-
Notifications
You must be signed in to change notification settings - Fork 0
/
membershipEquations.tex
84 lines (68 loc) · 3.09 KB
/
membershipEquations.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
\documentclass{article}
\textheight 250mm
\textwidth 170mm
\hoffset -40mm
\voffset -25mm
\parindent 0mm
\def\If{\mbox{\bf~If~}} % "If" in the rules
\def\Then{\mbox{\bf~then~}} % "then" in the rules
\def\Is{\mbox{~is~}} % "is" in the rules
\def\And{\mbox{\bf~and~}} % "and" in the rules
\def\Or{\mbox{\bf~or~}} % "or" in the rules
\def\Not{\mbox{\bf~not~}} % "not" in the rules
\newcommand{\lab}[1]{\mbox{\sc #1}} % linguistic label
\newcommand{\var}[1]{\mbox{\em #1}} % linguistic variable
\begin{document}
This model was generated on 22-12-2019 from 5403 data samples.
It has 4 inputs and 1 output. The sampling period is 1~s.
The termination tolerance of the clustering algorithm was 0.01,
and the random initial partition was generated with seed equal to 213256.
The output-specific parameters are given in the following table.
\begin{table}[htbp]
\centering
\caption{Model parameters.}
\begin{tabular}{|c|ccccc|}\hline
output & antecedent & $c$ & $m$ & $n_y$ & $n_u$ \\ \hline
1 & 1 & 3 & 2 & \{\{ [ ] \}, & \{\{ [ 0\, ] [ 0\, ] [ 0\, ] [ 0\, ] \}, \\
& & & & \{ [ ] \}\} & \{ [ 0\, ] [ 0\, ] [ 0\, ] [ 0\, ] \}\} \\ \hline
\end{tabular}
\label{tab:params}
\end{table}
In the following, the output-specific information is shown for each output.
Output1:
Rules:
$$
\begin{array}{l@{\hspace*{-0em}}l}
1. & \If u_1 \Is A_{11}\And u_2 \Is A_{12}\And u_3 \Is A_{13}\And u_4 \Is A_{14} \Then \\
& \; y(k) = 2.7\cdot 10^{e-2}u_1-1.7\cdot 10^{e+8}u_2+6.2\cdot 10^{e-2}u_3-3.7\cdot 10^{e-1}u_4+4.0\cdot 10^{e-2} \\ \\
2. & \If u_1 \Is A_{21}\And u_2 \Is A_{22}\And u_3 \Is A_{23}\And u_4 \Is A_{24} \Then \\
& \; y(k) = 5.0\cdot 10^{e-2}u_1-1.3\cdot 10^{e-2}u_2+9.3\cdot 10^{e-2}u_3+2.9\cdot 10^{e-1}u_4-5.1\cdot 10^{e-1} \\ \\
3. & \If u_1 \Is A_{31}\And u_2 \Is A_{32}\And u_3 \Is A_{33}\And u_4 \Is A_{34} \Then \\
& \; y(k) = -1.1\cdot 10^{e-2}u_1+2.5\cdot 10^{e-3}u_2+8.1\cdot 10^{e-3}u_3-5.9\cdot 10^{e-1}u_4+1.3\cdot 10^{e+} \\ \\
\end{array}
$$
\begin{table}[htbp]
\centering
\caption{Consequent parameters.}
\begin{tabular}{|c|rrrrr|}\hline
rule & $u_1$ & $u_2$ & $u_3$ & $u_4$ & offset \\ \hline
1 & $2.7\cdot 10^{e-2}$ & $-1.7\cdot 10^{e+8}$ & $ 6.2\cdot 10^{e-2}$ & $-3.7\cdot 10^{e-1}$ & $ 4.0\cdot 10^{e-2}$ \\
2 & $5.0\cdot 10^{e-2}$ & $-1.3\cdot 10^{e-2}$ & $ 9.3\cdot 10^{e-2}$ & $ 2.9\cdot 10^{e-1}$ & $-5.1\cdot 10^{e-1}$ \\
3 & $-1.1\cdot 10^{e-2}$ & $ 2.5\cdot 10^{e-3}$ & $ 8.1\cdot 10^{e-3}$ & $-5.9\cdot 10^{e-1}$ & $ 1.3\cdot 10^{e+}$ \\
\hline
\end{tabular}
\label{tab:cons1}
\end{table}
\begin{table}[htbp]
\centering
\caption{Cluster centers.}
\begin{tabular}{|c|rrrr|}\hline
rule & $u_1$ & $u_2$ & $u_3$ & $u_4$ \\ \hline
1 & $4.1\cdot 10^{e+}$ & $ 1.0\cdot 10^{e-19}$ & $ 2.4\cdot 10^{e+}$ & $ 2.0\cdot 10^{e-1}$ \\
2 & $5.6\cdot 10^{e+}$ & $ 2.5\cdot 10^{e+}$ & $ 2.5\cdot 10^{e+}$ & $ 2.2\cdot 10^{e-1}$ \\
3 & $2.3\cdot 10^{e+1}$ & $ 3.1\cdot 10^{e+}$ & $ 3.0\cdot 10^{e+}$ & $ 2.1\cdot 10^{e-1}$ \\
\hline
\end{tabular}
\label{tab:centers1}
\end{table}
\end{document}