-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
415 lines (360 loc) · 21.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import SimpleITK as sitk
import numpy as np
import os
import paths
import csv
import math
from scipy.io import loadmat
from skimage.measure import regionprops, marching_cubes_classic, mesh_surface_area
def divide_hcp(connectivity_matrix, hcp_connectivity):
''' divide the connectivity matrix by the hcp matrix'''
assert(connectivity_matrix.shape == hcp_connectivity.shape)
output_matrix = np.zeros(connectivity_matrix.shape)
for i in range(connectivity_matrix.shape[0]):
for j in range(connectivity_matrix.shape[1]):
if hcp_connectivity[i,j] != 0:
output_matrix[i,j] = connectivity_matrix[i,j]/hcp_connectivity[i,j]
return output_matrix
def get_hcp_connectivity_matrice(hcp_connectivity_matrices_path = paths.hcp_connectivity_matrices_path):
'''Get the pass-type and end-type connectivity matrices from HCP1021 subjects'''
end_matrix_path = os.path.join(hcp_connectivity_matrices_path, 'HCP1021.1mm.fib.gz.aal.count.end.connectivity.mat')
pass_matrix_path = os.path.join(hcp_connectivity_matrices_path, 'HCP1021.1mm.fib.gz.aal.count.pass.connectivity.mat')
end_obj = loadmat(end_matrix_path)
end_matrix = end_obj['connectivity']
pass_obj = loadmat(pass_matrix_path)
pass_matrix = pass_obj['connectivity']
return pass_matrix, end_matrix
def ReadImage(path):
''' This code returns the numpy nd array for a MR image at path'''
return sitk.GetArrayFromImage(sitk.ReadImage(path)).astype(np.float32)
def find_list(subject_id, list):
''' this is used to find the stroke lesion for a subject name '''
files = [file for file in list if subject_id in file]
return files[0]
def find_3d_surface(mask, voxel_spacing=(1.0,1.0,1.0)):
''' find the surface for a 3D object '''
verts, faces = marching_cubes_classic(volume=mask, spacing=voxel_spacing)
return mesh_surface_area(verts, faces)
def find_3d_roundness(mask):
''' find the roundess of a 3D object '''
mask_region_props = regionprops(mask.astype(int))
mask_area = mask_region_props[0].area
mask_equivDiameter = (6.0*mask_area/math.pi)**(1.0/3.0)
mask_major_axis_length = mask_region_props[0].major_axis_length
return mask_equivDiameter**2/mask_major_axis_length**2
def reshape_by_padding_upper_coords(image, new_shape, pad_value=None):
''' reshape the 3d matrix '''
shape = tuple(list(image.shape))
new_shape = tuple(np.max(np.concatenate((shape, new_shape)).reshape((2,len(shape))), axis=0))
if pad_value is None:
if len(shape)==2:
pad_value = image[0,0]
elif len(shape)==3:
pad_value = image[0, 0, 0]
else:
raise ValueError("Image must be either 2 or 3 dimensional")
res = np.ones(list(new_shape), dtype=image.dtype) * pad_value
if len(shape) == 2:
res[0:0+int(shape[0]), 0:0+int(shape[1])] = image
elif len(shape) == 3:
res[0:0+int(shape[0]), 0:0+int(shape[1]), 0:0+int(shape[2])] = image
return res
# ======================= Tools for connectivity matrix ============================================= #
def threshold_connectivity_matrix(connectivity_matrix, threshold=0.01):
''' threshold the connectiivty matrix in order to remove the noise'''
thresholded_connectivity_matrix= np.copy(connectivity_matrix)
thresholded_connectivity_matrix[connectivity_matrix <= threshold*np.amax(connectivity_matrix)] = 0.0
return thresholded_connectivity_matrix
def weight_conversion(W):
''' convert to the normalized version and binary version'''
W_bin = np.copy(W)
W_bin[W!=0]=1
W_nrm = np.copy(W)
W_nrm = W_nrm/np.amax(np.absolute(W))
return W_nrm, W_bin
def get_lesion_weights(stroke_mni_path):
''' get the weight vector(workshop paper)'''
aal_path = os.path.join(paths.dsi_studio_path, 'atlas', 'aal.nii.gz')
aal_nda = ReadImage(aal_path)
aal_182_218_182 = reshape_by_padding_upper_coords(aal_nda, (182,218,182), 0)
stroke_mni_nda = ReadImage(stroke_mni_path)
weights = np.zeros(int(np.amax(aal_182_218_182)), dtype=float)
for bp_number in range(int(np.amax(aal_182_218_182))):
mask = np.zeros(aal_182_218_182.shape, aal_182_218_182.dtype)
mask[aal_182_218_182==(bp_number+1)]=1
bp_size = float(np.count_nonzero(mask))
stroke_in_bp = np.multiply(mask, stroke_mni_nda)
stroke_in_bp_size = float(np.count_nonzero(stroke_in_bp))
#weights[bp_number] = stroke_in_bp_size/bp_size
weights[bp_number] = stroke_in_bp_size
return weights
def get_modified_lesion_weights(stroke_mni_path):
''' get the modified weight vector'''
aal_path = os.path.join(paths.dsi_studio_path, 'atlas', 'aal.nii.gz')
aal_nda = ReadImage(aal_path)
aal_182_218_182 = reshape_by_padding_upper_coords(aal_nda, (182,218,182), 0)
stroke_mni_nda = ReadImage(stroke_mni_path)
stroke_volume = float(np.count_nonzero(stroke_mni_nda))
weights = np.zeros(int(np.amax(aal_182_218_182)), dtype=float)
for bp_number in range(int(np.amax(aal_182_218_182))):
mask = np.zeros(aal_182_218_182.shape, aal_182_218_182.dtype)
mask[aal_182_218_182==(bp_number+1)]=1
#bp_size = float(np.count_nonzero(mask))
stroke_in_bp = np.multiply(mask, stroke_mni_nda)
stroke_volume_in_bp = float(np.count_nonzero(stroke_in_bp))
#weights[bp_number] = 1.0 + stroke_volume_in_bp/stroke_volume
weights[bp_number] = stroke_volume_in_bp/stroke_volume
#remaining_volume = stroke_volume - np.sum(weights)
#print(remaining_volume)
return weights
def get_train_dataset():
'''Give you the training dataset'''
gt_subject_paths = [os.path.join(root, name) for root, dirs, files in os.walk(paths.isles2017_training_dir) for name in files if '.OT.' in name and '__MACOSX' not in root and name.endswith('.nii')]
gt_subject_paths.sort()
# The CSV file for train dataset
train_mRS_file = "ISLES2017_Training.csv"
train_mRS_path = os.path.join(paths.isles2017_dir, train_mRS_file)
assert(os.path.isfile(train_mRS_path))
# Read CSV file for Train dataset
train_dataset = {}
with open(train_mRS_path, 'rt') as csv_file:
csv_reader = csv.reader(csv_file)
for line in csv_reader:
if line[2] == '90': # 90 days
subject_name = line[0]
gt_file = [file for file in gt_subject_paths if '/'+subject_name+'/' in file]
if gt_file:
train_dataset[subject_name]={}
train_dataset[subject_name]['mRS'] = line[1]
train_dataset[line[0]]['TICI'] = line[3]
train_dataset[line[0]]['TSS'] = line[4]
train_dataset[line[0]]['TTT'] = line[5]
train_dataset[line[0]]['ID'] = gt_file[0][-10:-4]
train_dataset[line[0]]['tracts'] = line[6]
return train_dataset
# Get the mRS for training subject from training_1 to training_48
def extract_gt_mRS():
'''extract the mRS for training subjects from training_1 to training_48'''
mRS_gt = np.zeros((37, ))
train_dataset = get_train_dataset()
for idx, subject_name in enumerate(train_dataset.keys()):
mRS_gt[idx] = train_dataset[subject_name]['mRS']
return mRS_gt
def extract_tract_features():
''' extract number of tracts'''
train_dataset = get_train_dataset()
tracts = np.zeros((37, 1))
for idx, subject_name in enumerate(train_dataset.keys()):
tracts[idx] = train_dataset[subject_name]['tracts']
return tracts, ['tracts']
# Extract the volume of stroke in MNI152 space
def extract_volumetric_features():
# The ground truth lesions in MNI space
volumetric_list = ["volume"]
stroke_mni_dir = os.path.join(paths.dsi_studio_path, 'gt_stroke')
stroke_mni_paths = [os.path.join(root, name) for root, dirs, files in os.walk(stroke_mni_dir) for name in files if name.endswith('nii.gz')]
stroke_mni_paths.sort()
assert(len(stroke_mni_paths) == 43)
# Volumetric Features
volumetric_features = np.zeros((37,1))
train_dataset = get_train_dataset()
for idx, subject_name in enumerate(train_dataset.keys()):
subject_id = train_dataset[subject_name]['ID']
stroke_mni_path = find_list(subject_id, stroke_mni_paths)
#volumetric features
stroke_mni_nda = ReadImage(stroke_mni_path)
volumetric_features[idx] = np.count_nonzero(stroke_mni_nda)
return volumetric_features, volumetric_list
def extract_spatial_features():
# The ground truth lesions in MNI space
stroke_mni_dir = os.path.join(paths.dsi_studio_path, 'gt_stroke')
stroke_mni_paths = [os.path.join(root, name) for root, dirs, files in os.walk(stroke_mni_dir) for name in files if name.endswith('nii.gz')]
stroke_mni_paths.sort()
assert(len(stroke_mni_paths) == 43)
spatial_list = ["centroid_z", "centroid_y", "centroid_x"]
# Volumetric Features
spatial_features = np.zeros((37,3))
train_dataset = get_train_dataset()
for idx, subject_name in enumerate(train_dataset.keys()):
subject_id = train_dataset[subject_name]['ID']
stroke_mni_path = find_list(subject_id, stroke_mni_paths)
stroke_mni_nda = ReadImage(stroke_mni_path)
stroke_regions = regionprops(stroke_mni_nda.astype(int))
stroke_centroid = stroke_regions[0].centroid
spatial_features[idx, :] = stroke_centroid
return spatial_features, spatial_list
def extract_morphological_features():
# The ground truth lesions in MNI space
stroke_mni_dir = os.path.join(paths.dsi_studio_path, 'gt_stroke')
stroke_mni_paths = [os.path.join(root, name) for root, dirs, files in os.walk(stroke_mni_dir) for name in files if name.endswith('nii.gz')]
stroke_mni_paths.sort()
assert(len(stroke_mni_paths) == 43)
morphological_list = ["major", "minor", "major/minor", "surface", "solidity", "roundness"]
# Volumetric Features
morphological_features = np.zeros((37,6), dtype=np.float32)
train_dataset = get_train_dataset()
for idx, subject_name in enumerate(train_dataset.keys()):
subject_id = train_dataset[subject_name]['ID']
stroke_mni_path = find_list(subject_id, stroke_mni_paths)
stroke_mni_nda = ReadImage(stroke_mni_path)
stroke_regions = regionprops(stroke_mni_nda.astype(int))
stroke_major_axis_length = stroke_regions[0].major_axis_length
stroke_minor_axis_length = stroke_regions[0].minor_axis_length
stroke_surface = find_3d_surface(stroke_mni_nda.astype(int))
stroke_roundness = find_3d_roundness(stroke_mni_nda.astype(int))
morphological_features[idx, :] = stroke_major_axis_length, stroke_minor_axis_length, stroke_major_axis_length/stroke_minor_axis_length, stroke_surface, stroke_regions[0].solidity, stroke_roundness
return morphological_features, morphological_list
def extract_tractographic_features(weight_type, aal_regions=116):
# The ground truth lesion in subject space
gt_subject_paths = [os.path.join(root, name) for root, dirs, files in os.walk(paths.isles2017_training_dir) for name in files if '.OT.' in name and '__MACOSX' not in root and name.endswith('.nii')]
# New connectivity matrices location
connectivity_train_dir = os.path.join(paths.dsi_studio_path, 'connectivity', 'gt_stroke')
# pass type locations
connectivity_pass_files = [os.path.join(root, name) for root, dirs, files in os.walk(connectivity_train_dir) for name in files if 'count' in name and 'ncount' not in name and 'connectivity' in name and 'pass' in name and name.endswith('.mat')]
connectivity_pass_files.sort()
# end type locations
connectivity_end_files = [os.path.join(root, name) for root, dirs, files in os.walk(connectivity_train_dir) for name in files if 'count' in name and 'ncount' not in name and 'connectivity' in name and 'end' in name and name.endswith('.mat')]
connectivity_end_files.sort()
# The ground truth lesions in MNI space
stroke_mni_dir = os.path.join(paths.dsi_studio_path, 'gt_stroke')
stroke_mni_paths = [os.path.join(root, name) for root, dirs, files in os.walk(stroke_mni_dir) for name in files if name.endswith('nii.gz')]
stroke_mni_paths.sort()
tractographic_list = ["tract_aal_"+str(i) for i in range(1, aal_regions+1)]
assert(len(connectivity_pass_files) == len(connectivity_end_files) == len(stroke_mni_paths) == 43)
train_dataset = get_train_dataset()
# Tractographic Features
W_dsi_pass_histogram_features = np.zeros((37, aal_regions), dtype=np.float32)
W_nrm_pass_histogram_features = np.zeros((37, aal_regions), dtype=np.float32)
W_bin_pass_histogram_features = np.zeros((37, aal_regions), dtype=np.float32)
W_dsi_end_histogram_features = np.zeros((37, aal_regions), dtype=np.float32)
W_nrm_end_histogram_features = np.zeros((37, aal_regions), dtype=np.float32)
W_bin_end_histogram_features = np.zeros((37, aal_regions), dtype=np.float32)
for idx, subject_name in enumerate(train_dataset.keys()):
subject_id = train_dataset[subject_name]['ID']
connectivity_pass_file = find_list(subject_id, connectivity_pass_files)
connectivity_pass_obj = loadmat(connectivity_pass_file)
thresholded_connectivity_pass = threshold_connectivity_matrix(connectivity_pass_obj['connectivity'], 0)
W_nrm_pass, W_bin_pass = weight_conversion(thresholded_connectivity_pass)
connectivity_end_file = find_list(subject_id, connectivity_end_files)
connectivity_end_obj = loadmat(connectivity_end_file)
thresholded_connectivity_end = threshold_connectivity_matrix(connectivity_end_obj['connectivity'], 0)
W_nrm_end, W_bin_end = weight_conversion(thresholded_connectivity_end)
stroke_mni_path = find_list(subject_id, stroke_mni_paths)
# =================================== Weight Vector ========================================== #
# Get the lesion weights
if 'ori' in weight_type:
lesion_weights = get_lesion_weights(stroke_mni_path)
# Get the modified lesion weights
if 'mod' in weight_type:
lesion_weights = get_modified_lesion_weights(stroke_mni_path)
# No weight
if 'one' in weight_type:
lesion_weights = np.ones((1,aal_regions), dtype=np.float32)
# weighted connectivity histogram
W_dsi_pass_histogram_features[idx, :] = np.multiply(np.sum(thresholded_connectivity_pass, axis=0), lesion_weights)
W_nrm_pass_histogram_features[idx, :] = np.multiply(np.sum(W_nrm_pass, axis=0), lesion_weights)
W_bin_pass_histogram_features[idx, :] = np.multiply(np.sum(W_bin_pass, axis=0), lesion_weights)
W_dsi_end_histogram_features[idx, :] = np.multiply(np.sum(thresholded_connectivity_end, axis=0), lesion_weights)
W_nrm_end_histogram_features[idx, :] = np.multiply(np.sum(W_nrm_end, axis=0), lesion_weights)
W_bin_end_histogram_features[idx, :] = np.multiply(np.sum(W_bin_end, axis=0), lesion_weights)
return W_dsi_pass_histogram_features, W_nrm_pass_histogram_features, W_bin_pass_histogram_features, W_dsi_end_histogram_features, W_nrm_end_histogram_features, W_bin_end_histogram_features, tractographic_list
def extract_volumetric_spatial_features(atlas_name):
'''extract volumetric spatial features'''
stroke_mni_dir = os.path.join(paths.dsi_studio_path, 'gt_stroke')
stroke_mni_paths = [os.path.join(root, name) for root, dirs, files in os.walk(stroke_mni_dir) for name in files if name.endswith('nii.gz')]
stroke_mni_paths.sort()
train_dataset = get_train_dataset()
atlas_path = os.path.join(paths.dsi_studio_path, 'atlas', atlas_name+'.nii.gz')
atlas_nda = ReadImage(atlas_path)
if atlas_name == 'aal':
atlas_nda = reshape_by_padding_upper_coords(atlas_nda, (182,218,182), 0)
volumetric_spatial_features = np.zeros((37, int(np.amax(atlas_nda))+1), dtype=float)
for idx, subject_name in enumerate(train_dataset.keys()):
subject_id = train_dataset[subject_name]['ID']
stroke_mni_path = find_list(subject_id, stroke_mni_paths)
stroke_mni_nda = ReadImage(stroke_mni_path)
whole_stroke_volume = float(np.count_nonzero(stroke_mni_nda))
for bp_number in range(1, int(np.amax(atlas_nda)+1)):
mask = np.zeros(atlas_nda.shape, atlas_nda.dtype)
mask[atlas_nda==(bp_number)]=1
stroke_in_bp = np.multiply(mask, stroke_mni_nda)
stroke_in_bp_volume = np.count_nonzero(stroke_in_bp)
volumetric_spatial_features[idx, bp_number] = stroke_in_bp_volume
total_stroke_volume_bp = np.sum(volumetric_spatial_features[idx, :])
volumetric_spatial_features[idx, 0] = whole_stroke_volume - total_stroke_volume_bp
volumetric_spatial_list =['volume_'+atlas_name+'_'+str(i) for i in range(0, int(np.amax(atlas_nda)+1))]
return volumetric_spatial_features, volumetric_spatial_list
def extract_modified_volumetric_spatial_features(atlas_name):
'''extract volumetric spatial features considering the total volume of the stroke lesion'''
stroke_mni_dir = os.path.join(paths.dsi_studio_path, 'gt_stroke')
stroke_mni_paths = [os.path.join(root, name) for root, dirs, files in os.walk(stroke_mni_dir) for name in files if name.endswith('nii.gz')]
stroke_mni_paths.sort()
train_dataset = get_train_dataset()
atlas_path = os.path.join(paths.dsi_studio_path, 'atlas', atlas_name+'.nii.gz')
atlas_nda = ReadImage(atlas_path)
if atlas_name == 'aal':
atlas_nda = reshape_by_padding_upper_coords(atlas_nda, (182,218,182), 0)
modified_volumetric_spatial_features = np.zeros((37, int(np.amax(atlas_nda))), dtype=float)
for idx, subject_name in enumerate(train_dataset.keys()):
subject_id = train_dataset[subject_name]['ID']
stroke_mni_path = find_list(subject_id, stroke_mni_paths)
stroke_mni_nda = ReadImage(stroke_mni_path)
whole_stroke_volume = float(np.count_nonzero(stroke_mni_nda))
for bp_number in range(1, int(np.amax(atlas_nda))+1):
mask = np.zeros(atlas_nda.shape, atlas_nda.dtype)
mask[atlas_nda==(bp_number)]=1
stroke_in_bp = np.multiply(mask, stroke_mni_nda)
stroke_in_bp_volume = float(np.count_nonzero(stroke_in_bp))
modified_volumetric_spatial_features[idx, bp_number-1] = stroke_in_bp_volume / whole_stroke_volume
volumetric_spatial_list =['volume_'+atlas_name+'_'+str(i) for i in range(1, int(np.amax(atlas_nda))+1)]
assert((len(volumetric_spatial_list))==modified_volumetric_spatial_features.shape[1])
return modified_volumetric_spatial_features, volumetric_spatial_list
def extract_new_tractographic_features(weight_type, aal_regions=116):
# The ground truth lesion in subject space
gt_subject_paths = [os.path.join(root, name) for root, dirs, files in os.walk(paths.isles2017_training_dir) for name in files if '.OT.' in name and '__MACOSX' not in root and name.endswith('.nii')]
# New connectivity matrices location
connectivity_train_dir = os.path.join(paths.dsi_studio_path, 'connectivity', 'gt_stroke')
# pass type locations
connectivity_pass_files = [os.path.join(root, name) for root, dirs, files in os.walk(connectivity_train_dir) for name in files if 'count' in name and 'ncount' not in name and 'connectivity' in name and 'pass' in name and name.endswith('.mat')]
connectivity_pass_files.sort()
# end type locations
connectivity_end_files = [os.path.join(root, name) for root, dirs, files in os.walk(connectivity_train_dir) for name in files if 'count' in name and 'ncount' not in name and 'connectivity' in name and 'end' in name and name.endswith('.mat')]
connectivity_end_files.sort()
# The ground truth lesions in MNI space
stroke_mni_dir = os.path.join(paths.dsi_studio_path, 'gt_stroke')
stroke_mni_paths = [os.path.join(root, name) for root, dirs, files in os.walk(stroke_mni_dir) for name in files if name.endswith('nii.gz')]
stroke_mni_paths.sort()
tractographic_list = ["tract_aal_"+str(i) for i in range(1, aal_regions+1)]
assert(len(connectivity_pass_files) == len(connectivity_end_files) == len(stroke_mni_paths) == 43)
train_dataset = get_train_dataset()
# Tractographic Features
W_pass_histogram_features = np.zeros((37, aal_regions), dtype=np.float32)
W_end_histogram_features = np.zeros((37, aal_regions), dtype=np.float32)
for idx, subject_name in enumerate(train_dataset.keys()):
HCP_pass, HCP_end = get_hcp_connectivity_matrice()
subject_id = train_dataset[subject_name]['ID']
connectivity_pass_file = find_list(subject_id, connectivity_pass_files)
connectivity_pass_obj = loadmat(connectivity_pass_file)
connectivity_pass_matrix = connectivity_pass_obj['connectivity']
#normalized_pass_matrix = divide_hcp(connectivity_pass_matrix, HCP_pass)
connectivity_end_file = find_list(subject_id, connectivity_end_files)
connectivity_end_obj = loadmat(connectivity_end_file)
connectivity_end_matrix = connectivity_end_obj['connectivity']
#normalized_end_matrix = divide_hcp(connectivity_pass_matrix, HCP_end)
stroke_mni_path = find_list(subject_id, stroke_mni_paths)
# =================================== Weight Vector ========================================== #
# Get the lesion weights
if 'ori' in weight_type:
lesion_weights = get_lesion_weights(stroke_mni_path)
# Get the modified lesion weights
if 'mod' in weight_type:
lesion_weights = get_modified_lesion_weights(stroke_mni_path)
# No weight
if 'one' in weight_type:
lesion_weights = np.ones((1,aal_regions), dtype=np.float32)
normalized_pass_matrix = np.divide(np.sum(connectivity_pass_matrix, axis=0), np.sum(HCP_pass, axis=0))
normalized_end_matrix = np.divide(np.sum(connectivity_end_matrix, axis=0), np.sum(HCP_end, axis=0))
# weighted connectivity histogram
W_pass_histogram_features[idx, :] = np.multiply(normalized_pass_matrix, lesion_weights)
W_end_histogram_features[idx, :] = np.multiply(normalized_end_matrix, lesion_weights)
return W_pass_histogram_features, W_end_histogram_features, tractographic_list