A neural network for calculating optical properties of internally mixed aerosols in atmospheric models (https://arxiv.org/abs/2312.06497).
Here is the companion fortran repository: MieAI-Fortran
Look at the paper at this link for the details about MieAI.
Here is an example usage of MieAI for calculating aerosol optical depth (AOD) of mixed mode aerosols using ICON-ART simulation:
import xarray as xr
from aop import MieAI
core = ['dust', 'soot', 'na', 'cl']
shell = ['h2o', 'so4', 'nh4', 'no3']
wavelength = 0.55 # [in micrometer]
mode = 'acc' # for accumulation mode
dx = xr.open_dataset('icon-art-aging-aero_DOM01_ML_0012.nc')
mie = MieAI(dx, wavelength, core=core, shell=shell, mode=mode)
aod = mie.get_aod()
To calculate the bulk optical properties like extinction coefficient (
aop = mie.get_aop(dx)
To calculate optical properties at a particular height:
dy = dx.isel(height_2=50)
aop = mie.emulate(dy)
- Mie calculation for core-shell configuration
- Compilation of Mie results in a single file
- MLP training without quantile transform: x1
- MLP training without quantile transform: x2
- Quantile Transformation: Figure3 in paper
- Hyperparamter optimisation of MLP architecture: Part1
- Hyperparamter optimisation of MLP architecture: Part2
- Hyperparamter optimisation Table
- MieAI Training
- MieAI performance: Figure4 in paper
- AOD calculation using MieAI
- Codes translated from MATLAB2python
- Functions for preprocessing, mie run and MLP
- AOD calculation using ICON-ART data