forked from boostcampaitech2/image-classification-level1-25
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference.py
104 lines (82 loc) · 3.63 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import argparse
import os
from importlib import import_module
import pandas as pd
import torch
from torch.utils.data import DataLoader
from datasets.dataset import TestDatasetA, MaskBaseDataset
def load_model(saved_model, filename, modelname, num_classes, device):
model = None
if len(data := [s for s in os.listdir(saved_model) if s.endswith(filename)]) == 0:
raise Exception(f'cant find file. {filename}')
elif len(data) == 1 :
model_cls = getattr(import_module("models.model"), modelname)
model = model_cls(
num_classes=num_classes
)
# model = torch.nn.DataParallel(model)
model_path = os.path.join(saved_model, data[0])
model.load_state_dict(torch.load(model_path, map_location=device))
else :
model_cls = getattr(import_module("models.model"), 'ensemble')
model = model_cls(
modelname = modelname,
length = len(data),
num_classes=num_classes,
device = device
)
# model = torch.nn.DataParallel(model)
for M, d in zip(model.superM, data):
model_path = os.path.join(saved_model, d)
M.load_state_dict(torch.load(model_path, map_location=device))
return model
@torch.no_grad()
def inference(args):
"""
"""
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
num_classes = MaskBaseDataset.num_classes # 18
model = load_model(args.save_dir, args.filename, args.model, num_classes, device).to(device)
model.eval()
img_root = os.path.join(args.data_dir, 'images')
info_path = os.path.join(args.data_dir, 'info.csv')
info = pd.read_csv(info_path)
img_paths = [os.path.join(img_root, img_id) for img_id in info.ImageID]
valid_transform_module = getattr(import_module("trans.trans"), args.validaug) # default: BaseAugmentation
valid_transform = valid_transform_module(
resize=args.resize,
)
dataset = TestDatasetA(img_paths, args.resize, transform=valid_transform)
loader = torch.utils.data.DataLoader(
dataset,
batch_size=args.batch_size,
num_workers=8,
shuffle=False,
pin_memory=use_cuda,
drop_last=False,
)
print("Calculating inference results..")
preds = []
with torch.no_grad():
for idx, images in enumerate(loader):
images = images.to(device)
pred = model(images)
pred = pred.argmax(dim=-1)
preds.extend(pred.cpu().numpy())
info['ans'] = preds
info.to_csv(os.path.join(args.save_dir, f'output.csv'), index=False)
print(f'Inference Done!')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Data and model checkpoints directories
parser.add_argument('--batch_size', type=int, default=128, help='input batch size for validing (default: 128)')
parser.add_argument('--model', type=str, default='rexnet_200base', help='model type (default: BaseModel)')
parser.add_argument('--filename', type=str, default='best.pth', help='save file name (default: best.pth)')
parser.add_argument('--validaug', type=str, default='A_centercrop_trans', help='validation data augmentation type (default: A_centercrop_trans)')
parser.add_argument("--resize", nargs="+", type=list, default=[224, 224], help='resize size for image when training')
# Container environment
parser.add_argument('--data_dir', type=str, default=os.environ.get('SM_CHANNEL_EVAL', '/opt/ml/input/data/eval'))
parser.add_argument('--save_dir', type=str, default=os.environ.get('SM_CHANNEL_SAVE', './save'))
args = parser.parse_args()
inference(args)