-
Notifications
You must be signed in to change notification settings - Fork 1
/
leastsquares.cpp
53 lines (49 loc) · 1.66 KB
/
leastsquares.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
/******************************************************/
/* */
/* leastsquares.cpp - least-squares adjustment */
/* */
/******************************************************/
/* Copyright 2020 Pierre Abbat.
* This file is part of Wolkenbase.
*
* Wolkenbase is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Wolkenbase is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Wolkenbase. If not, see <http://www.gnu.org/licenses/>.
*/
#include <cmath>
#include "leastsquares.h"
using namespace std;
vector<double> linearLeastSquares(const matrix &m,const vector<double> &v)
/* m should be a matrix(a,b) where a>b. If a<b, mtm is singular.
* There are b things which can be adjusted to best fit a data.
*/
{
matrix mtm,mt,vmat=columnvector(v),mtv;
int i;
mt=m.transpose();
mtm=mt.transmult();
mtv=mt*vmat;
mtm.gausselim(mtv);
for (i=0;i<mtm.getcolumns();i++)
if (mtm[i][i]==0)
mtv[i][0]=NAN;
return mtv;
}
vector<double> minimumNorm(matrix &m,const vector<double> &v)
{
matrix mmt,mt,vmat=columnvector(v),mtv;
mt=m.transpose();
mmt=m.transmult();
mmt.gausselim(vmat);
mtv=mt*vmat;
return mtv;
}