Skip to content

Commit

Permalink
Minor refactoring to make periodic HSGP look similar
Browse files Browse the repository at this point in the history
  • Loading branch information
maresb committed Aug 23, 2024
1 parent 799c98f commit f277fb8
Showing 1 changed file with 29 additions and 12 deletions.
41 changes: 29 additions & 12 deletions pymc/gp/hsgp_approx.py
Original file line number Diff line number Diff line change
Expand Up @@ -443,17 +443,22 @@ def prior(
"""
phi, sqrt_psd = self.prior_linearized(X)

size = self._m_star - int(self._drop_first)
if self._parametrization == "noncentered":
self._beta = pm.Normal(
f"{name}_hsgp_coeffs_",
size=self._m_star - int(self._drop_first),
size=size,
dims=hsgp_coeffs_dims,
)
self._sqrt_psd = sqrt_psd
f = self.mean_func(X) + phi @ (self._beta * self._sqrt_psd)

elif self._parametrization == "centered":
self._beta = pm.Normal(f"{name}_hsgp_coeffs_", sigma=sqrt_psd, dims=hsgp_coeffs_dims)
self._beta = pm.Normal(
f"{name}_hsgp_coeffs_",
sigma=sqrt_psd,
dims=hsgp_coeffs_dims,
)
f = self.mean_func(X) + phi @ self._beta

self.f = pm.Deterministic(name, f, dims=gp_dims)
Expand Down Expand Up @@ -678,7 +683,12 @@ def prior_linearized(self, X: TensorLike):
psd = self.scale * self.cov_func.power_spectral_density_approx(J)
return (phi_cos, phi_sin), psd

def prior(self, name: str, X: TensorLike, dims: str | None = None): # type: ignore
def prior(
self,
name: str,
X: TensorLike,
dims: str | None = None,
): # type: ignore
R"""
Returns the (approximate) GP prior distribution evaluated over the input locations `X`.
For usage examples, refer to `pm.gp.Latent`.
Expand All @@ -695,16 +705,23 @@ def prior(self, name: str, X: TensorLike, dims: str | None = None): # type: ign
(phi_cos, phi_sin), psd = self.prior_linearized(X)

m = self._m
self._beta = pm.Normal(f"{name}_hsgp_coeffs_", size=(m * 2 - 1))
# The first eigenfunction for the sine component is zero
# and so does not contribute to the approximation.
f = (
self.mean_func(X)
+ phi_cos @ (psd * self._beta[:m]) # type: ignore
+ phi_sin[..., 1:] @ (psd[1:] * self._beta[m:]) # type: ignore
)
gp_dims = dims
size = 2 * m - 1
parametrization = "noncentered"
if parametrization == "noncentered":
self._beta = pm.Normal(
f"{name}_hsgp_coeffs_",
size=size,
)
# The first eigenfunction for the sine component is zero
# and so does not contribute to the approximation.
f = (
self.mean_func(X)
+ phi_cos @ (self._beta[:m] * psd) # type: ignore
+ phi_sin[..., 1:] @ (self._beta[m:] * psd[1:]) # type: ignore
)

self.f = pm.Deterministic(name, f, dims=dims)
self.f = pm.Deterministic(name, f, dims=gp_dims)
return self.f

def _build_conditional(self, Xnew):
Expand Down

0 comments on commit f277fb8

Please sign in to comment.