Skip to content

Latest commit

 

History

History
91 lines (51 loc) · 5.19 KB

07-01.md

File metadata and controls

91 lines (51 loc) · 5.19 KB

交叉熵损失函数

打开本页,如果没有显示公式,请刷新页面。

此内容为《机器学习数学基础》7.4 相对熵和交叉熵 补充资料。


在研究机器学习或深度学习问题时,损失函数或者代价函数——关于两者的区别,请参阅《机器学习数学基础》中的详细说明——是必不可少的,它们主要用以优化训练模型。目标就是让损失函数最小化,损失越小的模型越好。交叉熵损失函数,就是众多损失函数中重要一员,它主要用与对分类模型的优化。为了理解交叉熵损失函数,以及为什么同时用Softmax作为激活函数,特别撰写本文。

下面我们使用一个图像分类的示例,这个示例中包括狗、猫、马和豹。

如上图所示,以Softmax函数作为激活函数,交叉熵损失函数旨在度量预测值($$P$$)与真实值之间的差距,如下图所示。

例如,如果输入图片是狗,其真实值为 $$[1,0,0,0]$$ ,但通过深度学习模型,得到的预测值为 $$[0.775, 0.116, 0.039, 0.070]$$ 。我们的目标就是要让输出的预测值与真实值之间尽可能地靠近。在模型训练过程中,将模型权重进行迭代调整,以最大程度地减少交叉熵损失。 权重的调整过程就是模型训练过程,并且随着模型的不断训练和损失的最小化,这就是机器学习中所说的学习过程。

交叉熵的概念起源于信息论,香农(Claude Shannon)在1948年创立了信息论,其中最重要的概念就是信息熵,所以,在学习交叉熵之前,要先了解信息熵——不过,下面仅仅是列出信息熵的基本概念,因为在《机器学习数学基础》一书中,有专门章节讨论信息熵的有关知识。

随机变量 $$X$$ 的熵定义:

$$H(X)=\begin{cases}-\sum_xp(x)\log(p(x)),\quad &X是离散型随机变量\-\int_xp(x)\log(p(x)),&X是连续型随机变量\end{cases}$$

关于熵的更多内容,请参阅《机器学习数学基础》(2021年5月,电子工业出版社出版)。

交叉熵损失函数

交叉熵损失函数,也称为对数损失或者logistic损失。当模型产生了预测值之后,将对类别的预测概率与真实值(由 $$0$$$$1$$ 组成)进行不比较,计算所产生的损失,然后基于此损失设置对数形式的惩罚项。

在训练模型的时候,使用交缠上损失函数,目的是最小化损失,即损失越小的模型越好。最理想的就是交叉熵损失函数为 $$0$$

定义

$$L_{CE}=-\sum_{i=1}^nt_i\log(p_i)$$

其中,$$n$$ 是类别的数量,$$t_i$$ 是某个类别的真实值,$$p_i$$ 是该了别的预测概率。

一般情况下,取以 $$2$$ 为底的对数进行计算。

二分类交叉熵损失函数

对于二分类问题,由于分类结果服从伯努利分布(参阅《机器学习数学基础》),所以二分类交叉熵损失函数定义为:

定义

$$L=-\sum_{i=1}^nt_i\log(p_i)=-[t\log(p)+(1-t)\log(1-p)]$$

其中,$$t_i$$ 是某类别的真实值,取值为 $$0$$$$1$$ ;$$p_i$$ 为某类别的预测概率。

在二分类问题中,通常计算所有样本的平均交叉熵损失:

$$L=-\frac{1}{N}\left[\sum_{j=1}^Nt_j\log(p_j)+(1-t_j)\log(1-p_j)\right]$$

其中,$$N$$ 为样本数量,$$t_j$$ 为第 $$j$$ 个样本的真实类别值,$$p_j$$ 为相应样本的预测概率。

以前面提到的图片识别为例,$$S$$ 表示预测结果,$$T$$ 表示真实标签,如下图所示。

根据上面的数据,计算两者之间的交叉熵:

$$\begin{split}L&=-\sum_{i=1}^4T_i\log(S_i)\&=-[1\log_2(0.775)+0\log_2(0.116)+0\log_2(0.039)+0\log_2(0.070)]\&=-\log_2(0.775)\&=0.3677\end{split}$$

在神经网络中,所使用的Softmax函数是连续可导函数,这使得可以计算出损失函数相对于神经网络中每个权重的导数(在《机器学习数学基础》中有对此的完整推导过程和案例,读者可以理解其深层含义,请参阅)。这样就可以相应地调整模型的权重以最小化损失函数(模型输出接近真实值)。

假设经过权重调整之后,其输出值变为:

用上面方法,可以容易计算出,这次交叉熵损失比原来小了。

Keras(一种高级神经网络接口,Google的TensorFlow在其核心库中已经支持Keras[2])中提供了多种交叉熵损失函数:

  • 二分类
  • 多分类
  • 稀疏类别

关于交叉熵损失函数的更多内容,建议参阅《机器学习数学基础》中的详细说明,本书于2021年5月由电子工业出版社出版。

参考文献

[1]. 齐伟.机器学习数学基础.北京:电子工业出版社,2021

[2]. https://zh.wikipedia.org/wiki/Keras

[3]. https://towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e