From f277fb8f6ea742a796421d32c0c2e30bab923853 Mon Sep 17 00:00:00 2001 From: Ben Mares Date: Wed, 21 Aug 2024 18:26:38 +0200 Subject: [PATCH] Minor refactoring to make periodic HSGP look similar --- pymc/gp/hsgp_approx.py | 41 +++++++++++++++++++++++++++++------------ 1 file changed, 29 insertions(+), 12 deletions(-) diff --git a/pymc/gp/hsgp_approx.py b/pymc/gp/hsgp_approx.py index 760262276a..38726e438b 100644 --- a/pymc/gp/hsgp_approx.py +++ b/pymc/gp/hsgp_approx.py @@ -443,17 +443,22 @@ def prior( """ phi, sqrt_psd = self.prior_linearized(X) + size = self._m_star - int(self._drop_first) if self._parametrization == "noncentered": self._beta = pm.Normal( f"{name}_hsgp_coeffs_", - size=self._m_star - int(self._drop_first), + size=size, dims=hsgp_coeffs_dims, ) self._sqrt_psd = sqrt_psd f = self.mean_func(X) + phi @ (self._beta * self._sqrt_psd) elif self._parametrization == "centered": - self._beta = pm.Normal(f"{name}_hsgp_coeffs_", sigma=sqrt_psd, dims=hsgp_coeffs_dims) + self._beta = pm.Normal( + f"{name}_hsgp_coeffs_", + sigma=sqrt_psd, + dims=hsgp_coeffs_dims, + ) f = self.mean_func(X) + phi @ self._beta self.f = pm.Deterministic(name, f, dims=gp_dims) @@ -678,7 +683,12 @@ def prior_linearized(self, X: TensorLike): psd = self.scale * self.cov_func.power_spectral_density_approx(J) return (phi_cos, phi_sin), psd - def prior(self, name: str, X: TensorLike, dims: str | None = None): # type: ignore + def prior( + self, + name: str, + X: TensorLike, + dims: str | None = None, + ): # type: ignore R""" Returns the (approximate) GP prior distribution evaluated over the input locations `X`. For usage examples, refer to `pm.gp.Latent`. @@ -695,16 +705,23 @@ def prior(self, name: str, X: TensorLike, dims: str | None = None): # type: ign (phi_cos, phi_sin), psd = self.prior_linearized(X) m = self._m - self._beta = pm.Normal(f"{name}_hsgp_coeffs_", size=(m * 2 - 1)) - # The first eigenfunction for the sine component is zero - # and so does not contribute to the approximation. - f = ( - self.mean_func(X) - + phi_cos @ (psd * self._beta[:m]) # type: ignore - + phi_sin[..., 1:] @ (psd[1:] * self._beta[m:]) # type: ignore - ) + gp_dims = dims + size = 2 * m - 1 + parametrization = "noncentered" + if parametrization == "noncentered": + self._beta = pm.Normal( + f"{name}_hsgp_coeffs_", + size=size, + ) + # The first eigenfunction for the sine component is zero + # and so does not contribute to the approximation. + f = ( + self.mean_func(X) + + phi_cos @ (self._beta[:m] * psd) # type: ignore + + phi_sin[..., 1:] @ (self._beta[m:] * psd[1:]) # type: ignore + ) - self.f = pm.Deterministic(name, f, dims=dims) + self.f = pm.Deterministic(name, f, dims=gp_dims) return self.f def _build_conditional(self, Xnew):