALL section_vals_val_get(atom_section, "COULOMB_INTEGRALS", i_val=do_eric)
IF (do_eric == do_analytic) eri_c = .TRUE.
eri_e = .FALSE.
CALL section_vals_val_get(atom_section, "EXCHANGE_INTEGRALS", i_val=do_erie)
IF (do_erie == do_analytic) eri_e = .TRUE.
! information on the states to be calculated
CALL section_vals_val_get(atom_section, "MAX_ANGULAR_MOMENTUM", i_val=maxl)
maxn = 0
CALL section_vals_val_get(atom_section, "CALCULATE_STATES", i_vals=cn)
DO in = 1, MIN(SIZE(cn), 4)
maxn(in-1) = cn(in)
END DO
DO in = 0, lmat
maxn(in) = MIN(maxn(in), ae_basis%nbas(in))
END DO
! read optimization section
opt_section => section_vals_get_subs_vals(atom_section, "OPTIMIZATION")
CALL read_atom_opt_section(optimization, opt_section)
! Check for the total number of electron configurations to be calculated
CALL section_vals_val_get(atom_section, "ELECTRON_CONFIGURATION", n_rep_val=n_rep)
! Check for the total number of method types to be calculated
method_section => section_vals_get_subs_vals(atom_section, "METHOD")
CALL section_vals_get(method_section, n_repetition=n_meth)
! integrals
ALLOCATE (ae_int, pp_int)
ALLOCATE (atom_info(n_rep, n_meth), atom_refs(n_rep, n_meth))
iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%PROGRAM_BANNER", extension=".log")
IF (iw > 0) THEN
WRITE (iw, '(/," ",79("*"))')
WRITE (iw, '(" ",26("*"),A,25("*"))') " Calculate Reference States "
WRITE (iw, '(" ",79("*"))')
END IF
CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%PROGRAM_BANNER")
DO in = 1, n_rep
DO im = 1, n_meth
NULLIFY (atom_info(in, im)%atom, atom_refs(in, im)%atom)
CALL create_atom_type(atom_info(in, im)%atom)
CALL create_atom_type(atom_refs(in, im)%atom)
atom_info(in, im)%atom%optimization = optimization
atom_refs(in, im)%atom%optimization = optimization
atom_info(in, im)%atom%z = zval
atom_refs(in, im)%atom%z = zval
xc_section => section_vals_get_subs_vals(method_section, "XC", i_rep_section=im)
atom_info(in, im)%atom%xc_section => xc_section
atom_refs(in, im)%atom%xc_section => xc_section
ALLOCATE (state, statepp)
! get the electronic configuration
CALL section_vals_val_get(atom_section, "ELECTRON_CONFIGURATION", i_rep_val=in, &
c_vals=tmpstringlist)
! all electron configurations have to be with full core
pp_calc = INDEX(tmpstringlist(1), "CORE") /= 0
CPASSERT(.NOT. pp_calc)
! set occupations
CALL atom_set_occupation(tmpstringlist, state%occ, state%occupation, state%multiplicity)
state%maxl_occ = get_maxl_occ(state%occ)
state%maxn_occ = get_maxn_occ(state%occ)
! set number of states to be calculated
state%maxl_calc = MAX(maxl, state%maxl_occ)
state%maxl_calc = MIN(lmat, state%maxl_calc)
state%maxn_calc = 0
DO k = 0, state%maxl_calc
ads = 2
IF (state%maxn_occ(k) == 0) ads = 1
state%maxn_calc(k) = MAX(maxn(k), state%maxn_occ(k)+ads)
state%maxn_calc(k) = MIN(state%maxn_calc(k), ae_basis%nbas(k))
END DO
state%core = 0._dp
CALL set_atom(atom_refs(in, im)%atom, zcore=zval, pp_calc=.FALSE.)
IF (state%multiplicity /= -1) THEN
! set alpha and beta occupations
state%occa = 0._dp
state%occb = 0._dp
DO l = 0, lmat
nm = REAL((2*l+1), KIND=dp)
DO k = 1, 10
ne = state%occupation(l, k)
IF (ne == 0._dp) THEN !empty shell
EXIT !assume there are no holes
ELSEIF (ne == 2._dp*nm) THEN !closed shell
state%occa(l, k) = nm
state%occb(l, k) = nm
ELSEIF (state%multiplicity == -2) THEN !High spin case
state%occa(l, k) = MIN(ne, nm)
state%occb(l, k) = MAX(0._dp, ne-nm)
ELSE
state%occa(l, k) = 0.5_dp*(ne+state%multiplicity-1._dp)
state%occb(l, k) = ne-state%occa(l, k)
END IF
END DO
END DO
END IF
! set occupations for pseudopotential calculation
CALL section_vals_val_get(atom_section, "CORE", c_vals=tmpstringlist)
CALL atom_set_occupation(tmpstringlist, statepp%core, pocc)
zcore = zval-NINT(SUM(statepp%core))
CALL set_atom(atom_info(in, im)%atom, zcore=zcore, pp_calc=.TRUE.)
statepp%occ = state%occ-statepp%core
statepp%occupation = 0._dp
DO l = 0, lmat
k = 0
DO i = 1, 10
IF (statepp%occ(l, i) /= 0._dp) THEN
k = k+1
statepp%occupation(l, k) = state%occ(l, i)
IF (state%multiplicity /= -1) THEN
statepp%occa(l, k) = state%occa(l, i)-statepp%core(l, i)/2
statepp%occb(l, k) = state%occb(l, i)-statepp%core(l, i)/2
END IF
END IF
END DO
END DO
statepp%maxl_occ = get_maxl_occ(statepp%occ)
statepp%maxn_occ = get_maxn_occ(statepp%occ)
statepp%maxl_calc = state%maxl_calc
statepp%maxn_calc = 0
maxn = get_maxn_occ(statepp%core)
DO k = 0, statepp%maxl_calc
statepp%maxn_calc(k) = state%maxn_calc(k)-maxn(k)
statepp%maxn_calc(k) = MIN(statepp%maxn_calc(k), pp_basis%nbas(k))
END DO
statepp%multiplicity = state%multiplicity
CALL section_vals_val_get(method_section, "METHOD_TYPE", i_val=method, i_rep_section=im)
CALL section_vals_val_get(method_section, "RELATIVISTIC", i_val=reltyp, i_rep_section=im)
CALL set_atom(atom_info(in, im)%atom, method_type=method)
CALL set_atom(atom_refs(in, im)%atom, method_type=method, relativistic=reltyp)
! calculate integrals: pseudopotential basis
! general integrals
CALL atom_int_setup(pp_int, pp_basis, potential=p_pot, eri_coulomb=eri_c, eri_exchange=eri_e)
!
NULLIFY (pp_int%tzora, pp_int%hdkh)
! potential
CALL atom_ppint_setup(pp_int, pp_basis, potential=p_pot)
!
CALL set_atom(atom_info(in, im)%atom, basis=pp_basis, integrals=pp_int, potential=p_pot)
statepp%maxn_calc(:) = MIN(statepp%maxn_calc(:), pp_basis%nbas(:))
CPASSERT(ALL(state%maxn_calc(:) >= state%maxn_occ))
! calculate integrals: all electron basis
! general integrals
CALL atom_int_setup(ae_int, ae_basis, potential=ae_pot, &
eri_coulomb=eri_c, eri_exchange=eri_e)
! potential
CALL atom_ppint_setup(ae_int, ae_basis, potential=ae_pot)
! relativistic correction terms
CALL atom_relint_setup(ae_int, ae_basis, reltyp, zcore=REAL(zval, dp))
!
CALL set_atom(atom_refs(in, im)%atom, basis=ae_basis, integrals=ae_int, potential=ae_pot)
state%maxn_calc(:) = MIN(state%maxn_calc(:), ae_basis%nbas(:))
CPASSERT(ALL(state%maxn_calc(:) >= state%maxn_occ))
CALL set_atom(atom_info(in, im)%atom, coulomb_integral_type=do_eric, &
exchange_integral_type=do_erie)
CALL set_atom(atom_refs(in, im)%atom, coulomb_integral_type=do_eric, &
exchange_integral_type=do_erie)
CALL set_atom(atom_info(in, im)%atom, state=statepp)
NULLIFY (orbitals)
mo = MAXVAL(statepp%maxn_calc)
mb = MAXVAL(atom_info(in, im)%atom%basis%nbas)
CALL create_atom_orbs(orbitals, mb, mo)
CALL set_atom(atom_info(in, im)%atom, orbitals=orbitals)
CALL set_atom(atom_refs(in, im)%atom, state=state)
NULLIFY (orbitals)
mo = MAXVAL(state%maxn_calc)
mb = MAXVAL(atom_refs(in, im)%atom%basis%nbas)
CALL create_atom_orbs(orbitals, mb, mo)
CALL set_atom(atom_refs(in, im)%atom, orbitals=orbitals)
IF (atom_consistent_method(atom_refs(in, im)%atom%method_type, atom_refs(in, im)%atom%state%multiplicity)) THEN
!Print method info
iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%METHOD_INFO", extension=".log")
CALL atom_print_method(atom_refs(in, im)%atom, iw)
CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%METHOD_INFO")
!Calculate the electronic structure
iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%SCF_INFO", extension=".log")
CALL calculate_atom(atom_refs(in, im)%atom, iw)
CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%SCF_INFO")
END IF
END DO
END DO
iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%FIT_PSEUDO", extension=".log")
IF (iw > 0) THEN
WRITE (iw, '(/," ",79("*"))')
WRITE (iw, '(" ",21("*"),A,21("*"))') " Optimize Pseudopotential Parameters "
WRITE (iw, '(" ",79("*"))')
END IF
CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%FIT_PSEUDO")
iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%POTENTIAL", extension=".log")
IF (iw > 0) THEN
CALL atom_print_potential(p_pot, iw)
END IF
CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%POTENTIAL")
iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%FIT_PSEUDO", extension=".log")
IF (iw > 0) THEN
powell_section => section_vals_get_subs_vals(atom_section, "POWELL")
CALL atom_fit_pseudo(atom_info, atom_refs, p_pot, iw, powell_section)
END IF
CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%FIT_PSEUDO")
iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%POTENTIAL", extension=".log")
IF (iw > 0) THEN
CALL atom_print_potential(p_pot, iw)
END IF
CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%POTENTIAL")
! clean up
CALL atom_int_release(ae_int)
CALL atom_ppint_release(ae_int)
CALL atom_relint_release(ae_int)
CALL atom_int_release(pp_int)
CALL atom_ppint_release(pp_int)
CALL atom_relint_release(pp_int)
CALL release_atom_basis(ae_basis)
CALL release_atom_basis(pp_basis)
CALL release_atom_potential(p_pot)
CALL release_atom_potential(ae_pot)
DO in = 1, n_rep
DO im = 1, n_meth
CALL release_atom_type(atom_info(in, im)%atom)
CALL release_atom_type(atom_refs(in, im)%atom)
END DO
END DO
DEALLOCATE (atom_info, atom_refs)
DEALLOCATE (ae_pot, p_pot, ae_basis, pp_basis, ae_int, pp_int)
CALL timestop(handle)
END SUBROUTINE atom_pseudo_opt
! **************************************************************************************************
END MODULE atom_pseudo